
Frontiers in Immunology | www.frontiersin.

Edited by:
Jaewoo Hong,

Catholic University of Daegu,
South Korea

Reviewed by:
Jun-O Jin,

Yeungnam University, South Korea
Hee Min Yoo,

Korea Research Institute of Standards
and Science, South Korea

*Correspondence:
Jae Ho Seo

bionian9@wku.ac.kr

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 24 February 2022
Accepted: 04 May 2022
Published: 30 May 2022

Citation:
Kim S-J, Khadka D and Seo JH (2022)

Interplay between Solid Tumors
and Tumor Microenvironment.
Front. Immunol. 13:882718.

doi: 10.3389/fimmu.2022.882718

MINI REVIEW
published: 30 May 2022

doi: 10.3389/fimmu.2022.882718
Interplay between Solid Tumors and
Tumor Microenvironment
Seung-Jin Kim1,2, Dipendra Khadka3 and Jae Ho Seo4,5*

1 Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon
National University, Chuncheon, South Korea, 2 Global/Gangwon Innovative Biologics-Regional Leading Research Center
(GIB-RLRC), Kangwon National University, Chuncheon, South Korea, 3 NADIANBIO Ltd., Wonkwang University, Business
Incubation Center R201-1, Iksan, South Korea, 4 Department of Biochemistry, Wonkwang University School of Medicine,
Iksan, South Korea, 5 Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, South Korea

Over the past few decades, basic studies aimed at curing patients with cancer have been
constantly evolving. A myriad of mechanistic studies on physiological changes and related
factors in tumor growth and metastasis have been reported. Recently, several studies
have been considerate to how tumors adapt to unfavorable environments, such as
glucose deprivation, oxidative stress, hypoxic conditions, and immune responses.
Tumors attempt to adapt to unfavorable environments with genetic or non-genetic
changes, the alteration of metabolic signals, or the reconfiguration of their environment
through migration to other organs. One of the distinct features in solid tumors is
heterogeneity because their environments vary due to the characteristics of colony
growth. For this reason, researchers are paying attention to the communication
between growing tumors and neighboring environments, including stromal cells,
immune cells, fibroblasts, and secreted molecules, such as proteins and RNAs. During
cancer survival and progression, tumor cells undergo phenotype and molecular changes
collectively referred to as cellular plasticity, which result from microenvironment signals,
genetics and epigenetic alterations thereby contributing to tumor heterogeneity and
therapy response. In this review, we herein discuss the adaptation process of tumors
to adverse environments via communication with neighboring cells for overcoming
unfavorable growth conditions. Understanding the physiology of these tumors and their
communication with the tumor environment can help to develop promising tumor
treatment strategies.
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INTRODUCTION

Understanding of the physiology of solid tumors has changed significantly over the past 30 years.
Cancer research has typically focused on the growth and inhibition of primary tumors, but recently
more research has focused on the growth and malignancy of tumors through their genetic and non-
genetic modification (1, 2). Primary tumors are exposed to various stressful environments, such as
oxidative stress, hypoxia, and acidosis, with rapid growth, thereby accelerating their heterogeneity
(3, 4). This not only changes the metabolism or genetic modification of the tumor, but also changes
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the neighboring tumor microenvironment (TME). Conversely,
stimulation of the TME promotes changes in tumor
development and aggressiveness (Figure 1). For this reason, it
is necessary to understand communication between tumors and
the TME, which includes blood vessels, immune cells, fibroblasts,
stromal cells, the extracellular matrix (ECM), and secreted
molecules that exist around primary tumors. In this mini-
review, we briefly summarize how the interplay between
tumors and the TME impacts tumor cell physiology and
adaptation for overcoming unfavorable environments.
EXTRACELLULAR MATRIX

The ECM is a complex ecosystem of various components, such as
fibrous proteins (collagen and elastin) or glycoproteins
(fibronectin 1, laminins, and tenascin), proteoglycans
(chondroitin sulfate and heparan sulfate), and polysaccharides,
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which includes several growth factors and creates rigid
interactions with cancer cells in the TME (5). In the TME, the
ECM functions as a framework for the tumor cells and plays an
active role in tumor progression, particularly as a vital mediator
of invasive processes (6). The ECM performs a tumor-
suppressing role in healthy tissues, but it performs a tumor-
promoting role in solid tumors. However, numerous effective
components in tumor-stimulating roles in the ECM are
produced in the TME (7, 8), and they affect cancer cells during
interconnection with integrins (9). According to Glasner et al.
(10), INF-g released from intratumoral natural killer (NK) cells
alter primary tumor structure by induction offibronectin 1 in the
tumors resulting in restriction of metastases formation. Regulate
cancer metastasis formation through stimulating the tumor
structure by regulating fibronectin 1 secretion, which is a key
component of the ECM. ECM proteins can be formed by
numerous stromal cell types and tumor cells, while cancer-
associated fibroblasts (CAFs) are a major source for synthesis,
FIGURE 1 | Intra-tumor heterogeneity by extrinsic or intrinsic factors. The modifications of cancer cells such as genetic, epigenetic alterations, and microenvironment
perturbations. CSCs show an induced EMT system, which mostly exhibit an intermediate condition. This activity depends on both genetic mutations, epigenetic
alterations, and transcriptional modification of cancer cells and signals provided by TME (CAFs or TAMs, immune cells, ECM, cytokines, secreted or growth
factors). Thus, the intra-tumor heterogeneity might be play a potential role in the development of effective therapeutic approaches as drug resistance, tumor
relapse and metastasis. CSCs, cancer stem-like cells; EMT, epithelial-to-mesenchymal transition; MET, mesenchymal-to-epithelial transition; ECs, endothelial-like
cells, CAFs, cancer-associated fibroblasts; TAMs, tumor-associated macrophages; ECM, extracellular matrix.
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assembly, secretion, and alteration of ECM development (11, 12).
Besides the intermolecular covalent cross-linkages of ECM, the
biophysical characteristics include its rigidity, topography,
molecular density, and tension. Thus, the ECM is extremely
versatile causing it to experience cellular remodeling under the
effect of tumors or tumor stromal cells (13, 14). As the dynamic
crosstalk is facilitated by chemokines and growth factors,
metastatic circulating tumor cells are secured to and released
from the ECM in addition to metabolic changes of the tumor
cells. During enlarged tissue rigidity and desmoplasia, the ECM
might act as a barrier for drug delivery or gate for opening the
basement membrane to promote metastasis (15, 16). Moreover,
the ECM of remote tissues or organs could be somewhat formed
into permissive soils by circulating tumor cells, soluble factors, or
exosomes from primary tumors to mediate the sowing of
metastasizing tumor cells (17).
STROMAL CELLS

Stromal cells are connective tissue cells, which are one of the key
components of cancer progression and regression involved in the
TME. They are engaged by tumor cells, and then involve
metastasis initiation through the regulation of tumor cells and
themselves (18). Glucose deprivation, reactive oxygen species
(ROS), hypoxia, and inflammatory signals create unfavorable
environments, leading to epithelial-mesenchymal transition
(EMT), tumorigenesis, and tumor metastasis (19, 20). These
signals are generally accepted that tumor cells alter their
microenvironments through the regulation of stromal cells
(18). Stromal cells include mesenchymal stem cells (MSCs),
fibroblasts, macrophages, endothelial cells (ECs), lymphocytes,
and pericytes in tumors, which contribute toward tumor
progression and regression (6). The characteristics of cancer
are replicative ability, continued angiogenesis, invasion, and
metastasis, which are regulated by the interactions within
genetically altered cancer and stromal cells. A previous study
showed that stromal cells also undergo metabolic changes in the
TME, reforming TMEmetabolism, and translating nutrients into
forms that can be absorbed by tumor cells (21).

In the stromal environment, CAFs are the foremost stromal
factor of various solid tumors and are also the best-known
phenotypic transformers (22). CAFs are a vastly heterogeneous
stromal cell population that participates in drug resistance,
proliferation, and metastasis in tumor cells via the secretion of
cytokines and matrix metalloproteinases (MMPs) (18, 22, 23).
They promote angiogenesis, ECM remodeling, wound healing,
and cancer progression through the regulation of immune systems
in immune cells (24). Several key markers are used to identify
CAFs, such as fibroblast-specific protein 1, a-smooth muscle actin
(a-SMA), platelet-derived growth factor (PDGF) receptor a, and
fibroblast activation protein a (FAP-a). Although they include a
heterogeneous cell population, the degree of diversity has hardly
been studied (25). Therefore, fibroblasts are separated into
quiescent fibroblasts and myofibroblasts/CAFs on the basis of
distinct expression. In particular, quiescent fibroblasts are less
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carcinogenic and mostly found in non-malignant tissues, and
myofibroblasts or CAFs encourage tumors and trigger tumor
relapse along with tumor resistance and are intensely enhanced
in metastatic or malignant tumors. Both fibroblast types secrete an
exceptional range of elastins and collagens that maintain the ECM,
resulting in desmoplasia (26, 27). However, quiescent fibroblasts
secrete low levels of collagens (particularly Col13a1 and Col14a1)
and high levels of elastins. In addition, myofibroblasts/CAFs are
completely derived from tumor tissues and primarily enhanced in
collagens and low levels of elastins. CAFs promote angiogenesis,
tumorigenesis, and metastasis by secreting pro-inflammatory
cytokines and growth factors and enhancing TME remodeling
via the secretion of ECM components, MMPs, and other
molecules (22, 25).

For immune action, CAFs inhibit the activity of recruited
lymphocytes and cytotoxic T lymphocytes that form the
inflammatory signals to advance tumor progression, and CAFs
can rebuild into a pro-metastatic TME from the post-metastatic
TME (27). In the context of the TME, the subtypes of CAFs have
shown distinct mechanisms of activation, i.e., the stimulation of
transforming growth factor (TGF)-b1 or IL-11 and the treatment
of IL-1b or IL-6 that activate the upregulation of inflammatory
CAF-associated marker genes (28). Furthermore, the
differentiation of CAF-related specific markers can result in a-
SMA, also called ACTA2, FAP, S100A4, desmin, collagen, and
circulating pro-inflammatory cytokines, such as IL-1b, IL-6, IL-8,
TGF-b, and CXCL12 (29). CAFs can directly secrete vascular
endothelial growth factor (VEGF) in addition to the other growth
factors that regulate angiogenesis by suppressing the angiogenesis-
blocking role of TSP1 (22). CAFs are additionally typified based on
different cellular sources, such as vascular CAFs that originate
from perivascular areas, cycling CAFs, matrix CAFs, and
developmental CAFs, which are the product of native fibroblasts
found in the TME of the genetically engineered MMTV-PyMT
breast cancer mouse model (30). According to Brown et al. (31), In
a human PDAC model, CAFs are also derived to be
immunomodulatory presenting MHCII genes that regulate
antigen-specific ligation with CD4+ T helper cells by expressing
CD74 (32). Despite this, CAFs deviate in metastatic tumors from
early-stage tumors, including high metabolic synthesis and
released transcriptional profiling. Correspondingly, CAFs release
ECM factors that facilitate collagen crosslinking and regulate the
survival signals of tumor cells, which immunomodulate the TME
avoidance tumor surveillance (22).

MSCs are derived from the umbilical cord, bone marrow,
adipose tissue, etc., and form a fibro-vascular network in
fibroblasts and vascular pericytes via the formation of tumor
barrier differentiation. Emerging evidence has strongly suggested
that MSCs can be activated by exosomes and participate in the
communication of the transfer of proteins in the tumor cells as
well as in the stromal cells (24).

Tumor-associated macrophages (TAMs) are the key cells in
several types of solid tumors, which can promote tumor
progression by generating pro-inflammatory mediators, include
cytokines or chemokines, growth factors that alter the tumor-
supportive TME and encourage tumor cell proliferation,
May 2022 | Volume 13 | Article 882718
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multidrug resistance and plasticity (33, 34). For instance, NF-ĸB-
mediated factors (TNF-a, IL-1b, IL-6, CCL2, CXCL8 and
CXCL10) can protect against apoptosis, and pro-angiogenic
growth factors (such as VEGF or PDGF, TGF-b and FGF) that
adapt tissue architecture and support tumor cell migration,
invasion and metastasis (34, 35). In addition, TAMs destabilize
local immune surveillance as they can directly decrease T cell
and natural killer cell (NK) activities by releasing soluble factors
or by expressing cell surface proteins that exhibit the
immunosuppressive functions [e.g. arginase 1 (ARG1),
indoleamine 2,3-dioxygenase (IDO), programmed death ligand
1 (PD-L1) and TGF-b] or they can indirectly suppress the
activities of T cell through the engagement of other immune
suppressive cells i.e. regulatory T cells (36, 37). In general, TAMs
are a major component of TME that play mutually a significant
role as tumor promoters and immune suppressors because they
could promote tumor initiation, and act as the fundamental
Frontiers in Immunology | www.frontiersin.org 4
drivers of the immunosuppressive TME, which control the
recruitment and function of multiple immune cells.

Adipocytes are the most abundant cells to compose adipose
tissue and they play key roles in energy storage and homeostasis
in the body. Cancer-associated adipocytes are key players in
cancer progression and migration (38). They highly express
matrix remodeling- and EMT-related factors, produce free
fatty acids (FFAs) through lipolysis and insulin-like growth
factor binding protein 2 (IGFBP-2), and participate in the
development of the TME and metastasis (38, 39) (Figure 2).
IMMUNE CELLS

In the TME, all immune cells aim to protect the whole body but
can ultimately turn into a tumor-supporting cell population (40).
Immune cells are remarkably complex and include several
FIGURE 2 | Stromal cells and the tumor microenvironment. CAA regulates EMT by secreting tumor necrosis factor (TNF)-a, IL-6, and FFA along with MMPs.
Inflammatory cytokines are secreted by TAM and trigger chemokines. In CAF release, secreted factors and MMPs promote ECM remodeling. MSCs secrete
exosomes along with mtDNAs and microRNAs (miRNAs). These molecules synergistically or individually promote tumor proliferation, drug resistance, and
plasticity and affect tumor metastatic alteration. CAA, cancer-associated adipocytes; CAF, cancer-associated fibroblast; MSC, mesenchymal stem cell; TAM,
tumor-associated macrophage.
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different lineages that make them tough to study and target.
Depending upon the stage of cancer, both lymphoid and myeloid
lineage cells play roles in pro- or anti-tumoral activity. For
example, macrophages encourage the activation of T cells to
clear tumor cells at early stages but inhibit T cells from even
identifying the tumor cells as a tumor growth (41). However,
immune cells lead each other to control the mechanisms related
to tissue homeostasis and change the survival rate (42). Cellular
secretions of molecules from immune cells also influence the
activity within the TME. The secretion of cellular molecules, such
as CCL5 and XCL1, from NK cells targets antigen-presenting
dendritic cells (DCs). Moreover, IFNg secretion stimulates
macrophage polarization and Th1 cell hyperactivation that
eventually activates the immune microenvironment against
cancer cells (28, 43). In response, cancer cells secrete
molecules, i.e., pro-inflammatory cytokines, such as IL-8 and
CXCL-1, 2, and 8, that target neutrophils. Despite this,
neutrophils generate neutrophil extracellular traps, which
protect the cancer cells from NK and cytotoxic CD8+ T cells
and reduce the influence of immunotherapies (44, 45).
Understanding the indispensable role of each immune cell
should facilitate the control of immunosuppressive responses
and improvement of immunostimulatory functions in secondary
tumor proliferation. Considering heterogeneity of immune cells,
scRNA-Seq is an advanced technique, which is able to examine
the immune cells that show distinct phenotypes in vivo
models (46).

Monocytes and macrophages are the major phenotypic
markers of the aggressive TME (26). In humans, monocytes are
subdivided into three largest clusters; namely, classical (CD14++,
CD16−), intermediate (CD14+ CD16+), and non-classical (CD14+

CD16++). In tumor cells, recent studies have reported new
monocytic markers, such as CD68, CSF1-R, CSF2-R, CD11C,
CD1C, CD141, and HLA-DR surface markers (47, 48). TIE2 is a
subset of monocytes expressing the angiopoietin receptor that
play an important role in tumor angiogenesis, and its expression
is highly increased in response to hypoxia (49). Monocytes are
absorbed to the TME by chemo-attractants (CCL2 or CCL4),
which further differentiate into TAMs. Macrophages are
conservatively divided into two main clusters: classical
macrophages (CD14+ S100A8/9+ M1-like) with antitumor
functions and alternate macrophages [CD16+(FCGR3A) M2-
like] with pro-tumorigenic phenotypes (50). M2 macrophages
exhibit the phenotypes of aggressive tumor growth, immune
evasion, angiogenesis, and cancer stemness. Furthermore, they
assist tumor initiation and the mutagenic microenvironment by
releasing circulating pro-inflammatory cytokines (IL6, TNF-a,
and IFN-g), growth factors (VEGF and EGF), ROS, and
proteases (51).

The T cell population is usually organized by the cell surface
markers (CD3+CD4+CD8+CD25+). The complication of tumor-
infiltrating T cells indicates a powerful impact of tumors on the T
cell transcriptome (52). Conventionally, T cells are categorized
into naive, effector, and memory T cells. In lung TME study,
single-cell sequencing separated the clusters of T cells into
regulatory (FOXP3+), CD4+ (CD4+), CD8+ (CD8+, naive,
Frontiers in Immunology | www.frontiersin.org 5
effector, memory, or exhausted), NK (FGFBP2+), and lesser gd
T cells (26). Naive T cells can be separated into effector T cells
following infiltration and further stimulated into cytotoxic
memory T cells (53). Mostly, primary tumors are augmented
with subtypes of effector T cells that are differentiated by the high
expression of chemokine receptors or cytotoxic gene markers
(CD28, CD40L, CD137, ICOS, and OX40) and exhibit decreased
T cell expression. The expression of co-inhibitory receptors (PD-
1, CTLA-4, CD160, LAG3, TIM-3, and TIGIT) leads to
progressive T cell dysfunctions with tumor progression from
primary to metastatic sites (54). The cells expressing co-
inhibitory receptors are immunosuppressive and originate
from several sources induced by the TME, including by
migration from circulatory systems, effector T cell translation,
and separation caused by the inhibition of Antigen Presenting
Cells (55).

B cells are adaptive immune cells that infiltrate the
TME through CXCL13 secretions from tumor cells (56). In
solid tumor tissues, B cells are comparatively plentiful
compared to non-tumor tissues (51), and what’s more a
relatively rare number of B cells compared to T cells in the
TME (28). B cells can be separated into five groups, i.e., plasma B
cells expressing IgG (MZB1 and CD138); follicular B cells
expressing CD20, CXCR4, and HLA-DRs; mucosa-associated
lymphoid tissue-derived plasma B cells expressing IgA (CD38+);
germinal center B cells; and granzyme B-secreting B cells (26).
Although migrating through the germinal center, follicular B
cells individually contain mature or naive B cells (CD27−, CD72,
and IGHM) that result in memory B cells (CD27+ and IGHG1)
(51). Compared to B cells in the non-tumorigenic environment,
B cells residing in the TME are characterized by less protein
secretion and the reduction of mTOR or Myc pathways (26). B
cells encourage antitumor immunity by motivating complement
activation, stimulating cytotoxic immune reactions, antibody-
dependent cellular cytotoxicity, phagocytosis, and T cell
activation, and releasing granzyme B or TRAIL factors (57). In
addition, B cells have immunosuppressive subsets of pro-
tumorigenic regulatory B cells (CD1d+CD5+CD19+ and
CD5+CD19+) and CD5+ B cells (58) that modulate the
production of immunomodulatory cytokines (IL10 and TGFb),
which may enhance metastatic ability by transition of CD4+ T
cells into T-reg cells (59).

With the help of a unique set of receptors, NK cells belong to
an innate lymphoid cell group and have a cytotoxic or cytokine-
producing ability and can recognize tumor cells. However, NK
cells are different from the immune cell population as they have
diverse cell surface markers (CD3−CD16+ or CD3−CD56+).
Thus, NK cells are mainly subdivided into distinct subsets
depending upon the expression of CD16 and CD56 markers
with their different phenotypic properties (60). Tumor-specific
NK cells in lung carcinoma reveal the upregulation of CD69 and
NKp44 markers and downregulated NKp30, NKp80, DNAM-1,
CD16, and ILT2 expression against the peripheral blood and NK
cells of normal lung (61). Likewise, DCs have many specific
subtypes (DC1, DC2, and CD3) present in the TME that play a
significant role in adaptive immune responses, antigen
May 2022 | Volume 13 | Article 882718
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presentation, and phagocytosis. For the other immune cells, the
distinguishing markers of DC subsets are HLA DR+ lineage−

cells, including CD11C+ conventional DCs, which are also
differentiated into either CD141+ or CD1C+ cells, and CD123+

plasmacytoid DCs (47). DCs are classified based on their
presence in lymph nodes or tumor cells. The clusters of tumor
cDC1 express Cd103 as a dermal DC marker, while the lymph
node population expresses the CD8a marker specific to dendritic
populations of the lymph nodes (29).
ENDOTHELIAL CELLS

Depending on the metabolic needs or requirements of growing
tumors, ECs are in a coefficient mode of activation or
reactivation and quiescence. The phenotypes of ECs are mostly
subdivided into tip and stalk cells that show the different
genotypes. Consistent with the tumor requirements, these
individual cells adopt distinct phenotypes and functions (62).
From the rest of the tumor cells, the first parameter to
differentiate ECs is a division through CD45−, as a pan-
hematopoietic marker that combines with CD31, CD144 (VE-
Cadherin), and vWF (vonWillebrand Factor). However, CD31 is
a transmembrane glycoprotein that develops intercellular
intersections. Similarly, CD144 is an endothelial adhesion
molecule and vWF is a glycoprotein that mediates platelet
adhesion in the endothelium (63). These are the preliminary
markers to disconnect the EC population. In contrast, other EC
markers in different cancer types comprise tip genes (CLDN5,
DLL4, EDNRB, ESM1, KCNE3, NID2, and RAMP3), capillary
markers (CA4 and CD36), arterial markers (FBLN5 and GJA5),
and ACKR1 gene expression by high endothelial venules, non-
myeloid specific marker AIF1, lymphatic markers (PROX1 and
PDPN), and pericyte marker RGS5 (64). According to
Lambrechts et al. (26), tumor ECs in distinct clusters based on
the marker genes are lymphatic ECs (PDPN+ and PROX1+),
tumor-derived blood ECs (FLT1+, IGFBP3+, and SPRY1+), and
malignant or non-malignant ECs. In the TME, the dysregulation
of epigenetic and transcriptional factors triggers the production
of these angiogenic candidates and their subtypes from healthy
blood ECs. The subtypes of tumor ECs directly damage the
vascular integrity and structure of leaking blood vessels and
migration of immune cells, thereby contributing to the growing
tumor’s complexity (65).

A previous study investigated the development of the
heterogeneity of ECs by determining functionally validated
endothelial phenotypes through patients with cancer as well as
in vivo and in vitro models. Compared to aggressive tumors,
non-malignant lung tissues have a relatively high profusion of
alveolar type II, postcapillary, scavenging capillary, and
lymphatic ECs. Even though the phenotypes of the tumor ECs
were primarily immature ECs or human-specific lymphatic
tumor ECs and tip cells, in tumor or non-tumor tissues,
alveolar type II, activated postcapillary vein, and arterial
phenotypes are common (66). Goveia et al. also classified the
top-ranked marker genes and their specified significant roles in
Frontiers in Immunology | www.frontiersin.org 6
tumor progression as well as in regulating immune surveillance,
matrix remodeling, EC migration, and angiogenesis by
modulating growth factors and chemical stimuli that activate
the angiogenic cascade within the TME, involving fibroblast
growth factor (FGF), VEGF, PDGF, TGF-b, TNF, insulin-like
growth factor, and MMP (67). In tumor ECs, blood vessels
discharge the interconnecting tight junctions, which are
complex with high interstitial pressure and are irregularly
shaped. However, tumor ECs produce pro-angiogenic growth
factors (FGF, VEGF, and PDGF) that exhibit chromosomal
abnormalities, which function against cancer therapies (68). In
addition, tumor EC-originating cadherin 2 activates VEGF-
associated angiogenesis by controlling MAPK/ERK and
MAPK/JNK signaling pathways (69).
SECRETED MOLECULES

Secreted molecules are major factors in the TME function and
ECM remodeling, such as cytokines, proteases, integrins, and
miRNAs (70). Cytokines are types of proteins that mediate the
interaction between cells in the TME, including TNF,
interleukins, chemokines, and growth factors, and regulate
tumor progression and stromal cells. Moreover, the roles of
cytokines in inflammation, apoptosis, tumorigenesis,
proliferation, and migration depend on the maintenance of
their anti-targets (71). In the TME, extracellular proteolysis
acts as a key role that facilitates the proteolysis of the ECM
and MMPs among other proteinases, having the nearest
connection with tumor progression (72, 73). According to
Kessenbrock et al. (73), the degradation of the ECM is
mediated by MMPs that promote tumor invasion and
metastasis. Additionally, MMPs stimulate tumor growth and
angiogenesis as well as regulate apoptosis, whereas the functions
of certain MMPs include tumor suppression. Therefore, MMPs
are also a set of proteins with inconsistent roles in the TME (74).

Among secreted factors, integrins are essential membrane
proteins and cell surface receptors that have an important role in
the signaling and transfer of cellular information among cells or
between cells and the ECM. In addition, integrins are central to
the control of cell-matrix adhesions and play a critical role in the
adhesion of circulating tumor cells to original sites leading
formation of secondary tumors in TME. However, irregular
cell-cell adhesions are a sign of tumors being triggered by
disturbed integrins. The expression of metastasis-assisting
integrins in the TME is induced, whereas those suppressing
proliferation, migration, and survival are inhibited (75).
Therefore, integrin expression is usually dysregulated in many
solid tumors and play key roles in signaling as well as promotion
of tumor cell invasion and migration. Recently, it has emerged
that integrins are expressed not only in cells but also in
exosomes, which are fundamental units of extracellular vesicles
secreted from cells. Numerous studies are concerned with
exosome originating integrins as the exploration on exosomes
are increasing, in addition integrins are notified to influence the
interior actions of tumors, as nucleus alteration. Most of research
May 2022 | Volume 13 | Article 882718
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efforts have focused on supporting incorporation of exosomes by
target cells and facilitating exosome-mediated transfer of the
membrane proteins and associated kinases to target cells in
premetastatic niches. Moreover, integrins have demonstrated
the ability to encouraging stem cell-like properties in tumor
cells as well as drug resistance (76, 77). miRNAs are endogenous
and small non-coding RNAs that negatively regulate specific
target mRNAs or post-transcriptionally activate by disordering
transcription or translation (78). miRNAs are involved in various
pathways and functions in the regulation of distinct constituents
of the TME (79). In addition to miRNAs, long non-coding RNAs
(lncRNAs) are also effective components that are secreted in the
TME. Among lncRNAs, some serve in the interaction between
the TME and stromal cells as the transforming fibroblasts that
are tumor-promoting (80).
CONCLUSION

Despite attempts to discover new anticancer drugs, multidrug
resistance and the risk of recurrence remain. In particular, the
TME in late-stage tumors is very complex and diverse, thus, it is
Frontiers in Immunology | www.frontiersin.org 7
essential to study the interplay between tumors and the TME for
new drug discovery and validation. It is expected that endeavors
to understand how tumor cells are reprogramed by
communication with adjacent cells and molecules will support
the development of new strategies to treat cancers.
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