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Heterogeneous effects of genetic risk for Alzheimer’s disease
on the phenome
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Here we report how four major forms of Alzheimer’s disease (AD) genetic risk—APOE-ε4, APOE-ε2, polygenic risk and familial risk—
are associated with 273 traits in ~500,000 individuals in the UK Biobank. The traits cover blood biochemistry and cell traits,
metabolic and general health, psychosocial health, and cognitive function. The difference in the profile of traits associated with the
different forms of AD risk is striking and may contribute to heterogenous presentation of the disease. However, we also identify
traits significantly associated with multiple forms of AD genetic risk, as well as traits showing significant changes across ages in
those at high risk of AD, which may point to their potential roles in AD etiology. Finally, we highlight how survivor effects, in
particular those relating to shared risks of cardiovascular disease and AD, can generate associations that may mislead interpretation
in epidemiological AD studies. The UK Biobank provides a unique opportunity to powerfully compare the effects of different forms
of AD genetic risk on the phenome in the same cohort.
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BACKGROUND
Genetic risk for Alzheimer’s disease (AD) takes several forms,
including: Mendelian, rare, polygenic, APOE and family risk [1]. It is
important to investigate the impact that these different forms of AD
risk have on the array of biomarkers, traits and clinical outcomes
comprising the ‘phenome’ for two major reasons. (1) Heterogeneity
in the presentation and pathophysiology of AD has been widely
reported [2–4]. A part of this heterogeneity may be caused by the
different effects that different risk factors have on the phenome. (2)
Growing evidence suggests that modifiable factors, such as exercise,
diet and alcohol consumption, contribute substantially to the risk of
late-onset Alzheimer’s Disease (LOAD) [5, 6]. Any modifiable risk
factor, or active biological compound on which it acts, will have a
genetic component. This genetic component must also be a genetic
component of AD itself, since it initiates a path towards a higher risk
of AD. Therefore, one strategy for identifying candidate modifiable
risk factors is to investigate the downstream effects of genetic risk for
AD [6]. While such an approach will highlight many traits due to
(horizontal) pleiotropic effects on the trait and AD, it will produce a
long list of mediation candidates. In combination with evidence from
other sources, these candidates can then be prioritized for further
study, which may ultimately lead to the identification of targets for
intervention.
The APOE gene contains risk alleles for LOAD that are among the

largest common genetic effects on any disease, with homozygous
APOE-ε4 carriers ~12 times more likely to develop the disease [7, 8].
While the precise mechanism of APOE-ε4’s role in the pathogenesis
of AD is unknown, APOE has reported roles in B-amyloid clearance,
lipid homeostasis and cholesterol transport [7, 9]. In contrast, APOE-ε2
has apparent protective effects against AD. As well as reduced
incidence of LOAD, APOE-ε2 is associated with increased cognitive

reserve [10, 11], reduced cortical thinning and lower amyloid-ß
accumulation [11]. Outside the APOE gene, the genetic effects on
LOAD are thought to be largely polygenic: 21 significant loci were
identified in the latest GWAS of LOAD [12], while the estimated hSNP

2

is 7.1%, and after removal of the APOE region is 6.4% [12]. Polygenic
Risk Scores (PRS), which combine the effects of many risk alleles
genome-wide to provide a proxy of polygenic risk to a disease [13],
have been widely used in AD research, finding associations with AD
clinical diagnosis [14, 15], disease progression [16], cognitive
impairment [15, 16], and educational attainment in children [17].
An alternative proxy for the genetic risk of AD is family history of AD,
which reflects both common and rare genetic risk variants, risk
variants for early and late onset AD, as well as environmental risks. In
recent years, GWAS performed on family history of AD [18] or “AD-by-
proxy” [19], based on parental AD/dementia status and age, has been
demonstrated as a powerful way of identifying risk variants for AD.
In this study, we report the associations between AD genetic

risk and a range of traits in the UK Biobank, some of which may
mediate risk for AD. We examine four major forms of AD genetic
risk: (1) APOE-ε4, the strongest known genetic factor for LOAD,
which is also associated with early-onset AD [20], (2) APOE-ε2, a
protective allele of AD, (3) Polygenic risk, using the AD PRS (with
APOE excluded) as a proxy, and (4) Familial risk, according to the
parental history of AD. A key advantage of this study is the unique
opportunity that the UK Biobank provides to systematically and
powerfully compare the effects of these four forms of genetic risk
across a large number of traits, in the same cohort. We utilize the
rich data resources of the UK Biobank to investigate hundreds of
traits relating to education, cognitive function, lifestyle and
environment, psychosocial factors, health and medical history,
and physical and biological measures. Our findings highlight
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substantial heterogeneity in the profile of traits associated with
different forms of AD genetic risk and the phenome.

METHODS
Study population
This study used the UK Biobank (UKB) data [21], which is a large
prospective multi-ancestry cohort study of ~500,000 participants (Eur-
opean ancestry samples, n= 472,725; non-European ancestry samples,
n= 27,034), aged 40–69 years when baseline measures were taken during
recruitment across the UK between 2006 and 2010. We used the genotype
and phenotype data generated from the UKB.
Dementia cases including AD, vascular dementia, frontotemporal dementia

and all-cause dementia were removed from analyses to limit the downstream
effects of the disease on observed trait values. Cases were identified as having
a primary/secondary diagnosis from hospital records or primary/secondary
cause of death from the death registry, using ICD-10 codes in categories F01-
F99 (mental and behavioural disorder chapter) or G00-G99 (disease of the
nervous system chapter). Participants who self-reported having dementia/
Alzheimer’s/cognitive impairment (F20002) were also excluded. A total of
1532 dementia cases were identified and excluded from the dataset.

Genetic risk factors
APOE risk: APOE contains three common forms of the “ε allele” associated
with AD risk: ε2, ε3 and ε4. The ε4 allele is the strongest common genetic
risk factor for LOAD, while ε2 is associated with substantially reduced risk
relative to the ε3 allele, which is typically considered the reference allele in
association testing. Which of the three APOE ε alleles (or haplotypes) an
individual has on each chromosome is defined by their alleles at two
missense SNPs, rs7412 and rs429358, and APOE ε genotypes are the pair of
these an individual has on their two chromosomal strands (e.g. ε2/ε4, ε3/
ε3, ε3/ε4). The two SNPs defining the ε alleles were directly genotyped in
the UK Biobank (Hardy-Weinberg P > 0.05; genotyping rate > 80%), but do
not pass standard GWAS quality control (QC), which typically requires
genotyping rate > 95%. However, in this study, these two SNPs were
retained to define the APOE ε genotype given their known importance to
AD risk. The concordance between the genotype calls of the two SNPs
from the genotyping array and from whole-exome sequencing among
34,453 individuals of the first phase of whole-exome sequencing in the UK
Biobank is extremely high (rs7412: 99.93%; rs429358: 99.96%).
We investigated the dosage effects of the ε4 and ε2 alleles relative to

the ε3 allele. Specifically, to test the effect of APOE-ε4 on traits we
considered an additive genetic model with ε3/ε3 (n= 242,205) coded as 0,
ε3/ε4 heterozygotes (n= 97,137) as 1, and ε4/ε4 (n= 9,693) coded as 2. To
test the effect of APOE-ε2 on traits we coded ε3/ε3 as 0, ε3/ε2
heterozygotes (n= 501,99) as 1, and ε2/ε2 homozygotes (n= 2,329) as 2.
In common with other AD studies [22, 23], participants with ε2/ε4 were
excluded to avoid their effects being conflated. A total of 401,563
individuals with complete genotype data at rs7412 and rs429358 to
determine APOE alleles were available for analysis.

Polygenic risk: PRSice-2 [24] was used to construct polygenic risk scores
(PRS) using the latest GWAS of LOAD [12] (n= 94,437) as base data, and the
UK Biobank sample as target data. Due to restricted permissions associated
with using the latest GWAS of LOAD [12] to predict education and intelligence
outcomes, an earlier GWAS of LOAD [25] was used as base data for predicting
traits in the Cognitive function category. In our analyses, we selected
genotyped SNPs (n= 560,173) with minor allele frequency > 1%, Hardy-
Weinberg Equilibrium test P-value > 1 × 10−8 and genotyping rate >98%.
Genetic relatedness analyses were performed using KING [26], and we
discarded one of each pair of individuals with up to 3rd-degree relationships
(KING r2 > 0.044). Note that only individuals of European ancestry were
included in this part of the analysis because the base GWAS data [12, 25] were
performed in European ancestry individuals, meaning that systematic
differences and misleading results may be generated due to the poor
generalisability of PRS across ancestry samples using present PRS methods
[13]. Individuals of European ancestry were identified using 4-means
clustering on the first two principal components provided by the UKB and
were retained in the analyses. SNPs residing within 1Mb of the APOE gene
(chr19: 44409039-46412650; hg19 assembly) were excluded in the PRS
calculation to capture genetic signals outside the major risk gene.
In order to select the optimal P-value threshold for PRS calculation, we used

the “AD-by-proxy” approach that has been successfully used to perform
“GWAX” analyses in AD [19]. In brief, AD-by-proxy is a proxy-phenotype, which

is computed for each individual based on the age and AD statuses of their
parents. Following [19], the proxy AD phenotype was calculated as the count
of the number of affected biological parents. For those with unaffected
parents, the contribution to the count was weighted by their parents’ current
ages (or age at death, if applicable; see [19] for details). Individuals with
missing data on parental age or AD status were removed. PRS in 384,635
individuals were calculated using 117 SNPs after identifying the optimal P-
value threshold (P-value < 0.0001) for predicting AD-by-proxy status in
337,336 individuals (P-value= 6.2 × 10−53). Among the 117 SNPs, the nearest
SNPs to the APOE gene are ~7Mb (rs12459419) and 14Mb (rs7258465) away
and, thus, the effects of the PRS should be independent of APOE effects.

Familial risk: Family history of AD was determined by self-report.
Participants were asked whether their father/mother ever suffered from
AD/dementia (F20110, F20107). Data from the initial assessment visit
(2006–2010), the report assessment visit (2012–2013) and the imaging visit
(2014+) were aggregated. Individuals with maternal and/or paternal AD
are considered to have a positive family history of AD. Since there is a
limited number of samples whose siblings were affected by AD (n= 3227),
and these individuals may differ systematically from those with parents
with AD, we did not include siblings in the definition of familial risk. To
evaluate familial risk separately from the heritable genetic effect of APOE,
we controlled for the APOE genotypes when using familial risk as a genetic
risk factor. Among the sample with information on APOE genotype,
319,597 individuals have no parents with reported AD/dementia (coded as
0), 41,490 individuals have one parent with AD/dementia (coded as 1), and
1574 individuals have both parents with AD/dementia (coded as 2).

Traits
Data on a total of 273 traits from the UK Biobank across six broad
categories—blood biochemistry (e.g. CRP, cholesterol, Vitamin D), blood
cell traits (e.g. RBC, Platelet dist. width), metabolic health (e.g. BMI,
Diabetes, dietary intake), general health (e.g. lung function, allergies),
psychosocial factors (e.g. depression, family satisfaction), cognitive
function (e.g. education, trail-making-test)—were included in this study
(see Supplementary Table 1 for details of all traits). These putative risk
factors have been extensively reported in the study of potential candidates
of intervention of dementia/AD [6, 27–29]. Here we include a wider and
higher-resolution collection of traits falling into the broad categories of
these known risk factors, available in the UK Biobank. Supplementary Note
1 contains details about data processing and coding. For traits with 10 or
more unique values, we removed outliers >6 standard deviations from the
mean and applied a rank-based inverse normal transformation to all.

Statistical analysis
We first tested for associations between the AD genetic risk factors and all 273
traits, using linear and logistic regression for continuous and binary traits,
respectively. All models were adjusted by age, age2, sex, an age*sex
interaction term, socioeconomic status based on Townsend deprivation index,
assessment centre, and, for the genetic analyses, genotyping batch and the
first 12 principal components of ancestry. We additionally adjusted for APOE
genotype when assessing familial risk as a genetic risk factor, to account for
the effect of APOE in familial risk. Models for which the blood biochemistry
traits were outcomes were also adjusted for fasting time and dilution factor.
We next conducted analyses that additionally adjusted for paternal and

maternal ages in all models. These were performed to account for the
potential health benefits conferred in genetics derived from parents with
high longevity. We used the parents’ age at death (Mother’s age at death:
F3526; Father’s age at death: F1807) if applicable. For participants who
reported their father or mother still alive at baseline, we estimated their
parent’s life expectancy given mother’s or father’s age and the year of
baseline assessment, using data from the Office for National Statistics
(https://www.ons.gov.uk/).
To investigate potential confounding by cardiovascular disease (CVD),

stratified analyses were performed by grouping the individuals into cases
and controls in each of the following categories: statin use (F20003), self-
reported CVD (i.e. heart attack, angina, stroke or high blood pressure:
F6150), and having a biological parent with high blood pressure, stroke, or
heart disease (F20107, F20110).
Given that the CVD stratified analyses showed a substantial difference in

APOE-ε4 effects between CVD cases and controls for a subset of traits, in
particular metabolic health traits, in our primary analyses (Fig. 1) we
additionally included adjusting for these factors (i.e. statin use, self-reported
CVD condition, family history of CVD), and a healthy lifestyle score, as
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covariates. Briefly, the healthy lifestyle score [28] is a composite score
consisting of smoking, physical activity, diet and alcohol consumption. The
purpose of adjusting for the healthy lifestyle score was to account for the
potential ascertainment of healthier lifestyle and genetics among living
individuals of middle or older age with higher risk for CVD due to APOE-ε4.
A conservative Bonferroni correction, assuming independence of all

tests, was used to control for multiple testing in the analyses described
above. A P-value threshold of 4.5 × 10−5 was used (0.05/273(number of
traits)*4(number of predictors)) for inferring statistical significance. The
correlation between the sets of results among the four forms of AD genetic
risk is assessed by Kendall’s rank correlation test, in each of the six trait
categories separately. A P-value threshold of 0.00139 was used (0.05/6
(number of categories)*6(number of pairwise correlations among the AD
predictors)) for inferring significance. For the 98 traits with significant
associations (P < 4.5 × 10−5) in the final model, we then tested for
interactions between the AD genetic risk factor and age. To investigate
the sex-specific genetic effects, we also performed the analysis stratified by
sex and tested for differences between their results using t-tests. A P-value
threshold of 6.4 × 10−5 was used (0.05/98(number of traits)*4(number of
predicators)*2(age and sex interaction tests)) for inferring significance.

RESULTS
In this study, we examined associations between four forms of AD
genetic risk and 273 traits across the UK Biobank. Standard linear
and logistic regression analyses were performed, controlling for
covariates including age, sex, genetic principal components,

parental age, CVD factors and lifestyle score (see Methods).
Parental age, CVD factors and lifestyle score were only added to
our model after observing the effects of potential confounding in
our initial analyses (see below).
These analyses identified significant associations (P < 4.5 × 10−5)

between APOE-ε4 and 51 traits, APOE-ε2 and 42 traits, polygenic
risk and 16 traits, and familial risk and 27 traits (Fig. 1, Table 1,
Supplementary Table 1). While the four forms of AD genetic risk
inevitably have a different power to identify significant associa-
tions with the traits, each is sufficiently powered to detect multiple
traits and the broad profile of associations is noticeably different
across the four forms. APOE-ε4 dosage is primarily associated with
blood biochemistry traits, metabolic health and cognitive function,
while APOE-ε2 dosage shows the opposite associations for most
of these traits, although not with cognitive function. Both
polygenic (excluding APOE) and familial risk (controlling for APOE
genotype) provide proxies for genome-wide genetic risk outside
the APOE region. While AD PRS is associated with a range of traits
across the categories of blood biochemistry, blood cell traits,
metabolic health and general health, familial risk for AD is
primarily associated with psychosocial health.
In order to provide context to these results, we performed the

PRS and familial risk analyses in relation to Parkinson’s disease,
major depressive disorder, diabetes, and height, each of which
showed a markedly different profile of associations with the 273

Fig. 1 Associations between APOE-ε4, APOE-ε2, polygenic risk (AD PRS) and AD familial risk and 273 traits in the UK Biobank. These
association analyses between the genetic risk factors and UK Biobank traits (described in the “Methods” section) were controlled for age, age2,
sex, age*sex interaction term, socioeconomic status based on Townsend deprivation index, genotyping batch, assessment centre, and the first
12 principal components of ancestry, self-reported CVD, statin use, parental CVD and lifestyle score in the models. The grey dotted lines
correspond to the P-value significance threshold (P < 4.5 × 10−5; see Methods). The Y-axis has been truncated to show all associated traits to
improve visualization, with extreme results shown in the grey area with inverted triangles.
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traits tested (Supplementary Figs. 1 and 2), highlighting the
specificity of the AD results and providing reassurance that they
are not due to artifact or cohort effects.
We examined the rank correlation between the results of Fig. 1

generated by the different forms of AD genetic risk (Fig. 2) to
quantify the level of convergence or divergence of AD genetic risk.
A significant negative correlation between the association results
of APOE-ε4 and APOE-ε2 for metabolic health traits (Kendall’s τ=
−0.4; P= 5.3 × 10−6) was observed, suggesting the antagonistic
effect of the APOE alleles on the metabolism of fats in the body.
Apart from this expected result, we also observed a significant
negative correlation between APOE-ε2 and familial risk among
blood cell traits (P= 2.9 × 10−6). There were also negative
correlations of borderline significance between APOE-ε4 and
APOE-ε2 for blood biochemistry, and between APOE-ε4 and
familial risk for metabolic health traits. There were no significant
correlations between polygenic and familial risk in any of the
phenotypic categories, despite both constituting proxies of
genome-wide (non-APOE) genetic risk for AD. We repeated the
analyses using only those individuals with both PRS and familial
risk data (n= 286,427), and re-examined the correlation between
the two (Supplementary Fig. 3). Again, no significant correlations
were observed between the two and there was minimal difference
in the results.

Trait associations with APOE-ε4 and APOE-ε2
The strongest associations between any of the AD genetic risk
factors and the 273 traits tested are between the APOE-ε4 and
APOE-ε2 dosages and the blood lipid levels (Table 1). APOE-ε4
dosage is highly significantly associated with higher levels of “bad
cholesterol”, including APO-B, LDL, total cholesterol, and triglycer-
ides, and lower levels of “good cholesterol”, including APO-A and
HDL. Consistent with this, APOE-ε4 carriers are more likely to take
cholesterol-lowering medication. The reverse trends are observed
for APOE-ε2 dosage, which is associated with significantly lower
“bad cholesterol” and higher “good cholesterol” traits. The impact
that APOE-ε2 dosage has on these cholesterol levels is striking,
explaining ~9% overall variance in APO-B, ~6% variance in LDL
and ~4% variance in total cholesterol, despite the ε2 allele being
of low frequency (allele frequency 6.8% in the UK Biobank).
Notable exceptions to these opposite trends in association
between APOE-ε4 and APOE-ε2 and the lipid traits are observed
for triglycerides, in which there is a highly significant positive
association with APOE-ε4 and APOE-ε2, and decreased levels of
lipoprotein A with APOE-ε4 and APOE-ε2 dosage. Given that
APOE-ε4 increases the risk of AD, while APOE-2 reduces AD risk,
these results suggest that triglycerides and lipoprotein A may not
play a direct role in AD pathology.
As expected, APOE-ε4 is associated with an increased risk of

cognitive impairments (Fig. 1, Supplementary Table 1). APOE-ε4
carriers show cognitive decline across several cognitive tests,
for example, taking longer to complete the Trail Marking Test
and making fewer correct matches in the Digit symbol
substitution test. No significant associations were observed
between APOE-ε2 and cognitive function, which may reflect a
smaller AD protective effect offered by the ε2 allele relative to
the AD risk of the ε4 allele [30]. An example of a trait that APOE-
ε4 and APOE-ε2 have effects on that are particularly consistent
with their effects on AD is alanine aminotransferase (APOE-ε4
effect=−0.04; APOE-ε2 effect= 0.018; see Supplementary
Table 1), which adds some support to its recently reported
association with AD [31].
In addition to its effect on blood lipids, APOE-ε2 dosage is

strongly associated with reduced levels of reticulocyte in blood,
including immature reticulocyte fraction, high light scatter
reticulocyte percentage, high light scatter reticulocyte count,
reticulocyte percentage, and reticulocyte count (see Table 1).

APOE-ε4 is associated with reduced immature reticulocyte
fraction, but not with the other reticulocyte-related traits.
Furthermore, APOE-ε4 dosage is strongly associated with lower

levels of C-reactive protein (CRP), a lower incidence of diabetes
and reduced regular use of aspirin. While the associations with
diabetes and aspirin are consistent with the lower level of CRP
found in APOE-ε4 carriers, their effects are unexpected in that
diabetes [32, 33] and high levels of CRP [34, 35] have been
reported as associated with an elevated risk of neurodegenerative
diseases. The opposite directions of effect are observed in relation
to APOE-ε2 carriers, who have higher levels of CRP and higher
incidence of diabetes, but only a nominal increase in aspirin use.
APOE-ε4 is also a known risk factor for CVD [36]. To replicate this

finding, we examined the effect of APOE on CVD in the UK
Biobank using logistic regression, adjusting for the standard
covariates and parental age. We observed a significantly higher
risk of heart attack in APOE-ε4 carriers, but no associations were
observed for angina, stroke and high blood pressure. Conversely,
the APOE-ε2 allele appears to decrease the risk of heart attack and
angina, but not in stroke or high blood pressure.
In our initial analyses we observed multiple examples of the

different forms of genetic risk for AD associated with positive health
outcomes, including healthier dietary intake, lower BMI, increased
lung function and even increased height. These effects were also
observed for APOE-ε4 dosage. To investigate these unexpected
results, we re-evaluated the APOE-ε4 associations with metabolic
traits, stratifying individuals according to their CVD status in terms of
(i) statin use, (ii) self-reported CVD condition, and (iii) family history of
CVD. Overall, there was a marked reduction in the APOE-ε4 effect on
these factors among those individuals who were ‘controls’ for CVD
(Fig. 3). For example, APOE-ε4 dosage is strongly associated with
decreased BMI in statin users but this effect is largely ameliorated
(two-sided t-test P-value= 3.1 × 10−9) in statin non-users, while
APOE-ε4 dosage is associated with reduced red meat intake in
individuals with a parent with CVD (P= 1.5 × 10−11) but not in those
with no parent with CVD (P= 0.99). Possible explanations for these
results are (1) collider bias caused by stratifying by CVD risk, (2)
positive lifestyle changes made by APOE-ε4 carriers who are made

Fig. 2 Correlations between the trait association results of
different forms of AD genetic risk. The value reported in each
cell is the rank correlation coefficient (Kendall’s τ) between the
genetic-trait association results, illustrated in Fig. 1, of the
corresponding forms of genetic risk. All the results are adjusted
for age, age2, sex, age*sex interaction term, socioeconomic status
based on Townsend deprivation index, genotyping batch, assess-
ment centre, and the first 12 principal components of ancestry, self-
reported CVD, statin use, parental CVD and lifestyle score (see
Methods). Correlations of nominal significance (P < 0.01) are high-
lighted by a box, while those that are significant after correction for
multiple testing (P < 0.0014; see Methods) are highlighted by a
bold box.
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aware of their increased CVD risk due to themselves, or their parent,
being diagnosed with CVD or being prescribed statins. These
alternatives warrant further study.

Trait associations with polygenic risk
Polygenic risk, captured here by the AD PRS, is associated (P <
4.5 × 10−5) with 16 traits across blood biochemistry, blood cell
traits, metabolic health and general health (Fig. 1, Table 1,
Supplementary Table 1). Despite the highly significant associations
between the APOE alleles and the lipid traits, the AD PRS shows no
evidence of association with the lipids. This indicates that if lipid
metabolism plays an important role in AD pathology, then this is
largely restricted to individuals with APOE-ε4 rather than with
high genetic risk according to present AD PRS, albeit current AD
PRS (without APOE) explain only a tiny fraction of variance in AD
(~1%). The only traits showing some evidence for shared effects
across APOE and polygenic risk are several reticulocyte measures,
including reticulocyte percentage and count, Aspartate amino-
transferase and diabetes. Individuals with higher AD PRS are less
likely to start insulin treatment within the first year of diagnosis of
diabetes. Although the higher prevalence of insulin abnormalities
and insulin resistance are reported in patients with AD [37, 38],
how AD genetic risk impacts the clinical profiles for diabetic
patients, leading to reduced or delayed initialization of insulin
therapy determined by their physicians, is unclear.
AD PRS is associated with higher standing height, higher

calcium levels and improved lung function, as measured by
increased forced expiratory volume in one second (FEV1). This is in
conflict with some previous epidemiological studies. Increased
adult height has reported associations with better cognitive
performance and reduced risk of AD [39–41], which may relate to
increased cognitive reserve associated with the larger head
circumference or better nutrition leading to greater height and
reduced AD risk [39]. Moreover, individuals with impaired lung
function have been reported to have a higher risk of cognitive
decline and dementia [42, 43]. One potential explanation for these
unexpected findings is that the AD PRS may include genetic
effects associated with higher longevity if the AD studies used in
the latest AD GWAS [9] included older cases than controls. While
most AD studies age-match cases and controls, not all are able to,

which allows the possibility of a systematic difference in longevity
between cases and controls. To account for the longevity effect—
a possible confounder in our results of AD PRS—we repeated the
analyses adjusting for longevity PRS [44] as a covariate. However,
the difference in the results was minimal (Supplementary Fig. 4),
which may be due to the low predictive power of the present
longevity PRS (R2 of 0.19%).
In terms of metabolic health, individuals with higher AD PRS are

associated with more lean body mass, having higher basal
(resting) metabolic rate, arm fat-free mass, trunk fat-free mass
and trunk predicted mass. In contrast, APOE-ε4 carriers are
associated with lower levels of lean body mass. However, the trait
variance explained by the PRS associations is extremely small and
so should be considered with caution.

Trait associations with familial risk
Familial risk for AD, as defined by number of parents with AD,
controlled for parental age, is significantly associated (P< 4.5 × 10−5)
with 27 of the 273 traits. The profile of traits that familial risk and the
other forms of AD risk are associated with is markedly different (Fig.
1, Table 1). Familial risk is mainly associated with psychosocial factors,
which appear to be directly linked with caring for a parent with
Alzheimer’s and/or anxiety over suffering from AD themselves in the
future. For example, the strongest association is with experience of
illness, injury, bereavement, the stress in the last 2 years (P= 1.4 ×
10−55), followed by higher neuroticism score, increased tiredness in
last two weeks, increased depressed mood in last two weeks, seen
doctor for nerves or depression and reduced family relationship
satisfaction. In addition, individuals who have or had parents with AD
report a higher number of non-cancer illnesses. However, given the
broad definition of non-cancer illness, which includes cardiovascular,
respiratory and neurological disease, it is not possible to determine
whether this is likely a consequence of the negative impact on their
psychosocial health or due to other effects of having increased
risk of AD.
The absence of associations between familial risk and the traits

that the other forms of AD risk are associated with is likely a
combination of the low convergence of effects between APOE
effects and AD risk factors genome-wide, indicated by the results
of AD PRS, and the greater heterogeneity of familial risk of AD,
which incorporates rare genetic and all environmental factors.
Accounting for the survivor effect is critical when using familial

risk as a predictor. In an initial analysis that we performed without
controlling for parental age, we observed that individuals with
positive AD family history appeared to be healthier or of higher
socio-economic position across a range of traits, including having
significantly lower diastolic blood pressure, lower TV watching and
higher fluid intelligence. Individuals with LOAD generally have
higher longevity than random members of the population, given
the late onset of the disease. Thus, individuals whose parents have
LOAD on average have parents with relatively high longevity,
which is associated with a favourable genetic profile, socio-
economic advantage, and better health factors, all of which are
inherited by offspring through a combination of the environment
and genetics. However, once parental age is accounted for as a
covariate then these associations are ameliorated or eliminated
(Fig. 4); for example, diastolic blood pressure (Unadjusted: P=
1.7 × 10−5; Adjusted: P= 0.026), and fluid intelligence score
(Unadjusted: P= 3.9 × 10−7; Adjusted: P= 0.078). The effects of
APOE-ε4, APOE-ε2 and polygenic risk remain unaffected by the
parental age adjustment.

Investigation of interaction with age
Finally, we investigated how the effects of AD genetic risk factors on
traits varied across age. We also investigated age effects stratified by
sex and tested for sex differences (see Methods). These are not
individual-level longitudinal analyses, since all participants only

Fig. 3 Differential effect of APOE-ε4 on selected health traits
according to cardiovascular disease (CVD) status. All the models
are adjusted for the standard covariates including age, sex, age2,
age*sex interaction term, socioeconomic status based on Townsend
deprivation index, genotyping batch, assessment centre, and the
first 12 principal components of ancestry as covariates. In the model
of all subjects (CVD adjusted), indicated by red colour, 3 CVD factors
including statin use, CAD and parental CAD and lifestyle score are
additionally adjusted. There are 53,173 statin users and 270,745 sta-
tin non-users in the data, 94,170 CVD cases and 229,104 CVD
controls, and 232,286 participants with a parent with CVD and
46,914 with parents without CVD.
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provide data at a single time-point, and so the results may be
influenced by generational effects. However, if generational effects
on a trait are small relative to age effects, then these results should
provide a good proxy to longitudinal analyses.
Regression results using the sex-combined sample show a

significant interaction (P< 8 × 10−5; see Methods) between the
APOE-ε4 effect and age for 22 traits, including 4 blood lipid traits,
Urate, Alanine aminotransferase, 15 metabolic traits relating to
adiposity, and the Symbol Digit Substitution Test (Fig. 5; Supple-
mentary Table 2). Assuming that there are not strong generational
effects, then individuals with APOE-ε4 appear to have increasingly
lower body fat across age (BMI: interaction P= 4.4 × 10−10; Body fat
%: interaction P= 2.6 × 10−8), increasingly lower alanine aminotrans-
ferase (interaction P= 8.3 × 10−6) and increasing cognitive decline as
measured by the Symbol Digit Substitution Test (interaction P=
9.7 × 10−8). These data indicate that cognition function can start to
deteriorate from age 40 to 50 under the influence of APOE-ε4. This
analysis, therefore, highlights, in addition to cognitive decline,
adiposity and alanine aminotransferase as potentially having close
links with AD pathology given the timing of the effect of APOE-ε4 on
them. This adds evidence to a longitudinal study that reported an
increasing negative association of APOE-ε4 with BMI across age in a
prospectively measured cohort [45], as well as a recent study that
implicated alanine aminotransferase in AD diagnosis and pathophy-
siology [31].
APOE-ε2, which is associated with reduced LDL and cholesterol

during the ages 40–50 in these data, is associated with increasing
LDL and cholesterol with age (LDL: interaction P= 3.8 × 10−6;
Cholesterol: interaction P= 1.1 × 10−5). It should be noted that the
interactions with age observed here in relation to the APOE
variants may reflect the survivor effect (discussed in the previous
section). For example, the elevated risk of CVD among APOE-ε4
carriers may be sufficient that they need to have markedly better
metabolic health to survive mid-life.
No significant interaction effects were observed for AD PRS.

Significant interactions between the effects of familial risk and age
were observed for illness, injury, bereavement, the stress in the last 2
years, and frequency of depressed mood. Both factors had an
apparently decreasing effect with age. Note that familial risk with AD
is associated with these stress/mood factors in all age groups, but
with a reducing effect across age, which may reflect a greater burden
for relatively younger carers and for those with a younger parent
with AD.
There were no significant differences in interaction effects

between males and females for these analyses.

DISCUSSION
This study is the most powerful systematic comparison of how the
major forms of AD genetic risk affect the phenome so far. We were
able to make direct comparisons between the effects of forms of
AD risk, such as APOE-ε2 and familial risk, which can only be
powerfully studied together in exceptionally large cohorts.
The largest associations were between the APOE alleles and lipid

metabolism. APOE-ε2 explains ~4%, ~6% and ~9% variance in
cholesterol, LDL and Apolipoprotein-B (APO-B), respectively, while
APOE-ε4 explains 1–2% variance in each. These are striking effects for
single common variants. There is already substantial evidence for a
role of lipid metabolism [46, 47], and its effects, such as
atherosclerosis [48], on Alzheimer’s pathophysiology. However, there
is no evidence in these data for an association between polygenic or
familial risk and lipid traits. While the relatively low power of the
polygenic and familial risk factors mean that convergence of effects
on lipid metabolism and AD across a subset of genetic loci cannot be
ruled out, it is clear that polygenic and familial risk should be
separated out from APOE effects in AD research into lipid
metabolism to avoid conflating their effects.
APOE-ε4 had its largest impact on any single trait on CRP—a

marker of low-grade inflammation—explaining ~2% variance in
CRP. However, as observed elsewhere [49], APOE-ε4 dosage is
associated with reduced CRP, despite the fact that low-grade
inflammation is an established risk factor for CVD [50, 51] and AD
[34, 35]. This apparent paradox may be explained by the
potentially divergent processes leading to AD from APOE-ε4 and
from the genetic risk of AD across the rest of the genome.
We identified 98 traits significantly associated with at least one of

the four forms of AD risk. While likely most of these traits are
associated with AD genetic risk due to (horizontal) pleiotropic effects,
the possibility that they may be mediators between AD genetic risk
and AD can be considered broadly in terms of their convergence
across different forms of AD, the consistency of APOE-ε4/APOE-ε2
trait and AD effects, and their changing effects with age. Traits
highlighted due to several of these factors include: C reactive protein
(CRP), BMI, diabetes, alanine aminotransferase and reticulocyte blood
cell measures. For example, alanine aminotransferase was high-
lighted due to the fact that APOE-ε4 has a threefold higher, but
opposing effect, on it as APOE-ε2, consistent with APOE effects on
AD, and due to the significant interaction between the APOE-ε4
effect on it and age (Fig. 5). This adds further evidence to the
reported associations between alanine aminotransferase and AD [31].
Despite some evidence of convergent effects on traits among

different genetic risk factors for AD, the overall pattern was of
contrasting profiles of associations between the APOE variants,
polygenic risk, and familial risk. Much of this is likely caused by the
relatively low power of the PRS and familial risk factors, and that
genetic risk variants for any disease also often have pleiotropic
effects on a range of other traits. However, part of this heterogeneity
of effects on traits may reflect heterogeneity in the disease etiology
itself, and so these findings warrant further interrogation. Some of
the associations can be more easily explained, such as familial AD risk
being associated with factors relating to caring for a parent with
Alzheimer’s, but these are still important to account for in AD
research and in the clinical care of Alzheimer’s patients. Our study
also re-iterated the importance of accounting for the survivor effect
in AD research, in relation to both the overlap between CVD and AD
risk factors (namely APOE-ε4 here) and the fact that individuals with
late-onset AD will typically have had an otherwise healthy profile
given their longevity.
All of the associations reported in this study were investigated

univariately in terms of traits, are based on cross-sectional
observational data, and are analysed in a large sample with the
power to detect very small but potentially unimportant effects,
and so all results should be considered exploratory in nature.
We expect our study to act as a useful resource to aid in

understanding the effects that different forms of AD genetic risk have

Fig. 4 Effect of parental age adjustment in different forms of AD
genetic risk. Estimated effects (standardized) of familial risk, APOE-
ε4, APOE-ε2, polygenic risk on selected traits using the primary
analysis model (Fig. 1, see Methods), with or without adjustment of
parental age. Points show effect size estimates and whiskers show
95% confidence intervals.
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on the phenome. We hope that our results provide an ideal starting
point for further observational interrogation of AD aetiology,
including replicating these analyses in other populations, and that
insights gained here provide leads for experimental studies that may
be able to shed light on those causal mechanisms that both underlie
these associations and lead to AD.

CODE AVAILABILITY
Analytic code to define outcomes and regression models for this work is available
upon request.
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