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Abstract
Background: Cardiomyocytes derived from human iPS cells (hiPSCs) include cells 
showing SAN- and non-SAN-type spontaneous APs.
Objectives: To examine whether the deep learning technology could identify hiPSC-
derived SAN-like cells showing SAN-type-APs by their shape.
Methods: We acquired phase-contrast images for hiPSC-derived SHOX2/HCN4 
double-positive SAN-like and non-SAN-like cells and made a VGG16-based CNN 
model to classify an input image as SAN-like or non-SAN-like cell, compared to human 
discriminability.
Results: All parameter values such as accuracy, recall, specificity, and precision ob-
tained from the trained CNN model were higher than those of human classification.
Conclusions: Deep learning technology could identify hiPSC-derived SAN-like cells 
with considerable accuracy.
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1  |  INTRODUC TION

Sinoatrial node (SAN) cells exhibit automaticity.1 The dysfunction of 
SAN cells causes bradyarrhythmia. Because of the medical short-
comings of artificial pacemakers, the biological pacemaker has been 
proposed.2 We reported a novel method to select SAN-like cells 
from cardiomyocytes derived from gene-manipulated dual reporter 
human iPS cells (hiPSCs) targeting two SAN-specific genes, SHOX2 
(short stature homeobox 2) and HCN4 (hyperpolarization-activated 
cyclic nucleotide-gated K+ channel 4), as markers, which enable us to 

enrich SAN-like pacemaker cells.3 However, because of the require-
ment of genetic manipulation, it is difficult to apply this method for 
the development of biological pacemakers.

It has been reported that the size of cardiac cells and their intra-
cellular organelles are closely related to their physiological proper-
ties.4 The human SAN cell shows spindle shape, and is much smaller 
than atrial and ventricular myocytes; they have specific action po-
tentials (APs).5 AP parameters are most useful for the identification 
of each cell type in cardiomyocytes.6 Deep learning technology in 
convolutional neural networks (CNNs) is advancing to identify cer-
tain cells through feature values of cell shape. It has been reported 
to be applied to the identification of hiPSC-derived endothelial cells7 
and quality control of hiPSC-derived cardiac cells.8 In the present 
study, we have established the deep learning technology to iden-
tify SAN-like cells which exhibit SAN-type-APs from SHOX2/HCN4 
double-positive cardiomyocytes differentiated from hiPSCs.

2  |  METHODS

2.1  |  Measurement of APs of dual reporter hiPSC-
derived cardiomyocytes

Cardiac differentiation of dual reporter hiPSCs and AP measurement 
were performed using the protocol reported previously.3 “SAN-like 
cell” was defined as the cell showing SAN-type-APs, according to the 
criteria described by Ma et al.9

F I G U R E  1  Annotation of a phase-contrast image of a hiPSC-
derived SAN-like cell showing SAN-type APs. (A) A phase contrast 
image of the SAN-like cell as indicated by the arrowhead. (B) 
Annotation of the SAN-like cell colored in red using visual object 
tagging tool. (C) SAN-type spontaneous APs recorded from the 
SAN-like cell in the image.

F I G U R E  2  Distribution of SAN-like and non-SAN-like cells and 
extraction of small fraction images from the image of an annotated 
cell. (A) Total number of images (All data) and numbers of images 
labeled as SAN-like cell (SAN data) and non-SAN-like cell (non-
SAN data). (B) Cutout of the small images (right) including the cell 
fragment (256 × 256 pixel) from the square areas on the larger 
image (left) of the annotated cell shown in Figure 1 (1636 × 1088 
pixel). The frame lines of the left and right images correspond to 
each other.

(A)
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2.2  |  Preparation of datasets for training and 
evaluation of a neural network model

Eighty-five phase-contrast images for hiPSC-derived SHOX2/
HCN4 double-positive cardiomyocytes of which electrophysiologi-
cal properties had been determined were acquired and saved as 
1636 × 1088 pixel gray scale images. Each image contained several 
cells (Figure 1A) and at least one cell out of them has been identified 
and annotated (Figure 1B) as “SAN-like cell” having SAN-type APs 
(Figure 1C) or “non-SAN-like cell” with those of ventricular or atrial-
type APs. To generate datasets for training and evaluation of deep 
learning algorithms, we conducted data augmentation, which is a 
technique of artificially increasing training data by creating modified 
copies of a dataset using existing data.10 First, images were randomly 
split, 80% and 20% of them were assigned to the training set and the 

validation set, respectively, so that both sets included SAN-like and 
non-SAN-like cells (Figure 2A). And then in order to increase images 
for each training and validation set, 256 × 256-pixel small fraction 
images were cut out and saved from top left to bottom right, with 
50-pixel stride, so as to cover the entire original image (Figure 2B). 
Finally, small fraction images which did not include any cell were ex-
cluded. The resultant 5415 small fraction images were used as input 
blocks for training of our deep neural network.

2.3  |  Establishment and evaluation of a deep neural 
network model

To classify a cell in an input image into the SAN-like cell group or 
the non-SAN-like cell group, we used VGG16-based CNN model, 

F I G U R E  3  Network structure of VGG16-based CNN model. VGG16-based CNN model includes an upstream feature extractor 
convolutional networks followed by a downstream classifier fully connected networks, which consist of 10 convolutional layers, four max 
pooling layers and three fully connected layers. Each convolutional layer is connected to rectified linear units for activation. Max pooling 
layers are used after convolutional layers to reduce the feature size and summarize the feature. Softmax activation function is used in 
the output layer. Color image data consisting of 256 × 256 pixels with three channels (red, green, blue) are inputted. As convolutional 
networks’ output is an image of 256 × 256 pixels with the same width and height, represented by a 32-channel feature map through 1st 
convolution (convolution 1, 2) followed by applying Max pooling (Max pooling 1) to reduce to 128 × 128 pixels, is an image of 128 × 128 pixels 
represented by a 64-channel feature map through 2nd convolution (convolution 3, 4) followed by applying Max pooling (Max pooling 2) to 
reduce to 64 × 64 pixels, is an image of 64 × 64 pixels represented by a 128-channel feature map through 3rd convolution (convolution 5, 
6) followed by applying Max pooling (Max pooling 3) to reduce to 32 × 32 pixels, is an image of 32 × 32 pixels represented by a 256-channel 
feature map through 4th convolution (convolution 7, 8) followed by applying Max pooling (Max pooling 4) to reduce to 16 × 16 pixels, and 
finally is an image of 16 × 16 pixels represented by a 256-channel feature map through 5th convolution (convolution 9, 10), respectively. As 
fully connected layers, the 1st dense layer compresses the input 65 536-dimensional feature vector into a 2048-dimensional feature space 
and passes it to a 1024-dimensional feature space through the 2nd dense layer. The final dense layer uses the softmax activation function, 
which is suitable for classification tasks, to output the probabilities of belonging to the two classes (SAN or non-SAN). To train the network, 
categorical cross-entropy function is used as a loss function and adaptive moment estimation function is used as an optimizer with a batch 
number of 32 and a maximum training epoch number of 100.10
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Convolution 
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which contains 10 convolutional layers, four max pooling layers, and 
three fully connected layers.10 The network structure is shown in 
Figure 3. The training process was conducted using the TensorFlow/
Keras framework on a personal computer (NEC, Tokyo, Japan) with 
a Core-i9-9820X-CPU (Intel, Santa Clara, CA, USA), 32 GB memory, 
and GeForce-GTX1080Ti-GPU (NVIDIA, Santa Clara, CA, USA). 
Accuracy, precision, recall, and specificity of CNN model classification 
were estimated using evaluation data. These parameter values were 
compared with those estimated by the questionnaire for volunteers 
(n = 14); they took the test to determine whether a cell in image data 
is classified into the SAN-like cell using the same pictures of cells as 
for testing the CNN model.

3  |  RESULTS

SHOX2-mCherry/HCN4-EGFP double-positive cells sorted by FACS 
included cells showing SAN-, atrial-, and ventricular-like spontane-
ous APs. We evaluated our VGG16-based CNN model based on 
four parameters, accuracy, recall, specificity, and precision, of iden-
tification data on SAN-like cells with SAN-type APs. To assess the 
performance of the post-training CNN model, we performed a 5-
fold cross-validation using the testing dataset. It takes 0.01–0.02 s 
to analyze one 256 × 256-pixel picture and around 1 s for one cell 
image analysis to determine cell type. As shown in Figure 4, the aver-
aged values of accuracy, recall, and precision obtained by the trained 
CNN model were significantly greater than those obtained from the 

questionnaire. Matthews correlation coefficient (MCC) is the geo-
metric mean of the regression coefficients of the problem and is ro-
bust against imbalanced classes. MCC ranges from +1 to −1, and the 
prediction is random when MCC is 0.11 The value of MCC for the 
CNN model identification was 0.29 ± 0.14, suggesting that our CNN 
model has greater predictive performance than random selection.

4  |  CONCLUSIONS

In this study, we tried establishing a method for automated identifica-
tion of hiPSC-derived SHOX2/HCN4 double-positive SAN-like cells 
showing AP waveform characteristics of SAN cells (SAN-type-AP).3 
We found that after training, our CNN model could distinguish SAN-
like cells among hiPSC-derived SHOX2/HCN4 double-positive car-
diomyocytes by the feature value of cell shape more accurately than 
human discrimination or random selection as estimated by MCC. 
This is the first report showing that SAN-like cells differentiated 
from hiPSCs harboring the SAN-specific marker genes SHOX2 and 
HCN4 could possess the feature value of their shape as SAN cells. 
Deep learning technology could identify SAN-like cells exhibiting 
SAN-type-APs by their shape with considerable accuracy. When we 
develop the way to identify SAN-like pacemaker cells differentiated 
from hiPSCs, we could utilize them as biological pacemakers for im-
plantation in the heart of bradyarrhythmia patients.
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