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Abstract: Generating chemical energy carriers and bulk chemicals from solar energy by microbial
metabolic capacities is a promising technology. In this long-term study of over 500 days, methane was
produced by a microbial community that was fed by the mono-substrate glycolate, which was derived
from engineered algae. The microbial community structure was measured on the single cell level using
flow cytometry. Abiotic and operational reactor parameters were analyzed in parallel. The R-based
tool flowCyBar facilitated visualization of community dynamics and indicated sub-communities
involved in glycolate fermentation and methanogenesis. Cell sorting and amplicon sequencing of 16S
rRNA and mcrA genes were used to identify the key organisms involved in the anaerobic conversion
process. The microbial community allowed a constant fermentation, although it was sensitive to high
glycolate concentrations in the feed. A linear correlation between glycolate loading rate and biogas
amount was observed (R2 = 0.99) for glycolate loading rates up to 1.81 g L−1 day−1 with a maximum
in biogas amount of 3635 mL day−1 encompassing 45% methane. The cytometric diversity remained
high during the whole cultivation period. The dominating bacterial genera were Syntrophobotulus,
Clostridia genus B55_F, Aminobacterium, and Petrimonas. Methanogenesis was almost exclusively
performed by the hydrogenotrophic genus Methanobacterium.

Keywords: microbial community dynamics; microbial flow cytometry; anaerobic digestion;
glycolate-fermenting bacteria; methanogenic archaea

1. Introduction

The replacement of fossil fuels by renewable energy sources is essential to mitigate global
warming. The conversion of biomass into gaseous or liquid biofuels is generally considered
sustainable [1], but the energy conversion efficiency is low [2]. However, most biofuels are currently
produced from energy crops grown on valuable agricultural land, thus competing with food and
feed production [3]. While microalgae are an alternative feedstock for biofuel production [4] their
utilization includes high costs due to the investment for the photobioreactors and operation for stirring,
harvesting or transport to biorefinery plants [5]. A new approach [6,7] proposed a concept in which
photosynthetic energy is mainly conserved in the form of glycolate by a controlled balance between
carboxylation and oxygenation by the ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) in
Chlamydomonas reinhardtii. The produced glycolate is efficiently excreted by the microalgae because its
metabolization via the C2 cycle is blocked [7]. The concept minimizes both metabolic and economic
costs of glycolate production. In the present study, we investigated whether the excreted glycolate
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can be efficiently converted to methane by a subsequent anaerobic digestion process. Consortia of
syntrophic bacteria and methanogenic archaea that can convert glycolate to methane have been already
described [8,9]. While several aerobic degradation pathways of glycolate are well known such as the
dicarboxylic pathway in Escherichia coli [10,11], the glycerate pathway in E. coli [12], Pseudomonas sp. [13]
and Azotobacter chroococcum [14], and the β-hydroxyaspartate pathway in Micrococcus denitrificans [15],
the metabolization of glycolate under anaerobic conditions is less well explored. Only a few
isolates have been described for anaerobic glycolate conversion such as Desulfofustis glycolicus and
Syntrophobotulus glycolicus [16], Moorella sp. strain HUC22-1 [17], Moorella thermoacetica [18], and
Lachnospiraceae strain 19gly4 [19], which use the malyl-CoA-pathway [20]. Some of the fermentation
products, i.e., hydrogen and carbon dioxide, formate or actetate, can be directly converted to methane.

The set-up proposed in this study relies on glycolate as mono-substrate for methane
production [6–9]. Other mono-substrates such as acetate [21], butyrate [22], propionate [23], and
glucose [24] were already shown to be suitable substrates for continuous methane production.
However, glycolate could be problematic for the process due to the potentially small group of anaerobic
glycolate utilizers. Moreover, in contrast to the anaerobic oxidation of propionate or butyrate, which
is only possible by syntrophic interaction of proton-reducing bacteria and hydrogen-scavengers
such as hydrogenotrophic methanogens, glycolate can be expected to be fermented directly to
acetate by homoacetogens such as Moorella via the Wood-Ljungdahl pathway [17] or to other
fermentation products such as succinate and acetate by single strains such as Lachnospiraceae
strain 19gly4 [19] and thus its degradation to acetate does not necessarily require the involvement
of methanogens. In that case, conversion to methane would rely on the presence of acetoclastic
methanogens. However, glycolate can also be exploited by hydrogenotrophic methanogens together
with syntrophic proton-reducing bacteria that are needed to perform the oxidation of glycolate to
glyoxylate and further to carbon dioxide and hydrogen [9].

Usually, biogas is produced by natural microbial communities from complex substrates. These
microbial systems behave dynamically and convey short reaction times to external changes [25].
Molecular tools are typically used to analyze the microbial community composition [26,27]. However,
these methods have limitations for routine applications especially when fast dynamics, which require
dense sampling procedures over longer time scales, are expected. Missing sampling points can
aggravate for instance association analyses by using Cytoscape [28] and CoNet [29], which help find
functional key organisms in microbial communities. Flow cytometry is an alternative approach,
especially since bioinformatic tools are now available that enable the interpretation of fast shifts of
microbial community structures using flowCHIC [30] and flowCyBar [31]. These tools grant the accurate
quantitative analysis of cell abundance variation and allow via correlation analyses with abiotic data
to attribute metabolic functions to specific sub-communities [32,33].

The aim of this study was to challenge an anaerobic digester community to continuously convert
the mono-substrate glycolate to methane at high turnover rates and over long time periods. Possible
positive or negative influences of reactor parameters on biogas production and the function of microbial
key players that contribute to either glycolate fermentation or methanogenesis were of interest to
obtain means for process control.

2. Materials and Methods

2.1. Digester Configuration and Operational Parameters

The biogas reactor had a working volume of 3.5 L and was operated at 37 ◦C (Supplemental
Figure S1). Temperature was controlled by a water bath (E100, Lauda, Germany). A pump (101U,
Watson-Marlow GmbH, Rommerskirchen, Germany) controlled the feeding via a time switch (25750,
REV-Ritter GmbH, Eisenach, Germany), thereby adjusting hydraulic retention time (HRT) and glycolate
loading rate (GLR). Stirring was operated during feeding (60 rpm, Modelcraft RB-35, Conrad, Germany)
and 30 s prior to sampling. The feed solution contained, besides glycolate, salts, trace elements, and
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vitamins (Supplemental Table S2). Sampling was done via a sampling tube and a gas collection tube
(350 mL, VWR International GmbH, Langenfeld, Germany). The biogas reactor was operated as
a single approach, inoculated with digestate from a full-scale agricultural biogas plant (Rackwitz,
Germany) fed with cattle manure and maize silage. Before starting the process, the reactor was flushed
with nitrogen to establish anoxic conditions. The anaerobic digester was adapted to the feed solution
and operated over 2.5 years before perturbations were artificially invoked.

2.2. Analytical Methods

The pH was determined and the VOA/TIC ratio was calculated as ratio between volatile organic
acids (VOA) and total inorganic carbon (TIC) [34] measured by titration (Knick Portamess 913, WTW,
Weilheim, Germany) of a 1:10 diluted reactor sample with 5 mM H2SO4 (Roth, Bavaria, Germany). The
concentrations of acetic, propionic and glyoxylic acid in the reactor samples were determined by using
a 10AVP HPLC System (Shimadzu, Duisburg, Germany) equipped with a Rezex ROA-Organic Acid
H+ (8%) 300 × 7.8 mm column (Phenomenex, Aschaffenburg, Germany) and a RI detector (RID-10A,
Shimadzu, Duisburg, Germany) at 70 ◦C. As a mobile phase, 5 mM H2SO4 (Roth, Bavaria, Germany)
was used at a flow rate of 0.6 mL min−1. The reactor sample was filtered before measurement (syringe
filter, 0.2 µm, VWR, Langenfeld, Germany). The daily biogas amount (mL day−1) was monitored
using a milligascounter (MGC-1, Ritter, Germany) and normalized to standard conditions. The
productivity of biogas formation was calculated in mL per gram glycolate per day. Biogas composition
was measured by gas chromatography (Chrompack CP 9001, Shimadzu, Duisburg, Germany) with
a CarboPlot P7 25 × 0.53 column and a thermal conductivity detector (Micro TCD 2045 Detector,
Chrompack, Shimadzu, Duisburg, Germany). Argon served as carrier gas (1.3 mL min−1). Before
measurement, the gas syringe (Clexane, 1 mL) was flushed with argon to exclude air contaminations.
All analytical data are listed in Supplemental Table S3.

2.3. Flow Cytometry and Cell Sorting

Samples were harvested, stabilized with 2% paraformaldehyde (Serva, Heidelberg, Germany),
vortexed and incubated for 30 min at room temperature (RT). Thereafter, cells were washed in
phosphate-buffered saline (PBS, S2) at 3,200× g for 10 min, 4 ◦C, and the pellet resuspended in
70% ethanol (Roth, Bavaria, Germany) and stored at −20 ◦C [33]. For cytometric analysis, the
cells were washed as before and adjusted to an optical density of 0.035 (dλ700 nm = 0.5 cm)
with 400 mM Na2HPO4, pH 7.0 and re-suspended in 0.5 mL of a 11 mM citric acid and 0.8 mM
Tween 20 solution. The sample was sonicated (Sonorex Digitec, Bandelin Electronic GmbH Co.
KG, Berlin, Germany) for 5 min and incubated for further 25 min. After another washing step as
before, the cell pellets were stained with 1 mL 1 µM 4′,6-diamidino-2′-phenylindole (DAPI, Sigma,
Roedermark, Germany) in 400 mM Na2HPO4, pH 7.0 for 3 h at RT, and vortexed. Samples were
filtered through 50 µm CellTrics® (Partec, Hamburg, Germany) prior to cytometric measurement.
Fluorescence beads (0.5 µm Fluoresbrite carboxy BB microspheres (Polysciences, Niles, IL, USA)
and 1 µm Polymer microspheres 350/530 (ThermoFischer Scientific GmbH, Dreieich, Germany)
were added to the samples as internal standard. For all measurements, at least 250,000 stained
cells were recorded. The files are available at the FlowRepository (https://flowrepository.org/id/
RvFrPg2aOOvne2qTF5ksrMT6IwQciR66Iel7bsddUqIH05JyhsWnGUPSsOzondKk).

A MoFlo cell sorter (DakoCytomation, Santa Clara, CA, USA) equipped with a 488 nm argon
laser (400 mW) and a ML-UV laser (333–365 nm, 100 mW) was used for the cytometric measurements.
Forward scatter (FSC, 488/10) and side scatter (SSC, trigger signal, 488/10) were used for the analysis
of intrinsic cell parameters. The ML-UV excitation was used to measure DAPI fluorescence (450/65).
Fluorescent beads (2 µm, yellow-green FluoSpheres 505/515 and 1 µm, blue Fluo-Spheres 350/440
(Molecular Probes, Eugene, OR, USA) were used for the instrument adjustment. Cytometric data were
analyzed with Summit V 4.3 (Beckman-Coulter, Brea, CA, USA). The cell-sorting procedure was done
according to the protocol by Koch et al. [35]. A representative number of samples were chosen under
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the premise of comprising 500,000 cells per gate, which were selected for sorting. The most accurate
sort mode of the MoFlo (single and one-drop mode: highest purity 99%) at a rate not higher than
2500 events/s was adjusted. After sorting, cells were harvested by centrifugation (20,000× g, 4 ◦C,
25 min), and the pellet was frozen at -20 ◦C for later DNA extraction and Illumina MiSeq sequencing.
For detailed information regarding the chosen samples and gates, see Supplemental Table S4.

2.4. Microbial Community Analysis by Amplicon Sequencing

DNA from sorted cells was extracted as described in Supplemental Table S5. Bacterial community
compositions of sub-communities sorted from samples on days 495 (G1, G2, G26) and 508 (G3, G6,
G8, G25) were analyzed by amplicon sequencing of 16S rRNA genes. The V3–V4 region of the 16S
rRNA genes was amplified using the primer pair Pro341F and Pro805R [36]. Methanogenic archaea
in the sub-communities were analyzed by amplicon sequencing of mcrA genes using the primers
described by Luton et al. [37]. Amplicon sequencing was performed on the Illumina MiSeq platform
(V3, 2 × 300 bp), for details see Supplemental Table S5. Primer and barcode clipping was done using
the fastX toolkit [38]. Paired-end reads were merged using PEAR 0.9.10 [39]. Quality filtering of the
merged sequences and clustering into operational taxonomic units (OTUs) at 97% or 95% similarity
threshold for 16S rRNA genes and mcrA genes, respectively, were done with the QIIME 1.9.1 Virtual
Box release [40]. OTU picking at a minimum cluster size of 5 and removal of chimeric sequences by
de novo check were done using USEARCH [41]. For taxonomic assignment using the RDP Classifier
2.2 [42] at a confidence threshold of 0.8, the MiDAS 2.1 database [43] was used for the 16S rRNA OTUs,
while the mcrA OTUs were assigned to a customized database created from the RDP FunGene [44].
Raw de-multiplexed sequence data were deposited at EMBL European Nucleotide Archive (ENA)
under accession number: PRJEB27800.

2.5. Biostatistics

Sub-communities of stained cells were marked with gates using a facilitated gating procedure [45]
and their abundance variation was followed over time. Statistical analyses were performed with
R 3.4.4. Community and correlation analyses were either done using the package “flowCyBar” [31] or
the package “Hmisc” [46]. For correlation analysis the Spearman’s rank order correlation coefficient
rho was used in a moving window approach [47,48] encompassing 20 time points. p-values were
corrected using the method of Benjamini and Hochberg [49]. The resulting data were visualized as
functional heat maps specifying the direction and strength of the correlation data as color code [31,33].

3. Results

3.1. Glycolate as Sole Carbon Source for Biogas Production

A microbial community originating from a conventional full-scale biogas reactor fed with maize
silage and cow manure was cultivated for 526 days in a 3.5 L bench-top reactor on the mono-substrate
glycolate. This long-term process was designed to determine the maximum biogas production capacity
on the mono-substrate glycolate by increasing loading rates. A linear correlation was observed between
GLR and the daily biogas amount (R2 = 0.99, Figure 1) up to a GLR of 1.81 g L−1 day−1. A further
increase in the GLR up to 3.6 g L−1 day−1 did not cause higher biogas production. This was due to a
pH drop to 3.25 because the buffer capacity of the medium was exceeded by the acidity of glycolate
leading to a breakdown of the process. Until then, the biogas composition was relatively constant and
showed average values of about 41.28% ± 2.83% CH4 and 56.1% ± 2.87% CO2 (Figure 1). The process
was restarted by using a back-up inoculum from the reactor itself (red circle, Figure 1), and the biogas
amount slowly increased again parallel to an increasing GLR.
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Figure 1. Daily biogas amount (open circles) depending on the glycolate loading rate (GLR). In addition,
the methane (light grey rhombs) and carbon dioxide (dark grey rhombs) concentrations [%] in the
biogas are given with respective standard deviation for each GLR. A linear correlation (R2 = 0.99)
between GLR and biogas amount is indicated by the grey trend curve (y = 1906.1x − 57.941). The red
colored circle indicates the restart of the reactor using a back-up inoculum from the reactor.

The glycolate feed solution had a pH of 3, which is also a typical feature of maize silage in
conventional biogas plants. While it can be assumed that the carbonate buffer in the reactor is strong
enough to balance the pH at the glycolate concentration used, the feed solution was additionally
buffered and adjusted to a pH of 7 for about 20 days. Interestingly, the biogas composition changed
to 54.38% ± 9.16% CH4 and 43.36% ± 7.33% CO2, but the biogas amount decreased during this
period. Steady high biogas production was re-obtained after addition of pH-uncorrected glycolate
feed. All raw data can be found in Supplemental Table S3a.

3.2. Microbial Community Dynamics on Glycolate as Mono-Substrate

Changes in community structure on the cellular level were analyzed routinely using flow
cytometry while changes in phylogenetic composition were detected exemplarily via cell sorting of
specific sub-communities and amplicon sequencing of 16S rRNA and mcrA genes. By flow cytometry,
178 samples were analyzed and the bioinformatic evaluation was done by using the R package
“flowCyBar”, which calculated cell abundance variations per each gate and histogram (all data in
Supplemental Table S3b). For the cytometric dataset, 29 conclusive sub-communities and one master
gate (G30, containing all cells: 100%) were defined, which were documented by gates in a designed
gate template (Figure 2). Eleven sub-communities with average cell abundances below 1% were
excluded from the analysis. Eighteen sub-communities had average cell abundances between 1% and
24% and covered on average 86.77% ± 6.11% of the cells of the master gate (Supplemental Table S3b).
Sub-communities G1 (on average 24%) and G2 (on average 17%) had the highest cell abundances
(Figure 3, boxplot). The community structure variations were finally correlated to the formation of
metabolites such as biogas, acetate, glyoxylate, and propionate, which were measured in parallel to
test for active functions of sub-communities.
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Figure 2. Microbial communities were analyzed using flow cytometry via the forward scatter signal
(FSC) and DAPI staining of single cells. The varying structure of the community is exemplarily shown
for three sampling days: day 3 (a), day 371 (b), and day 427 (c). Beads (0.5 and 1 µm, marked with
ellipses) were used to align the 2D plots to each other. A gate template (d) was created to enable
quantitative cell number determination in sub-communities over time.

The overview on the cytometric structure changes is given in Figure 3. Clusters of
sub-communities with similarities in all cell abundance variations over the cultivation period were
defined using Euclidean distance calculations thus defining cluster 1 with gates G1–G3, G6, G10, G21,
and G26 (internal distance: 9.27 ± 1.8), cluster 2 with gates G4, G8, G15, G22, G25, and G27, (internal
distance: 8.27± 1.2), and cluster 3 with gates G5, G9, G16, G17, G20 (internal distance: 9.61± 2.08). The
average distance for all sub-communities was 15.2 ± 5.72 (all distances can be found in Supplemental
Table S6). As could be anticipated from Figure 3, the three clusters comprised different parts of the
microbial community. Cluster 1 was by far the largest cluster with 55.29% average abundance over the
whole experiment. Cluster 2 was the second largest cluster with 21.66% and cluster 3 the smallest with
6.98% (Supplemental Table S7).
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Figure 3. Shown from left to right are the hydraulic retention time (HRT [days]), the glycolate loading
rate (GLR, [g L−1 day−1]), the cytometric barcode with boxplot (relative cell abundance per gate,
%), biogas productivity [mL g−1 day−1], and acid concentrations [mg L−1] for acetate (dark grey),
propionate (grey), and glyoxylate (light grey) over 526 days of sampling. For the cytometric barcode,
mean normalized data were log transformed and ordered according to their Euclidean distance as
calculated by flowCyBar. Sorted gates are marked with a grey background. Blue colors indicate a
decrease below the mean of the cell number in the respective gate, red an increase, and white no change
at all. Six different phases (P1–P6) were identified based on process parameters: P1: days 1–180, P2:
days 183–232, P3: days 234–281, P4: days 284–414, P5: days 416–470, and P6: days 472–526. Due to
their similarity in structure, three different cell clusters were recognized (clusters 1–3).
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Phase 1, assigned to days 1 to 180, was characterized by comparatively low average mean
values of cell numbers in cluster 1 (38.9%), while the cell numbers in the other clusters (2 and 3)
showed abundances mainly above the average mean values of the respective gates (29.7% and 8.23%).
During this phase the community maintained a constant structure and biogas productivity was stable
and increased with the GLR. The intermediates glyoxylate (light grey) and acetate (dark grey) were
found in considerable concentrations on almost all sampling days with the exception of days 87 to
129 (see Supplemental Table S3). Surprisingly, propionate (grey), a byproduct not predicted by the
described anaerobic glycolate degrading pathways known up to now, was also detected on several
days (e.g., days 134–145). At the end of phase 1, the structure of the community changed slowly, either
due to the increased GLR or the decreased HRT because no other routinely measured operational
parameter indicated a prospective influence on community structure variation.

On day 183 the community structure started to change more pronounced. In this second phase,
cluster 2 and 3 sub-communities suddenly decreased in abundance (20.39% and 6.31%). At the end of
this phase, a completely changed pattern was observed, which was accompanied by a drastic drop
in the biogas productivity after day 206. The increase of the GLR from 1.81 to 3.61 g L−1 day−1 was
possibly the key factor that led to reactor failure. The reactor acidified quickly after day 212, as was
represented by an increase in VOA/TIC to 1.7; and at day 232 the pH reached 3.3 (see Supplemental
Table S3a) and no biogas was produced after day 222.

Since a fast recovery of the acidified reactor was not anticipated in phase 3, the process was
restarted from backup samples on day 234 with a low GLR of 0.34 g L−1 day−1 and a long hydraulic
retention time of 470.4 days, both chosen similar to the original starting conditions. Indeed, the biogas
productivity recovered to nearly phase 1 values within the following 30 days. Acids (acetate and
propionate) were detected only from days 234 to 243 and not detectable afterwards. In addition, the
community structure, shown by the distribution of cell abundances between sub-communities, was
different in comparison to phase 1.

Phase 4 covered a long stable phase of 130 days until day 414, when the GLR was only slightly
increased and the HRT decreased. The linear relationship between GLR and daily biogas amount was
re-established as in phase 1. Until day 414 only samples taken on days 332 and 390 showed slightly
elevated acetate concentrations. However, the community structure was different from that in phase 1
with, now, cluster 1 cells increasing (71.61%) and cluster 2 and 3 cells decreasing in abundance (12.26%
and 5.04%).

Phase 5 comprised 54 days and was characterized by the pH change of the glycolate feed solution
from 3 to 7. This change immediately resulted in increased levels of glyoxylate, propionate, and acetate
as well as a clear decrease in biogas productivity. The microbial community responded within only
few days with a changed pattern, where the cluster 3 cells increased their abundances dramatically
(11.33%). This reactor failure was corrected by a backshift of the feed pH to 3 on day 428.

In phase 6, surprisingly high acid concentrations were still detected for more than 50 days.
Especially glyoxylate remained at elevated levels until day 502. Only then the cytometric
community structures changed to those patterns observed in phase 4, and the stable biogas
productivity and decreased acid concentrations to nearly zero proposed a re-established stable biogas
production process.

Amplicon sequencing of bacterial 16S rRNA genes and mcrA genes was performed exemplarily
on sorted cells from gates taken from samples of phase 6 on day 495 (G1, G2, G26: cluster 1 cells) and
day 508 (G3, G6: cluster 1 cells, and G8, G25: cluster 2 cells). Theses gates were the most abundant ones
during the whole process. As shown in Figure 4, abundant bacterial taxa differed in their proportions
in the respective sub-communities.
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Figure 4. Phylogenetic composition of seven sorted sub-communities (G1–G3, G6, G8, G25, G26)
in ascending order based on their position in the cytometric dot plot (DAPI fluorescence intensity).
Sub-communities that were sorted are marked in the gate template by a light grey background.
Taxonomic affiliation of OTUs is shown on the genus level or on the best achievable taxonomic rank.
Only OTUs with a relative abundance of at least 0.99% in at least one sub-community are depicted
while the remaining OTUs are summarized to “Other”.

An OTU assigned to the class Clostridia (genus B55_F) was predominant in sub-communities
G1 (47%), G2 (33%), and G3 (31%) and still comprised 14% of G26. The genus Petrimonas (phylum
Bacteroidetes) was also highly abundant in these three sub-communities with 31%, 28%, and 19%,
respectively. In contrast, sub-communities G6 and G26 were dominated by the genus Syntrophobotulus
(class Clostridia) with 41% and 40%, respectively. Sub-community G8 was with 56% dominated by
the genus Aminobacterium (phylum Synergistetes). The genus Syntrophobotulus was also abundant in
sub-communities G2 (11%) and G3 (21%), while Aminobacterium with 13% in G26 and 11% in G6 made
up substantial parts of specific sub-communities as well. An OTU assigned to the family Nocardiaceae
(phylum Actinobacteria) was specifically abundant in sub-community G25 with 36% but comprised
only between 1% and 5% in the other sub-communities. Further, abundant OTUs in G25 were the
genera Anaerobaculum (phylum Synergistetes) with 0–9%, Candidatus Cloacamonas (candidate phylum
Cloacimonetes; 0–3%), and the alphaproteobacterial genera Brevundimonas (8%) and Brucella (9%). The
detailed OTU table is given in Supplemental Table S8.

Regarding the methanogenic archaea, all sorted sub-communities were dominated by
hydrogenotrophic methanogens of the genus Methanobacterium, which comprised 90.1% to 99.9% of
all mcrA OTUs, while some other hydrogenotrophic genera (Methanoculleus, Methanocorpusculum and
Methanobrevibacter) were represented by less than 1% in some of the sub-communities (Supplemental
Table S9). Only sub-communities G2 and G25 contained substantial percentages (4.9% and 8.9%,
respectively) of another mcrA sequence type that was only assigned to the phylum Euryarchaeota but
could not be identified at any lower taxonomic level. Surprisingly, acetoclastic methanogens were very
rare and only represented by the genus Methanosarcina with relative abundances between 0% and 0.3%.
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From these data, it can be concluded that methane was primarily produced via the hydrogenotrophic
pathway from hydrogen that was formed as direct or indirect fermentation product of glycolate.

While the amplicon sequencing data gave snapshots of the community composition, the flow
cytometric data revealed dynamic variations in community structures that corresponded to changes
in the reactor operation. In short, the defined six phases comprised a stable biogas productivity at
increasing GLR (phase 1), reactor breakdown due to glycolate overload (phase 2), recovery of the
biogas productivity (phase 3), re-stabilization of the biogas productivity (phase 4), accumulation of
short-chain carboxylic acids due to increase of the feed pH to 7 (phase 5), and re-stabilization of the
biogas productivity due to decreased typical feed pH 3 (phase 6).

3.3. Functional Relationships between Biotic and Abiotic Parameters

To clarify the role of the seven most abundant sub-communities in the formation of biogas and
carboxylic acids such as acetate, propionate, and glyoxylate, biotic parameters (cell abundances in
sub-communities) and abiotic parameters (acids: mg L−1, biogas productivity: mL g−1 day−1, daily
biogas amount: mL day−1) in the respective six phases were correlated using the Spearman’s rank
order correlation coefficient rho (Figure 5). All sub-communities belonged to clusters 1 and 2. Cluster 3
cells were not sorted due to their low gate cell abundance (Supplemental Table S7).

Only correlations with rho values > 0.4 and p-values < 0.05 were further taken into account
(all significant correlation values are given in Supplemental Table S10). The produced biogas amount
was low in phase 1 (average 697.07 mL/day) and correlated positively with G1 and G26 (cluster 1)
cells (peak rho values: G1: 0.64, G26: 0.52). Positive correlations for propionate production were found
especially for G3 and G6 cells (peak rho values: G3: 0.63, G6: 0.71), which seem to also be involved
in acetate production (peak values: G3: 0.59, G6: 0.46) at the end of phase 1. In contrast, glyoxylate
production seems to be related to activities of cells in G8 (peak rho values: G8: 0.64). For glyoxylate
production by G8, these findings seem to be valid for the whole process, while propionate formation
also correlated positively with cells in G25 but only in phase 5 (peak rho value: G25: 0.61). Additionally,
acetate formation shifted to gates G8 and G25 in phases 5 and 6 (peak rho values: G8: 0.66, G25: 0.67).

The daily biogas amount, however, seemed to be mainly related to cells detected in G1–G3 (peak
rho values: G1: 0.76, G2: 0.83, G3: 0.72) and G6 (peak rho value: G6: 0.72), which were also the
most abundant ones starting from phase 2. This activity was constant until the middle of phase 4.
Phase 4 was the period when the process was considered stable due to constant and high biogas
amounts (1178.6 mL/day) and stable cytometric community patterns. However, the correlation with
the daily biogas amount seemed to shift in the middle of phase 4 mainly to G26 and G8 (peak rho
values: G26: 0.47, G8: 0.77). Only the disturbances occurring in phase 5, caused by the pH shift in
the glycolate feed to pH 7, seem to cause a reorganization of the function in a way that again G2,
G3, G6 and also G26 were the gates that seemed to be responsible for the biogas amount (peak rho
values: G2: 0.64, G3:0.61, G6: 0.67, G26: 0.76) until the end of the process. Therefore, cluster 1 cells can
probably be attributed to biogas production and partly to acetate and propionate production. Cluster 2
cells showed positive correlations especially with glyoxylate production, but also, to a minor degree,
to acetate and propionate production in phases 5 and 6.
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Figure 5. Shown are the abundance (1st heatmap in red and blue) and correlation changes (2nd to
6th heatmap in grey and dark red) of selected seven sub-communities (G1–G3, G6, G8, G25, G26)
and five abiotic parameters (biogas productivity, as well as daily biogas amount, acetate, propionate,
and glyoxylate production) over time. Six different phases (P1–P6) were identified based on process
parameters: P1: days 1–180, P2: days 183–232, P3: days 234–281, P4: days 284–414, P5: days 416–470,
and P6: days 472–526 and are marked with lines directly below the respective phases. A moving
window correlation analysis with a window size of 20 samples was applied. Correlations were
performed using Spearman’s rank order correlation coefficient rho. Color key: average: white (=0);
higher values: increasing depth of red color (>0, positive); lower values: increasing depth of grey color
(<0, negative). Mean values for all tested parameters are shown as an overlay for each window frame.
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4. Discussion

Biogas reactors are usually fed with plant biomass such as energy crops, grass silage or landscape
conservation material, or organic waste, such as manure, biowaste, agro-industrial residues or
wastewater sludge [50]. The process comprises four metabolic steps executed by different microbial
consortia, i.e., hydrolysis, acidogenesis, acetogenesis, and methanogenesis [50]. However, anaerobic
glycolate metabolization for methane production is a new concept based on basically infinite resources
when connected to an algae reactor producing glycolate from CO2 and sun light [7]. Such a biogas
production process does not need the hydrolysis step and immediately starts with acidogenesis
producing several intermediates such as glyoxylate, propionate, and acetate. The products of glycolate
fermentation can be either used directly by methanogens (in case of acetate, H2, and CO2) or further
metabolized by syntrophic bacteria (e.g., in case of propionate). The microbial degradation of glycolate
usually starts with the oxidation to glyoxylate, which can be further metabolized by three different
pathways: (i) The conversion to glycerate, which can be used to form pyruvate and eventually various
fermentation products such as acetate, formate, H2 and CO2 [12]; (ii) the formation of malate by malate
synthase and further conversion to pyruvate and subsequent fermentation products as mentioned in
(i) [8]; and (iii) the formation of oxaloacetate via the β-hydroxyaspartate pathway [15]. An alternative
pathway in Firmicutes is the direct fermentation of glycolate to acetate and succinate without an
external electron acceptor as described for a Lachnospiraceae bacterium [19]. Besides glyoxylate and
acetate, we detected propionate as intermediate, which is not an intermediate of the aforementioned
pathways but can be formed from succinate [51]. Propionate is a critical intermediate in anaerobic
digestion as its degradation depends on the syntrophic interaction of propionate-oxidizing bacteria
and hydrogenotrophic methanogens that keep the hydrogen partial pressure sufficiently low to enable
propionate oxidation to acetate [52].

In the relatively stable phases 4 and 6 of our system, we measured methane contents of 39–45% in
the biogas produced from glycolate. Biogas from conventional anaerobic digesters usually has higher
methane contents. Substrates such as cattle manure and maize silage produce methane contents up to
55–70% [50]. The differences are caused by the more reduced state (higher C:O ratio) of complex organic
substrates. However, complex substrates are prone to cause fluctuations in methane production due to
altering composition or the presence of inhibiting components, while the mono-substrate glycolate
might have the advantage to always produce stable CH4 amounts, which may facilitate process control
in future. For complete glycolate conversion to biogas and without considering microbial biomass
turnover and acid by-production, the theoretical stoichiometric ratio of CH4 to CO2 is 3:5 assuming
that all electrons of the glycolate would be used for the formation of methane. However, we clearly
found biomass turnover as verified by the cytometric pattern analysis. Thus, glycolate was also
used for biomass synthesis and subsequently microbial biomass was also converted to methane. The
relatively high amounts of organic acids were mainly produced in instable phases of the process and
thus represent intermediates that accumulated transiently during instable process periods. We need
to state that the 526-day study was performed as a single approach but the 178 biological samples
taken in addition with the even higher numbers of abiotic data allowed the verification of trends in
community behavior by avoiding indiscriminate sample handling and interpretation.

It was surprising to discover the high diversity of our community on the mono-substrate glycolate,
which revealed as much as 29 sub-communities present during the 526 days of cultivation. The
structure of the community was evaluated using only the 18 most dominant sub-communities, which
were by no means constant in cell abundance and changed in high proportions. Natural communities
can be expected to behave very differently when grown on mono-substrates. However, so far there
is no experience around on how communities develop under such conditions. Cytometric cluster 1
cells were highly abundant by quota and can be assumed, due to the performed correlation analyses
(Figure 5), to be major functional contributors to biogas production but also to acetate and propionate
production. In contrast, correlation of cluster 2 cells with abiotic data revealed a tight connection
to glyoxylate formation. Cluster 3 cells did not show high correlation values and are therefore
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assumed to be of lower importance in glycolate fermentation. Therefore, only gates from cell clusters 1
and 2 were used for amplicon sequencing of 16S rRNA and mcrA genes revealing a snapshot of
the phylogenetic composition of the sub-communities in G1-G3, G6, G8, G25, and G26 (Figure 4).
Sub-communities G2, G3, G6, and G26 contained substantial shares of a bacterial OTU assigned to
the genus Syntrophobotulus, which comprises the syntrophic glycolate-oxidizing species S. glycolicus
that converts glycolate to H2 and CO2 in a methanogenic co-culture [8,9,16]. Together with the
observed dominance of hydrogenotrophic methanogens, this result suggests that a substantial portion
of glycolate was directly converted to methane by a syntrophic consortium of Syntrophobotulus and
Methanobacterium. However, the sub-communities G1–G3 were dominated by the clostridial genus
B55_F, the physiological function of which is yet unknown. This genus was detected in substantial
proportions in all sub-communities except G25. Based on the known metabolic diversity of the class
Clostridia, it can be speculated that it might be a homoacetogen that utilized glycolate directly to form
acetate, as described for Morella [17,18], a succinate and acetate-producing fermenter as described for a
Lachnospiraceae species [19], or a syntrophic acetate-oxidizing bacterium (SAOB) that degrades acetate
formed from glycolate by other fermenting bacteria. As almost no acetoclastic methanogens were
detected, syntrophic acetate oxidation must be the major acetate sink in the system. The mcrA primers
we used to detect methanogens were already described in 2002 [37] and thus might have failed to
detect more recently described taxa such as Methanomassiliicoccales, Candidatus Methanofastidiosales
and Candidatus Verstraetearchaeota. However, these newly described methanogens are probably
obligate methylotrophs [53] and thus we did not expect that they play a major role in our system.
An abundant genus in sub-communities G1–G3 was Petrimonas, members of which have been
described as carbohydrate-fermenting bacteria that produce acetate and propionate [54,55]. Being
involved in acidogenesis in biogas reactors [55], this genus might be attributed to microbial biomass
decay in our system. Another genus that was predominant in G8 but also quite abundant in G6
and G26 was Aminobacterium. Species of this genus have been isolated from anaerobic digesters
and ferment amino acids to acetate and propionate or oxidize amino acids in syntrophy with
Methanobacterium that was the prevailing methanogen in our reactor [56–58]. A similar physiology
has been described for the genus Anaerobaculum, which was also present in most sub-communities
with abundances of up to 9%. Species of this genus are strictly anaerobic, chemo-organotrophic
bacteria fermenting several sugars, peptides, and organics acids to acetate and hydrogen [59–61].
Neither glycolate nor one of the metabolites detected in our reactor (glyoxylate, acetate, or propionate)
was described to be a substrate of Aminobacterium or Anaerobaculum species. Thus, it is more likely
that these members of the phylum Synergistes were related to microbial biomass decay together
with fermenting species of the phylum Bacteroidetes (i.e., mainly Petrimonas), and that acetate and
propionate accumulated during instable process periods due to biomass turn-over rather than being
fermentation products of glycolate. However, propionate could be also formed as fermentation
product from succinate provided that our reactor harbored a bacterium fermenting glycolate to
succinate and acetate as described for the Lachnospiraceae sp. strain 19gly4 [19]. Despite propionate
concentrations transiently increased during instable process periods, we did not find any of the
classical syntrophic propionate oxidizers that are usually involved in propionate turn-over in biogas
reactors digesting complex biomass (e.g., Syntrophobacter or Pelotomaculum). However, an OTU
affiliated to the Cloacimonetes (previously known as candidate division WWE1) was detected in
most sub-communities with abundances between 1% and 3%. While the only described species of
this phylum (Candidatus Cloacamonas acidaminovorans) has been described as syntrophic amino acid
degrader based on its genome, it was also discussed as facultative syntrophic propionate oxidizer [62].
However, more detailed analyses such as metagenomics or proteomics would be required to unravel
the ecophysiological functions of the several phylotypes in the sub-communities. Nevertheless, the
limited taxonomic information we retrieved from MiSeq amplicon sequencing implies that glycolate is
most likely converted to methane by syntrophic consortia of Syntrophobotulus and Methanobacterium, as
previously described [8,9,16].
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High biogas production is of huge commercial interest; therefore, we started two attempts to
increase the biogas productivity. The increase of the glycolate loading rate is one way, and we found
indeed higher biogas production with increasing GLR. However, this strategy often fails [63] for high
organic loading rates as was also found for our system in phase 2. Acid concentrations increase in
a biogas reactor due to the low metabolic capacity of the methanogenic archaea, which are usually
present at low cell concentrations and cannot adapt fast enough to new conditions because of their long
generation times. In turn, the increasing acid concentrations further inhibit the methane production
by archaea [64,65]. Therefore, as the metabolism of methanogens is favored by neutral to slightly
alkaline pH values a second strategy was to increase the biogas production by adjusting the pH of the
glycolate feed suspension to seven. By this way, forestalling a pH drop in the reactor at prospective
higher glycolate loading rates was anticipated. However, although the reactor pH reached values well
above 8, biogas productivity decreased (phase 5) and a dramatic increase in acetate and propionate
concentrations was observed. Additionally, the CH4 content of the biogas increased. The neutralization
of the glycolate feed suspension may have led to a shift in the carbonate buffer system due to the
higher pH and consequently to lower CO2 contents in the biogas. It is also conceivable that the change
in the pH glycolate feed led to an increased decay of biomass changing the gas composition in favor of
CH4. Nevertheless, the overall biogas productivity decreased. While a higher CH4 to CO2 ratio would
be of interest for the industry, a reduction of the biogas productivity by half is obstructive.

5. Conclusions

Glycolate is clearly a suitable substrate for several anaerobic microorganisms eventually leading
to methane production. The experimental set up and the use of flow cytometry and the connected
bioinformatic evaluations disclosed an ingenious and cytometrically diverse ecosystem where mainly
the dominant sub-communities jointly contributed to a successful carbon conversion to methane. The
high cytometric community structure diversity seems to be an important factor for the continuation of
the process. Flow cytometry also reveals vulnerable community states [66], as found in this study for
biogas productivity and acid accumulation, which emerged when the glycolate loading rate surpassed
1.8 g L−1 day−1, a condition that can be easily controlled in a mono-feed operating system. Cell sorting
and amplicon sequencing uncovered that the conversion of glycolate to methane was performed mainly
by glycolate-fermenting clostridia of the genus Syntrophobotulus in syntrophy with hydrogenotrophic
methanogens of the genus Methanobacterium.
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