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Abstract: The I-READ 4.0 project is aimed at developing an integrated and autonomous Cyber-
Physical System for automatic management of very large warehouses with a high-stock rotation
index. Thanks to a network of Radio Frequency Identification (RFID) readers operating in the
Ultra-High-Frequency (UHF) band, both fixed and mobile, it is possible to implement an efficient
management of assets and forklifts operating in an indoor scenario. A key component to accomplish
this goal is the UHF-RFID Smart Gate, which consists of a checkpoint infrastructure based on RFID
technology to identify forklifts and their direction of transit. This paper presents the implementation
of a UHF-RFID Smart Gate with a single reader antenna with asymmetrical deployment, thus
allowing the correct action classification with reduced infrastructure complexity and cost. The action
classification method exploits the signal phase backscattered by RFID tags placed on the forklifts.
The performance and the method capabilities are demonstrated through an on-site demonstrator in a
real warehouse.

Keywords: cyber-physical system; Industry 4.0; internet-of-reader; IREAD 4.0; radio frequency
identification; RFID classification method; smart gate; smart forklift; smart warehouse

1. Introduction

The term “Industry 4.0” was born in 2013 when the German government promoted
the “High-Tech Strategy 2020 Action Plan” for a planned “4th industrial revolution” [1].
Since then, notable efforts have been carried out toward the implementation of Smart Fac-
tories [2] and Smart Warehouses [3]. The underlying concept concerns the integration of
industrial technologies with information and communication technologies, which leads to
the implementation of a Cyber-Physical-System (CPS) [4]. Each part of the system becomes
able to autonomously exchange information, trigger actions and control each other [5].
In other words, a CPS allows the implementation of a digital and intelligent factory in
order to promote manufacturing to become more digital, information-led, customized, and
green [6]. Furthermore, several enabling technologies have been developed for the Indus-
try 4.0 paradigm, e.g., Internet of Things (IoT) [7], Near-Field Communication (NFC) [8],
Radio Frequency Identification (RFID) [9], Wireless Sensor Network (WSN) [10], and
Block Chain (BC) [11], to name but a few.

The last few years have seen more widespread diffusion of solutions and systems put
into practice for the fourth industrial revolution. The aim is to implement an interconnec-
tion between production facilities, storage systems, and factory machinery in such a way
to allow a real-time interaction between workers, devices and items in the whole supply
chain. Consequently, both factory and warehouse facilities may become smart.
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In such a framework, the implementation of a smart warehouse concerns two dif-
ferent aspects. From one side, the possibility of a real-time inventory of items within the
warehouse allows the definition of a proper company production-plan based on the market
demand, by avoiding excesses of production and warehouse congestion. On the other
hand, the development of a location-based system makes sure of not only the awareness
of the item presence but also of its position within the warehouse, together with the po-
sition of the vehicles employed for procurement operations. It follows the development
of lots of additional functionalities such as the optimization of item placement and of the
vehicle paths during the loading/unloading operations with a consequent improvement of
operator work-quality and safety.

The I-READ 4.0 project, funded by Regione Toscana, Italy, fits into this context. In
particular, it concerns the implementation of an integrated and autonomous CPS for the
automatic management of very large warehouses. The system consists of a network of RFID
readers in the Ultra-High-Frequency (UHF) operating band, which are able to automatically
collect data from the warehouse pallets equipped with UHF-RFID tags and stored within
the tissue-paper warehouse of the Sofidel Italian Company in Porcari, Lucca. Firstly
presented in [12], the I-READ 4.0 system consists of two main technological elements:
UHF-RFID Smart Gate and UHF-RFID Smart Forklift. The Smart Gates use fixed readers
able to detect forklifts/pallets entering or exiting from areas of interest. The Smart Forklifts
are equipped with UHF-RFID readers able to auto-localize themselves by exploiting data
from UHF-RFID reference tags in the scenario and then localize the tagged pallets in the
indoor warehouse. The system is low-cost, reconfigurable, flexible and scalable regardless
of several factors, e.g. warehouse sizes, good typology and spatial resolution required for
item localization.

In this paper, the main idea of the I-READ 4.0 system is a detailed description with
particular focus on the UHF-RFID Smart Gate implementation for the forklift action clas-
sification. In particular, with the term “action”, we refer to two particular movements
that the forklift can do with respect to a UHF-RFID Gate. The IN action represents the
forklift entering a certain area by crossing the gate. The OUT action, instead, refers to a
forklift leaving a certain area by crossing the gate. The UHF-RFID Smart Gate proposed
here is based on an asymmetrical deployment of the reader antenna to allow for a correct
forklift discrimination with no additional sensors. The proposed system does not require
calibration procedures, and it can be implemented with commercial-off-the-shelf (COTS)
hardware. The designed classification method also presents a low computational burden.
The Smart Gate implementation is described together with the performance evaluation of
an on-site demonstrator. The paper is organized as follows: in Section 2, a state-of-the-art
analysis of RFID Gates for good crossing identification is reported; Section 3 describes the
I-READ 4.0 architecture, the UHF-RFID Smart Gate and the proposed phase-based action
classification method; Section 4 shows the performance of the UHF-RFID Smart Gate, and
finally, Section 5 sets conclusions and discusses some future developments.

2. RFID Gates

A UHF-RFID gate is usually composed of a UHF-RFID reader connected to one or
more antennas and possibly with other optional devices. Typically its main task is the
identification of crossing tagged assets, being goods, people, or vehicles, such as forklifts
or pallet trucks. However, an RFID gate able to provide the direction of transit of the
identified object/person, can allow a complete awareness of the asset locations in plants
or warehouses.

Typically, two main problems occur when deploying an RFID gate in an industrial
environment. First, due to the large beamwidth of standard reader antennas and the
multipath effects typical of an indoor scenario with metallic objects and surfaces, the target
assets crossing the gate are identified together with other static or moving tagged items
nearby the gate, so stray read events may occur [13]. Second, the tag reading rate can
be slowed due to the presence of the other tags demanding the communication channel
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resources, thus introducing a non-null probability that the tag on the target asset does not
respond to any interrogation query during the crossing action [14]. The multipath effect
could also affect the correct detection of the target RFID tags due to the fading effect of
the communication channel [15]. To mitigate these issues, solutions relying on shielded
reading zones using tunnel gates [16] were proposed. However, such solutions are required
for a strong modification of the work environment and are not always suitable or easy to
deploy. To avoid shielding structures, other solutions were proposed in [17–19]. In [17],
a localization technique is combined with the gate functionality to solve the problem of
discriminating among moving and static tags. Keller et al. [18] suggested using various
aggregated attributes based on the low-level reader data, e.g., Electronic Product Code
(EPC), Received Signal Strength Indicator (RSSI), timestamp, and reading antenna, to
perform a classification algorithm in forklift truck applications, getting an overall accuracy
of 95.5%. To improve the performance, the same authors extended the method by using
an advanced reader antenna setup [19]. By employing a portal configuration with two
readers and eight antennas, an overall accuracy of around 99% is obtained at the expense
of a relatively high infrastructure cost.

To determine the crossing direction of the assets, additional devices such as light
or ultrasound motion sensors [20] can be used, despite the high complexity and cost of
the system. Moreover, light or ultrasound motion sensors are prone to false-positives
or interruptions as unexpected entities obstruct the sensors. Other systems may employ
Computer Vision (CV) and RFID systems as the concept presented in [21], but CV may
give rise to privacy issues and also suffers from the outage problem if the light conditions
of the environment are not adequate.

To limit cost and complexity of the system, solutions based only on RFID technology
have been proposed. The first systems employed more than one antenna to estimate
the crossing direction of assets by processing the detection information and the RSSI
measurements. In [22], a method was proposed that uses the difference in the crossing
time of two antennas aligned along the gate crossing direction without additional external
sensors. In [23], a similar method was proposed relying on active RFID tags and based on
creating different interrogation zones for each antenna. In [24], a double antenna scheme
to control the access of children at a school door was proposed. The antennas are placed on
the school door, one facing the inside, the other the outside.

Phase-based solutions [25] can be useful as the backscattered signal phase varies
significantly with the motion of tagged assets, and can be profitably used to allow the usage
of a single antenna, thus reducing the infrastructure cost. An example of an RFID phase-
based access control system exploiting a single antenna was presented in [26] for tagged
people crossing-direction discrimination. It is noteworthy that phase-based techniques can
also allow to discriminate tags carried out by a forklift [27] or moving along a conveyor
belt [28] with respect to static tags in the warehouse/plant scenario. The concept of phase
measurements applied to conveyor belts was also explored in [29], where a two-antenna
architecture was proposed for measuring the Direction of Arrival (DoA) of moving RFID
tags for localization purposes. The Doppler Effect can be indeed profitably exploited for
the tag localization on conveyor belts, as demonstrated by [30].

More recently, machine learning techniques were investigated in RFID systems both
for localization purposes [31,32] and RFID Smart Gate implementation [33–35]. In [33], a
single antenna architecture was proposed to determine the direction of people crossing
an indoor RFID gate based on an Artificial Neural Network (ANN). Consecutive RSSI
data are aggregated within frames, and the mean RSSI for each time frame is fed as an
input feature for the neural network. The obtained accuracy is higher than 99%. Machine
Learning solutions were also employed to solve the issue of stray reads [34], where a
97.5% classification accuracy among actual RFID tags crossing the gate and static or other
tags moving close to the gate without crossing it was achieved with a single antenna
architecture. However, such a system does not allow the crossing direction estimation.
In [35], both the RSSI and the phase are processed through different machine learning
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techniques to discriminate among moving and static RFID tags. In fact, when the relative
distance between the reader antenna and the tag changes, both the received power and
phase change significantly.

A concept for asset tracking was proposed in the patent [36] as a device-free user
localization scheme. Basically, a set of antennas is attached at the ceiling facing the floor,
whereas a set of tags is placed on the floor. A moving object can shadow the tags and create
a signature of the motion of the object itself. The same scheme is applicable for RFID gates,
as proposed in [37,38] to solve the problem of pallet trucks crossing a key point (e.g., to
monitor the charging of goods on a truck). In both solutions, an antenna is placed at the
ceiling facing downwards, and a regular grid of 24 tags is placed on the floor. When a
metallic cart crosses the target area, the tags are shadowed. Such information is given in
input to a Long-Short Term Memory (LSTM) [39] Recurrent Neural Network (RNN) [37]
or a convolutional neural network [38]. In both cases, a classification accuracy of 100% is
obtained. Despite the robustness of these solutions, the deployment of the tags on the floor
is unfortunately not always possible in warehouse scenarios, as the tags cannot stand high
pressures caused by the weight and encumbrance of industrial vehicles such as forklifts.

3. Materials and Methods
3.1. The I-READ4.0 System Architecture

The I-READ 4.0 system was conceived by considering large-area warehouses with a
high pallet-handling per day. The demonstrator was designed to operate in the Tassignano
warehouse of the Sofidel paper industry with headquarters in Porcari, Lucca
(https://www.sofidel.com/, accessed on 26 May 2021). It has an area of around 20,000 m2

(Figure 1) with an average handling of 2000–3000 pallets per day. Figure 2 illustrates the
I-READ 4.0 framework, which comprises two main technological elements: the UHF-RFID
Smart Gate (studied in this paper) and the UHF-RFID Smart Forklift.

Area 1Area 2Area 3

Area 4

Manufacturing
area

Loading 
docks

Collection bay

Figure 1. Tassignano warehouse plan.

https://www.sofidel.com/
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Figure 2. The I-READ 4.0 framework.

The general architecture of the system is briefly described here. The proposed solution
uses the passive UHF-RFID technology and particularly an integrated network of RFID
readers, some fixed (UHF-RFID Smart Gates) and other mobile (UHF-RFID Smart Forklifts),
capable of identifying individual pallets, their status (loaded by a forklift or unloaded),
and their location (Figure 2). The tagged objects are pallets containing the final product,
e.g., tissue paper. The pallets exit from the end of the production line and are brought into
the storage warehouse carried by forklifts. Again, when the product must be shipped, a
forklift lifts the pallet and brings it to the loading area (pallet preparation area). Then, each
single pallet is loaded onto the truck manually handled by a pallet truck. For the correct
management of the warehouse, it is essential to trace all these steps. Both the warehouse
entrance at the end of the production line and the exit are equipped with a UHF-RFID
Smart Gate, described later in this manuscript, which is capable of monitoring all the
access/departure of products and forklifts to/from the warehouse. When the UHF-RFID
Smart Forklift moves inside the warehouse, it is localized with a tracking system to allow
the real-time pallet localization. In fact, the pallet location is associated to the forklift
location at the time of the unloading event. In this context, the presence of the UHF-
RFID Smart Gates can be fruitfully exploited to set the initial position of the forklift when
developing tracking systems. Through the Wi-Fi network, the Smart Gate and the Smart
Forklift send the data regarding position and status of each pallet to the warehouse central
server. The knowledge of the position of pallets and forklifts allows to produce a real-
time map of warehouse occupation and therefore enables to implement an optimization
algorithm to improve the management of good flows and the occupation of warehouse
areas. Furthermore, the information on the forklift position, combined with the data of the
collision detection system installed on each forklift, allows to carry out a statistical analysis
about the areas with the highest risk of collision. The detection of these potential collisions
(near miss) will be shown to the forklift drivers and the Warehouse Management System
(WMS) through the Event Server. For the aim of this paper, the design, development and
testing of the UHF-RFID Smart Gate are relevant. That is, we are going to focus on that
component of the global system architecture.

Items coming out from the production lines are assembled in pallets. Each pallet is
around 80 × 120 cm wide, and it has to be equipped with an identification label of size
148 × 105 mm according to the Global Standard GS1 (Figure 3). The label is printed at the
end of the production line and shows the Serial Shipping Container Code (SSCC). Behind
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the label, there is a UH101 tag by LAB-ID measuring 95 × 88 mm and equipped with the
NXP UCODE 7 chip (http://www.lab-id.com/wordpress/wp-content/uploads/2017/06/
UH101.pdf, accessed on 26 May 2021) with −21 dBm sensitivity. The tag on the smart label
is initialized through the CAEN RFID Proton R4320P reader (https://www.caenrfid.com/
en/products/proton-r4320p/, accessed on 26 May 2021) connected to the CAEN RFID
ANT-024 SPIN antenna. A picture of the end of the production line along with the RFID
hardware to write the tag EPC is shown in Figure 4. In particular, the EPC is properly
derived from the translation of the SSCC code according to the GS1 standard (https://www.
gs1.org/sites/default/files/docs/epc/EPC-RTIPalletTagging-ImpGuide-i2.pdf, accessed
on 26 May 2021).

1
2

0
 c

m

80 cm

SSCC 012579 1072345

105 mm

1
4

8
 m

m

(a) (b)

Figure 3. (a) Column composed by two tagged pallets and (b) sketch of the tagged label applied on
the pallet (the tag is on the label rear side).

Figure 4. RFID label printer at the end of the production line.

Pallets are taken from the manufacturing area by Laser Guided Vehicles (LGVs) and
carried at the entrance of the warehouse, which is composed of four storage areas (Figure 1).
Here, workers handle them through the RFID Smart Forklift and bring them to a specific
warehouse area passing through the RFID Smart Gate.

3.2. The UHF-RFID Smart Gate

Within the I-READ 4.0 system, the goal of the UHF-RFID Smart Gate is to monitor
the crossing of goods at a point of interest within the warehouse. The gate must be able to
completely identify the loaded pallets carried out by the forklift, to identify the forklift, and
to understand its crossing direction. In fact, most gates can be crossed in both directions,

http://www.lab-id.com/wordpress/wp-content/uploads/2017/06/UH101.pdf
http://www.lab-id.com/wordpress/wp-content/uploads/2017/06/UH101.pdf
https://www.caenrfid.com/en/products/proton-r4320p/
https://www.caenrfid.com/en/products/proton-r4320p/
https://www.gs1.org/sites/default/files/docs/epc/EPC-RTIPalletTagging-ImpGuide-i2.pdf
https://www.gs1.org/sites/default/files/docs/epc/EPC-RTIPalletTagging-ImpGuide-i2.pdf
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and it is important to correctly determine if a product enters or leaves a certain warehouse
area. That is, the UHF-RFID Smart Gate must implement an action classification method
to understand whether the forklift is entering (IN) or leaving (OUT) a certain zone. The
UHF-RFID Smart Gate is composed of the following hardware:

• An Impinj Speedway Revolution R420 UHF-RFID reader;
• A circularly-polarized (CP) CAEN WANTENNAX019 antenna;
• A linearly-polarized (LP) CAEN WANTENNAX007 antenna;
• Two coaxial cables;
• An ethernet cable to connect the reader to the Event Server;
• A power supply for the reader.

The circularly-polarized (CP) antenna CAEN WANTENNAX019 (https://www.caenrfid.
com/it/products/wantennax019/, accessed on on 26 May 2021) was installed in the upper
part of the gate, at a height of about 4.5 m. It has a gain of 8.5 dBc and a half power beam
width of 65◦ on both planes (HPBWH = HPBWV = 65◦). It was installed with a tilt angle of
about 30◦ with respect to the horizontal plane to create an asymmetrical radiation-pattern
footprint with respect to the gate. Thanks to this particular configuration characterized by
an asymmetrical antenna deployment, the forklift crossing direction can be determined by
using only a single antenna, as described later. Such CP antenna is mainly used to identify
the forklift tags and to perform the action classification method.

With the intention of increasing the reliability of the gate when detecting all the carried
pallets, a second antenna was installed at the gate side. Since the RFID labels on the pallets
are always applied at the same position and parallel to the ground, a linearly-polarized (LP)
antenna was chosen to maximize the power radiated to the tag. The chosen model is the
CAEN WANTENNAX007 (https://pdf.directindustry.com/pdf/caen-rfid/wantennax007
/113435-366469.html, accessed on on 26 May 2021) with gain equal to 8.0± 0.5 dBi, and half
power beam width equal to 65◦ on the horizontal plane (HPBWH = 65◦) and 68◦ on the
vertical plane (HPBWV = 68◦). The antenna was fixed to the wall at a height of about 3 m
from the ground and tilted to about 45◦ with respect to the horizontal plane. In Figure 5,
two of the UHF-RFID Smart Gates installed at the warehouse entrance are shown. It must
be highlighted that the gate infrastructure does not include additional invasive metallic
structures as typical for tunnel gates [16].

Figure 5. RFID Smart Gates installed at two entrances of the Tassignano warehouse.

The forklifts are equipped with two OMNI-ID EXO 2000 on-metal RFID tags
(https://omni-id.com/datasheet/1373, accessed on 26 May 2021) to be identified by the
gate. One tag is placed on the forklift upright at a height of 2.6 m (Figure 6a), while the
second tag is placed on the forklift roof at a height of 2.2 m (Figure 6b) for redundancy
purposes.

https://www.caenrfid.com/it/products/wantennax019/
https://www.caenrfid.com/it/products/wantennax019/
https://pdf.directindustry.com/pdf/caen-rfid/wantennax007/113435-366469.html
https://pdf.directindustry.com/pdf/caen-rfid/wantennax007/113435-366469.html
https://omni-id.com/datasheet/1373
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(a) (b)

Figure 6. RFID tags placed on the forklift. (a) Tag placed on the upright, and (b) tag placed on the
forklift top.

Two photocell barrier sensors SICK WTT12L-B2561 are placed in proximity of the
gates to evaluate the performance of the phase-based action classification method and to
get an estimate of the forklift speed v. A picture of the photocells is in Figure 7.

Figure 7. Photocells installed at one of the UHF-RFID Smart Gates.

3.3. Signal Model

The phase-based action classification method proposed here enables a smart-gate
operation with a single antenna to determine the moving direction of the forklift crossing
the gate. When the reader interrogates a tag, the latter backscatters the impinging signal,
thus enabling the reader to measure a phase proportional to the distance between the
reader and the tag. When the tagged forklift crosses the gate, the reader antenna performs
several queries of the moving tag and measures the phase of the signal at different time
steps tn, being n ∈ {0, ..., NR − 1} and NR the number of successful queries of the tag
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during the vehicle crossing. To be more precise, the phase of the signal measured by the
reader at time tn can be resumed as:

φ(tn) = mod
(−4πd(tn)

λ
+ φ0(θR, ψR, θT , ψT , tn) + φm(tn)

)
2π

(1)

where d(tn) is the distance between the tag and the reader at time tn, λ is the carrier
wavelength in free-space, φ0(θR, ψR, θT , ψT , tn) is the phase bias caused by reader and tag
antennas and by the electrical circuitry, where θR and ψR are the elevation and azimuth
angle at time tn, respectively, at the reader antenna side, and θT and ψT are the elevation and
azimuth angle at time tn, respectively, at the tag antenna side. φm(tn) is the contribution to
the phase caused by multipath phenomena at time tn. The distance d(tn) is defined as:

d(tn) = ‖pant − ptag(tn)‖ (2)

where pant is the vector [xant, yant, zant]T ∈ R3 of the reader antenna location, and ptag(tn)
is the vector [xtag(tn), ytag(tn), ztag(tn)]T ∈ R3 of the tag trajectory sample at time tn.

The value of φ0(θR, ψR, θT , ψT , tn) is defined as:

φ0(θR, ψR, θT , ψT , tn) = φTX(θR, ψR, tn) + φRX(θR, ψR, tn) + φtag(θT , ψT , tn) (3)

where φTX and φRX are the phase offsets caused by the transmitting and receiving circuitry
of the reader, and φtag is a phase offset that depends on the tag itself and may be different
even among tags of the same model. The φ0(θR, ψR, θT , ψT , tn) term is almost constant over
consecutive tag query responses within the reader antenna’s main beam, and it will be
indicated in the rest of the paper as φ0.

To overcome the problem of the phase 2π−ambiguity, we can perform phase unwrap-
ping [40]:

φu(tn) =
−4πd(tn)

λ
+ φ0 + φm(tn) (4)

To correctly execute the phase unwrapping, consecutive phase samples must not differ
more than π. If we consider the value of φm(tn)− φm(tn−1) ≈ 0, meaning that the phase
difference caused by the multipath between consecutive time steps is negligible, only the
condition d(tn)− d(tn−1) < λ/4 must be satisfied. This fact is a direct consequence of
the Nyquist–Shannon Sampling Theorem, which states the condition for which a signal is
sampled without aliasing. Further considerations on the topic applied to the RFID field can
be found in [41,42]. As it will be discussed later, a relatively high forklift speed or a poor
RFID reader sampling rate may both lead to errors during the phase unwrapping process
and, therefore, to classification errors.

Now, for the sake of simplicity, the value of φu(tn) is normalized by the first sample
acquired at n = 0. We represent the normalized unwrapped phase with φn(tn):

φn(tn) =
−4π∆d(tn)

λ
+ ∆φm(tn) (5)

where ∆d(tn) = d(tn)− d(t0), and ∆φm(tn) = φm(tn)− φm(t0).

3.4. RFID Gate with Antenna in Symmetrical Configuration

By referring to Figure 8, we consider a bi-dimensional scenario in which the forklift
moves mainly along the x-axis with a constant speed v; such a hypothesis is plausible in a
few-second interval, when considering the forklift weight and inertia. When the forklift
performs an IN action, it moves towards the positive direction of the x-axis with positive
speed, whereas when performing an OUT action, it moves towards the negative direction
with a negative speed. The tag is placed on the forklift top, at a height htag. The gate
antenna is placed in [xant, yant, zant]T = [0, 0, hant]T , and it is facing the floor in such a way
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that its coverage area is symmetrical in the xy-plane with respect to the z-axis. The coverage
area on the tag plane is determined by the antenna HPBW through the following equation:

l = ∆h arctan(HPBW/2) (6)

where ∆h is the height difference between the antenna and the tag: ∆h = hant − htag. This
means that the tag is detectable when the forklift is inside the region |x| < l.

z

x

IN

RFID 

Antenna

No-reading 

zone
Reading 

zone

Outside the warehouse Inside the warehouse

No-reading 

zone

OUT

HPBW

Smart

Forklift

RFID 

tag

𝑣
ℎ𝑡𝑎𝑔

ℎ𝑎𝑛𝑡 𝑙 𝑙

Figure 8. Sketch of the symmetrical configuration of the RFID Smart Gate.

Let us suppose the forklift is performing an IN action. The time variation of the
x-coordinate is:

x(t) = −l + vt (7)

being t ≥ 0. By considering a constant sampling time T, the acquisition time steps tn can be
written as tn = nT. By denoting x[n] = x(tn) = x(nT), we can also derive the normalized
unwrapped phase sequence φn[n] with (4) as follows:

φn[n] =
−4π

λ

(√
(−l + vnT)2 + ∆h2 −

√
(−l)2 + ∆h2

)
(8)

where we neglected the effect of the multipath for simplicity. Let us consider an RFID gate
operating at the frequency f = 865.7 MHz. The unwrapped normalized phase φn[n], is
depicted in Figure 9 when l = 3 m, v = 2 m/s, ∆h = 2.5 m, and T = 50 ms, for both IN
and OUT actions. As expected, during an IN action, the normalized unwrapped phase
decreases when the forklift (tag) is approaching the antenna in the region x ≤ 0, while it
increases once the forklift (tag) has crossed the gate and gets further from the antenna in
the region x > 0. For the OUT action, instead, the normalized unwrapped phase decreases
when the forklift (tag) is approaching the antenna in the region x ≥ 0, and increases once
the forklift (tag) has crossed the gate and gets further from the antenna in the region x ≤ 0.
It appears straightforward that the time behavior of φn[n] is the same for both IN and
OUT actions, as the antenna coverage area is symmetrical. Therefore, it is not possible to
discriminate between the two actions by using this gate configuration.
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Figure 9. Time behavior of the unwrapped normalized phase in the symmetrical configuration of
the RFID Smart Gate for the following system parameters: f = 865.7 MHz, l = 3 m, v = 2 m/s,
∆h = 2.5 m, and T = 50 ms.

3.5. RFID Gate with Asymmetrical Antenna Deployment and Action Classification Method

To make the φn[n] time behavior different between the two actions, IN and OUT, and
to allow correct action discrimination, the reader antenna is tilted of an angle θ with respect
to the vertical axis (z-axis) to make it point towards the inside of the warehouse in such
a way that the reader cannot detect tags outside the room, as shown in Figure 10. Let
us suppose that the antenna is pointed in such a way that it can only detect tags within
the region l1 ≤ x ≤ l2, with l1 and l2 real positive values and l1 < l2. When the forklift
performs an IN action, the tag will be detected only when it is getting further from the
antenna, so the φn[n] will be a decreasing function. On the other hand, when the forklift
performs an OUT action, the tag will be detected only when it is getting closer to the
antenna, so the φn[n] will be an increasing function. The time behavior of φn[n] for IN (blue
circular markers) and OUT (red squared markers) actions is depicted in Figure 11 when
l1 = 1 m, l2 = 4 m, v = 2 m/s, ∆h = 2.5 m, and T = 50 ms. These results confirm that the
asymmetrical configuration of the gate antenna guarantees the capability of recognizing
the IN and OUT actions, without requiring additional antennas or sensors.

z
θ

x

IN OUT

RFID 

Antenna

No-reading 

zone
Reading 

zone

Tilt angle

HPBW

Outside the warehouse Inside the warehouse

Smart

Forklift

RFID 

tag

ℎ𝑡𝑎𝑔ℎ𝑎𝑛𝑡 𝑙1

𝑙2

𝑣

Figure 10. Sketch of the asymmetrical gate.
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Figure 11. Time behavior of the normalized unwrapped phase in the asymmetrical antenna de-
ployment for IN and OUT actions by varying the speed v when the parameters are the following:
f = 865.7 MHz, l1 = 1 m, l2 = 4 m, ∆h = 2.5 m, and T = 50 ms.

The classification algorithm is straightforward. If the measured φn[n] is a decreasing
function, the estimated action is IN; otherwise, the estimated action is OUT. To do that,
we first interpolate the measured curve with a first-order polynomial function. Then, we
calculate the slope coefficient m and execute the following decision criterion:{

Classified action: IN if m ≤ 0,
Classified action: OUT if m > 0

(9)

As already said, to operate correctly, this algorithm must rely on a correct phase
unwrapping of the measured phase. When the forklift speed increases, the average spatial
sampling may be greater than λ/4. This effect makes the Nyquist sampling condition not
satisfied, and the slope of the normalized unwrapped phase may change at some points.
By leaving all the other parameters unchanged, Figure 11 also shows the normalized
unwrapped phase for the forklift speed v = 3 m/s, instead of v = 2 m/s. The aforemen-
tioned slope change is strongly evident for both the IN (green diamond markers) and OUT
(black triangle markers) actions. This means that, on the basis of the forklift speed, the
estimation of the curve slope m could fail by leading to a possible classification error. As a
consequence, the reader queries have to be sent with a time interval able to guarantee the
Nyquist sampling condition by knowing the maximum allowed speed for the forklift.

As we will see in the next section, the influence of the environment can also introduce
errors in the classification method.

Moreover, static tagged forklifts or pallet tags nearby the gates can be filtered out from
the classification method, as their measured phase is almost constant. An advantage of this
algorithm is the low-effort computational burden which allows the method implementation
on low-power computers, as it will be shown in the next section. Alternatively, the method
can be directly executed on an RFID reader dedicated PC if this is present. Another solution
is to transmit the data on an external PC that controls all the RFID Smart Gates of the
warehouse, as was done in this proof of concept.

4. Experimental Analysis
4.1. Experimental Results

Figure 12a,b shows an example of a successful and unsuccessful IN classification,
respectively. As apparent in Figure 12b, the unwrapping fails by causing a wrong sign
estimation of the slope coefficient m. Similarly, Figure 12c,d shows an example of a
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successful and unsuccessful OUT classification. In such a case, the slope coefficient m of
Figure 12d is wrongly estimated as negative. Table 1 resumes the principal features of the
showed curves in terms of the number of samples NR, time duration of the crossing action
Td, forklift speed v, average sampling time ∆T , average spatial sampling ∆S and measured
slope m.

There are multiple causes of unsuccessful classification, mainly related to a failed
phase unwrapping in industrial scenarios. First of all, the multipath phenomena can
introduce strong and unpredictable contributions on the phase variation φn[n]. Second,
the presence of multiple tags close to the gate demanding for the communication channel
may slow the forklift-tag reading rate. Finally, the speed of the forklifts, which can move
up to 3.5 m/s, may cause a poor sampling of the phase curve and consequently a wrong
phase unwrapping.

(a) (b)

(c) (d)

Figure 12. Examples of measured normalized unwrapped phase φn[n]. (a) Successful IN classification,
(b) wrong IN classification, (c) successful OUT classification, (d) wrong OUT classification.

Table 1. Main features of the trials represented in Figure 12.

Trial NR Td (s) v (m/s) ∆T (ms) ∆S (cm) m (rad/s)

Successful IN 85 3.7 1.57 44 7 −13.28

Wrong IN 72 3.3 0.98 46 4.5 0.1063

Successful OUT 114 9.1 0.49 80 3.3 0.62

Wrong OUT 76 5.7 0.77 74 5.7 −0.97

To better understand the effect of the forklift speed v and evaluate the classification
accuracy, an experimental campaign was conducted. We analyzed a total of NT = 264
trials acquired from the gate placed at the production line end during the regular forklift
operations. The number of recorded IN and OUT actions is NIN = 164 and NOUT = 100,
respectively. The reason for such difference is due to the exclusion from the experimental
analysis of all the cases where the optical barrier sensors failed, so it was not possible to
determine the forklift speed and recognize the ground truth of the forklift passage. In
100% of the cases, at least one of the two tags placed on the forklift was detected by the CP
antenna at least once.

The classification accuracy computed for different ranges of the forklift speed v is
shown in Figure 13. The overall action classification accuracy of the method is 92% but
reaches a maximum value of 97–98% when the forklift travels at a speed between 0.5 m/s.
and 1.5 m/s. It is apparent that, when the forklift overpasses the speed of 1.5 m/s, the
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accuracy of the action classification method decreases as the phase unwrapping fails. On
the other hand, a low forklift speed can be detrimental too, since the phase slope could be
too close to zero, making the action classification less reliable. This effect is apparent in
Figure 13 for v < 0.5 m/s.

Figure 13. Classification accuracy vs. forklift speed v.

The number of tag readings is a crucial parameter for the success of the classification
algorithm. Therefore, the average number of samples with respect to the forklift speed is
also reported (Figure 14). As expected, the number of available readings decreases with
the increase of the forklift speed. However, thanks to the proper reader configuration, the
average number of readings never goes under 45 for v < 3 m/s. When this cannot be
guaranteed, ad-hoc interpolation techniques could be adopted.

Figure 14. Average number of samples vs. forklift speed v.

Finally, to demonstrate the low computational burden of the proposed method, the
elaboration time of the NT = 264 trials has been depicted in Figure 15. The analysis was
conducted on a laptop with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz and 16 GB
RAM, showing a mean elaboration time of 0.13 ms with a standard deviation of 0.05 ms.
The case totality required less than 1 ms to be processed. Such a time is negligible with
respect to the acquisition time, which depends on the forklift speed and can be in the order
of 1–2 s. Therefore, we can conclude that the computational burden of the algorithm is not
an issue at all.



Sensors 2021, 21, 5183 15 of 20

Figure 15. Histogram of the processing time (ms) for the NT = 264 analyzed trials.

4.2. Discussion

A discussion on possible alternatives to this algorithm must be conducted. As reported
in [25], it is possible to measure the radial speed vr of a tag with respect to the reader
antenna through the acquisition of the Doppler frequency shift. Indeed, the tag radial
speed measurements in the asymmetrical antenna deployment can be profitably used for
the forklift action classification similarly to (9). To obtain reliable Doppler frequency shift
data, the reader manufacturer suggests to configure the Impinj Speedway R420 reader
to low reading-rate modes [43]. In such way, the duration of the RFID signal packets is
longer; therefore, the Doppler frequency shift is easier to be measured. However, such a
condition does not fit with our need to have fast readings to ensure both the forklift and
the goods detection and to satisfy the Nyquist–Shannon Sampling Theorem. Therefore,
during the tests, we had to configure the reader to a fast reading-rate mode, so the Doppler
frequency shift measurements were affected by severe detrimental noise. Consequently,
the here proposed signal processing Equation (9) resulted in a more robust, reliable and
accurate action classification method. Additionally, the fast-rate reader configuration
allows minimizing the number of cases where the Sampling Theorem is not met and
phase unwrapping fails. Another aspect that must be considered is the Doppler shift
∆ f = 2 f vr/c, when the forklift travels at high speed, e.g., v = 3 m/s, ∆ f < 17.31 Hz.
Given that the bandwidth for a single RFID channel in the ETSI European lower band
is 200 kHz [44], such ∆ f can be considered negligible and difficult to measure. Finally,
the proposed method does not require any preliminary system calibrations, and can be
implemented with COTS devices.

4.3. Comparison with the State-of-the-Art

Each state-of-the-art solution presented in Section 2 requires a different and custom
architecture, so it is difficult to make a fair comparison by evaluating the classification
performance of other pre-existing solutions directly on-site with the same antenna config-
uration and dataset. In any case, we can compare the proposed system with the others
analyzed in Section 2 in terms of cost, encumbrance, and scalability. The cost of a COTS
RFID system at the UHF-RFID band is mainly determined by the RFID reader, which
may reach more than 1000$ (USD). Each RFID antenna costs around 100–200$ (USD) and,
therefore, can be a significant cost for solutions requiring multiple antennas. The cost of a
passive RFID tag can be considered negligible for small volumes of goods, as RFID inlay
labels usually cost less than 0.1$ (USD). Some passive RFID tags designed for metallic
surfaces can cost around 10–20$ (USD) each, but there are many models that can be bought
for less than 5$. Battery-Assisted Passive (BAP), active, or sensor-equipped tags can reach a
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cost of 30$, but they are usually not necessary. Metallic supports or shields shall be included
in the total cost of the system, and therefore, it turns out that shielded gates [16,18] are quite
expensive solutions due to the large infrastructure required. The encumbrance is relative to
the global volume occupied by the hardware needed to implement the gate, which could
be very significant in the case of shielded gates. Cost and encumbrance together usually
impact the scalability of the solution since a high cost, or alternatively, a high encumbrance,
makes the solution less replicable inside the plant, factory, or warehouse. The scalability
of a solution is also determined by the time required for the installation process. For
instance, mounting several antennas at the ceiling, mounting several shielded gates, or
installing several photocells or ultrasound barriers in addition to the RFID hardware could
be a time-consuming operation, which must be considered as a significant cost. Finally,
solutions based on a machine learning classification algorithm could require a supervised
training process, which can be difficult to achieve in a short time, and huge amounts of
data have to be collected in several operating conditions.

As summarized in Table 2, the solutions based on shielded gates [16,18] have been
considered as “High Cost”, “High Encumbrance” and “Low Scalability” due to the cost
of the metal shields, their volume, and the installation complexity. On the other hand,
shielded gates are the best options to filter out false positive readings.

By referring to [19], we opted for “Medium–High Cost”, “Medium–High Encum-
brance”, and “Low–Medium scalability”. Indeed, the proposed solution requires antennas
aggregated in panels. The cost and the encumbrance are lower than the shielded gates,
but the cost of the antenna panel is not negligible and must be considered when taking
into account the system scalability. The systems proposed in [22–24] have been evaluated
as “Low–Medium Cost”, “Low–Medium Encumbrance” and “Medium–High Scalability”.
Indeed, the three systems require two antennas, which increase the cost with respect to
solutions with a single antenna, and the encumbrance cannot be considered as “low”, too,
as it is required to find enough space for two antennas. On the other hand, the installation
of two antennas is indeed a fast process, and therefore, the scalability of the solutions is
good. The solutions in [26,28] are based on phase processing, such as the one presented in
this paper, and also require a single antenna. Therefore, they are classified as “Low Cost”,
“Low Encumbrance”, and “High Scalability” [33] as they still rely on a single antenna,
but the scalability is considered “Medium” as the proposed solution is based on a neural
network classifier, which requires a time-consuming training stage. Following the same
reasoning, the two solutions exposed in [37,38], both based on neural networks classifiers,
are considered “Medium Scalability” solutions. In this case, however, the presence of the
reference RFID tags on the ground makes the encumbrance of the solution higher with
respect to solutions that do not require reference tags. Finally, the solution proposed in this
paper is considered “Low Cost”, “Low Encumbrance” and “High Scalability”, as it needs
a single antenna and does not require any calibration stages at the installation time. In
comparison with the solutions of the same category in terms of cost, encumbrance, and scal-
ability, e.g., [28], the proposed solution is designed to work in more complex environments
with respect to the conveyor belt, where the speed of the RFID tags is known in advance,
and the tag motion is constrained along assigned paths. Reference [26] is indeed a solution
with low cost, low encumbrance and high scalability, but the proposed method has been
evaluated only in a laboratory/office environment, whereas the solution proposed in this
paper has been verified in a real industrial environment during regular work activities.
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Table 2. Comparison of the proposed solution with the state-of-the-art.

Reference Cost Encumbrance Scalability Architecture

[16] High High Low Shielded Gate

[18] High High Low Shielded Gate

[19] Medium–High Medium–High Low–Medium Antenna Panels

[22] Low–Medium Low–Medium Medium–High One reader and two antennas

[23] Low–Medium Low–Medium Medium–High One reader and two antennas

[24] Low–Medium Low–Medium Medium–High One reader and two antennas

[26] Low Low High One reader and one antenna

[28] Low Low High One reader and one antenna

[33] Low Low Medium One reader and one antenna

[37] Low Low–Medium Medium One reader, one antenna, reference tags

[38] Low Low–Medium Medium One reader, one antenna, reference tags

This paper Low Low High One reader and one antenna

5. Conclusions

This paper presented an effective implementation of a UHF-RFID Smart Gate, a
fixed identification point placed at warehouse key points for forklift monitoring. Each
Smart Gate implements an action classification method that exploits the phase of the
backscattering RFID signal to determine the gate crossing direction of the forklifts with
respect to the gate. Thanks to an asymmetrical deployment of the reader antenna and
the phase acquisition of the signal exchanged by the fixed reader antenna and tags on
the forklifts, a scalable and low-cost solution exploiting only one antenna can be used
for each gate, with no additional sensors. Performance and method capabilities were
investigated through an experimental demonstrator installed in a real warehouse. Data
were gathered during the regular operations of the workers. In 100% of cases, the forklift
was detected by the RFID gate, and a 98% classification accuracy was achieved when the
forklift speed ranged between 0.5 m/s and 1.5 m/s. The accuracy decreases for higher
speeds. The proposed method requires short computational time and is therefore suitable
for the real-time monitoring of the forklift crossings. For future developments, artificial
intelligence techniques will be designed and evaluated to improve classification accuracy
even when forklifts are moving at higher speeds.
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Abbreviations
BC Block Chain
COTS commercial-off-the-shelf
CP Circular Polarization
CPS Cyber-Physical System
CV Computer Vision
EPC Electronic Product Code
HPBW Half-Power Beamwidth
IoT Internet of Things
LGV Laser-Guided Vehicle
LP Linear Polarization
LSTM Long Short-Term Memory
NFC Near-Field Communication
NN neural networks
RFID Radio Frequency IDentification
RNN Recurrent Neural Network
RSSI Received Signal Strength Indicator
SSCC Serial Shipping Container Code
UHF Ultra-High Frequency
WMS Warehouse Management System
WSN Wireless Sensor Networks

References
1. Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE

Access 2018, 6, 78238–78259. [CrossRef]
2. Kim, B.H.; Cho, J.H. A Study on Modular Smart Plant Factory Using Morphological Image Processing. Electronics 2020, 9, 1661.

[CrossRef]
3. Piardi, L.; Kalempa, V.C.; Limeira, M.; de Oliveira, A.S.; Leitão, P. ARENA—Augmented Reality to Enhanced Experimentation in

Smart Warehouses. Sensors 2019, 19, 4308. [CrossRef] [PubMed]
4. Liu, X.; Cao, J.; Yang, Y.; Jiang, S. CPS-Based Smart Warehouse for Industry 4.0: A Survey of the Underlying Technologies.

Computers 2018, 7, 13. [CrossRef]
5. Saldivar, A.A.F.; Li, Y.; Chen, W.; Zhan, Z.; Zhang, J.; Chen, L.Y. Industry 4.0 with cyber-physical integration: A design and

manufacture perspective. In Proceedings of the 2015 21st International Conference on Automation and Computing (ICAC),
Glasgow, UK, 11–12 September 2015; pp. 1–6. [CrossRef]

6. Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015
12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015;
pp. 2147–2152. [CrossRef]

7. Ponis, S.T.; Efthymiou, O.K. Cloud and IoT Applications in Material Handling Automation and Intralogistics. Logistics 2020, 4,
22. [CrossRef]

8. Cao, Z.; Chen, P.; Ma, Z.; Li, S.; Gao, X.; Wu, R.X.; Pan, L.; Shi, Y. Near-Field Communication Sensors. Sensors 2019, 19, 3947.
[CrossRef] [PubMed]

9. Farsi, M.; Latsou, C.; Erkoyuncu, J.A.; Morris, G. RFID Application in a Multi-Agent Cyber Physical Manufacturing System. J.
Manuf. Mater. Process. 2020, 4, 103. [CrossRef]

10. Lin, C.; Deng, D.; Chen, Z.; Chen, K. Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in
group-based industrial wireless sensor networks. IEEE Commun. Mag. 2016, 54, 46–52. [CrossRef]

11. Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse:
A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management.
Sensors 2019, 19, 2394. [CrossRef] [PubMed]

12. Nepa, P.; Motroni, A.; Congi, A.; Ferro, E.M.; Pesi, M.; Giorgi, G.; Buffi, A.; Lazzarotti, M.; Bellucci, J.; Galigani, S.; et al. I-READ
4.0: Internet-of-READers for an efficient asset management in large warehouses with high stock rotation index. In Proceedings
of the 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12
September 2019; pp. 67–72. [CrossRef]

13. Toivonen, A.S. Identifying and Controlling Stray Reads at RFID Gates. Master’s Thesis, Aalto University, Espoo, Finland,
February 2012.

14. Radio-Frequency Identity Protocols Generation-2 UHF RFID, GS1 Regulation. p. 152. Available online: https://www.gs1.org/
sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf (accessed on 26 May 2021).

15. Larionov, A.A.; Ivanov, R.E.; Vishnevsky, V.M. UHF RFID in Automatic Vehicle Identification: Analysis and Simulation. IEEE J.
Radio Freq. Identif. 2017, 1, 3–12. [CrossRef]

http://doi.org/10.1109/ACCESS.2018.2884906
http://dx.doi.org/10.3390/electronics9101661
http://dx.doi.org/10.3390/s19194308
http://www.ncbi.nlm.nih.gov/pubmed/31590295
http://dx.doi.org/10.3390/computers7010013
http://dx.doi.org/10.1109/IConAC.2015.7313954
http://dx.doi.org/10.1109/FSKD.2015.7382284
http://dx.doi.org/10.3390/logistics4030022
http://dx.doi.org/10.3390/s19183947
http://www.ncbi.nlm.nih.gov/pubmed/31547400
http://dx.doi.org/10.3390/jmmp4040103
http://dx.doi.org/10.1109/MCOM.2016.7588228
http://dx.doi.org/10.3390/s19102394
http://www.ncbi.nlm.nih.gov/pubmed/31130644
http://dx.doi.org/10.1109/RTSI.2019.8895574
https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
http://dx.doi.org/10.1109/JRFID.2017.2751592


Sensors 2021, 21, 5183 19 of 20

16. Stine, R.J.; Markman, H.L.; Markman, J.E. Shielded Portal for Multi-Reading RFID Tags Affixed to Articles. Patent US9760826B1,
12 September 2017.

17. Shao, S.; Burkholder, R.J. Item-Level RFID Tag Location Sensing Utilizing Reader Antenna Spatial Diversity. IEEE Sens. J. 2013,
13, 3767–3774. [CrossRef]

18. Keller, T.; Thiesse, F.; Kungl, J.; Fleisch, E. Using low-level reader data to detect false-positive RFID tag reads. In Proceedings of
the 2010 Internet of Things (IOT), Tokyo, Japan, 29 November–1 December 2010; pp. 1–8. [CrossRef]

19. Keller, T.; Thiesse, F.; Ilic, A.; Fleisch, E. Decreasing false-positive RFID tag reads by improved portal antenna setups. In
Proceedings of the 2012 3rd IEEE International Conference on the Internet of Things, Wuxi, China, 24–26 October 2012; pp. 99–106.
[CrossRef]

20. Morin, R.B. Method and system for controlling the traffic flow through an RFID directional portal. Patent US8487747B2, 16 July
2013.

21. Goller, M.; Brandner, M.; Brasseur, G. A System Model for Cooperative RFID Readpoints. IEEE Trans. Instrum. Meas. 2014,
63, 2480–2487. [CrossRef]

22. Oikawa, Y. Simulation evaluation of tag movement direction estimation methods in RFID gate systems. In Proceedings of the
2012 IEEE Radio and Wireless Symposium, Santa Clara, CA, USA, 15–18 January 2012; pp. 331–334. [CrossRef]

23. Jian, Y.; Wei, Y.; Zhang, Y. Estimating the direction of motion based on active RFID. In Proceedings of the 5th International
Conference on New Trends in Information Science and Service Science, Macao, China, 24–26 October 2011; Volume 2, pp. 286–290.

24. Wu, J.; Zhu, M.; Xiao, B.; He, W. RFID Based Motion Direction Estimation in Gate Systems. In Proceedings of the 2018 IEEE
22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanjing, China, 9–11 May 2018;
pp. 588–593. [CrossRef]

25. Nikitin, P.V.; Martinez, R.; Ramamurthy, S.; Leland, H.; Spiess, G.; Rao, K.V.S. Phase based spatial identification of UHF RFID
tags. In Proceedings of the 2010 IEEE International Conference on RFID (IEEE RFID 2010), Orlando, FL, USA, 14–16 April 2010;
pp. 102–109. [CrossRef]

26. Buffi, A.; Tellini, B.; Motroni, A.; Nepa, P. A Phase-based Method for UHF RFID Gate Access Control. In Proceedings of the 2019
IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 131–135.
[CrossRef]

27. Nikitin, P.V.; Spiess, G.N.; Leland, H.M.; Hingst, L.C.; Sherman, J.H. Utilization of Motion and Spatial Identification in Mobile
RFID Interrogator. Patent US9047522B1, 2 June 2015.

28. Buffi, A.; Nepa, P. The SARFID Technique for Discriminating Tagged Items Moving through a UHF-RFID Gate. IEEE Sens. J.
2017, 17, 2863–2870. [CrossRef]

29. Zhang, Y.; Amin, M.G.; Kaushik, S. Localization and Tracking of Passive RFID Tags Based on Direction Estimation. Int. J.
Antennas Propag. 2007, 2007, e17426. [CrossRef]

30. Tesch, D.A.; Berz, E.L.; Hessel, F.P. RFID indoor localization based on Doppler effect. In Proceedings of the Sixteenth International
Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015; pp. 556–560. [CrossRef]

31. Geigl, F.; Moik, C.; Hinteregger, S.; Goller, M.; GmbH, D. Using Machine Learning and RFID Localization for Advanced Logistic
Applications. In Proceedings of the 2017 IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017;

32. Hauser, M.; Griebel, M.; Thiesse, F. A hidden Markov model for distinguishing between RFID-tagged objects in adjacent areas.
In Proceedings of the 2017 IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017; pp. 167–173. [CrossRef]

33. Buffi, A.; D’Andrea, E.; Lazzerini, B.; Nepa, P. UHF-RFID smart gate: Tag action classifier by artificial neural networks. In
Proceedings of the 2017 IEEE International Conference on RFID Technology Application (RFID-TA), Warsaw, Poland, 20–22
September 2017; pp. 45–50. [CrossRef]

34. Alfian, G.; Syafrudin, M.; Yoon, B.; Rhee, J. False Positive RFID Detection Using Classification Models. Appl. Sci. 2019, 9, 1154.
[CrossRef]

35. Ma, H.; Wang, Y.; Wang, K. Automatic detection of false positive RFID readings using machine learning algorithms. Expert Syst.
Appl. 2018, 91, 442–451. [CrossRef]

36. Eckstein, E.; Mazoki, G.T.; Richie, W.S., Jr. Article Identification and Tracking Using Electronic Shadows Created by RFID Tags.
Patent US7081818B2, 25 July 2006.

37. Alvarez-Narciandi, G.; Motroni, A.; Pino, M.R.; Buffi, A.; Nepa, P. A UHF-RFID Gate Control System Based on a Recurrent
Neural Network. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2330–2334. [CrossRef]

38. Álvarez Narciandi, G.; Motroni, A.; Pino, M.R.; Buffi, A.; Nepa, P. A UHF-RFID gate control system based on a Convolutional
Neural Network. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA),
Pisa, Italy, 25–27 September 2019; pp. 353–356. [CrossRef]

39. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
40. Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote. Sens. 1998,

36, 813–821. [CrossRef]
41. Buffi, A.; Nepa, P.; Lombardini, F. A Phase-Based Technique for Localization of UHF-RFID Tags Moving on a Conveyor Belt:

Performance Analysis and Test-Case Measurements. IEEE Sens. J. 2015, 15, 387–396. [CrossRef]
42. Miesen, R.; Kirsch, F.; Vossiek, M. UHF RFID Localization Based on Synthetic Apertures. IEEE Trans. Autom. Sci. Eng. 2013,

10, 807–815. [CrossRef]

http://dx.doi.org/10.1109/JSEN.2013.2272216
http://dx.doi.org/10.1109/IOT.2010.5678439
http://dx.doi.org/10.1109/IOT.2012.6402310
http://dx.doi.org/10.1109/TIM.2014.2310639
http://dx.doi.org/10.1109/RWS.2012.6175340
http://dx.doi.org/10.1109/CSCWD.2018.8465374
http://dx.doi.org/10.1109/RFID.2010.5467253
http://dx.doi.org/10.1109/RFID-TA.2019.8892120
http://dx.doi.org/10.1109/JSEN.2017.2680247
http://dx.doi.org/10.1155/2007/17426
http://dx.doi.org/10.1109/ISQED.2015.7085487
http://dx.doi.org/10.1109/RFID.2017.7945604
http://dx.doi.org/10.1109/RFID-TA.2017.8098900
http://dx.doi.org/10.3390/app9061154
http://dx.doi.org/10.1016/j.eswa.2017.09.021
http://dx.doi.org/10.1109/LAWP.2019.2929416
http://dx.doi.org/10.1109/RFID-TA.2019.8892080
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/36.673674
http://dx.doi.org/10.1109/JSEN.2014.2344713
http://dx.doi.org/10.1109/TASE.2012.2224656


Sensors 2021, 21, 5183 20 of 20

43. Application Note-Low Level User Data Support. Available online: https://support.impinj.com/hc/en-us/articles/202755318-
Application-Note-Low-Level-User-Data-Support (accessed on 12 June 2021)

44. Radio Frequency Identification Equipment Operating in Theband 865 MHz to 868 MHz with Power Levels up to 2 W and in the
Band 915 MHz to 921 MHz with Power Levels up to 4 W Harmonised Standard for Access to Radio Spectrum, ETSI ETSI EN 302
208 V3.2.0. Available online: https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/en_302208v030200a.pdf
(accessed on 18 June 2021).

https://support.impinj.com/hc/en-us/articles/202755318-Application-Note-Low-Level-User-Data-Support
https://support.impinj.com/hc/en-us/articles/202755318-Application-Note-Low-Level-User-Data-Support
https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/en_302208v030200a.pdf

	Introduction
	RFID Gates
	Materials and Methods
	The I-READ4.0 System Architecture
	The UHF-RFID Smart Gate
	Signal Model
	RFID Gate with Antenna in Symmetrical Configuration
	RFID Gate with Asymmetrical Antenna Deployment and Action Classification Method

	Experimental Analysis
	Experimental Results
	Discussion
	Comparison with the State-of-the-Art

	Conclusions
	References

