
Software/Web server Article

PENGUIN: A rapid and efficient image preprocessing tool for multiplexed
spatial proteomics

A.M. Sequeira a,b, M.E. Ijsselsteijn b, M. Rocha a, Noel F.C.C. de Miranda b,*

a Department of Informatics, School of Engineering, University of Minho, Braga, Portugal
b Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands

A R T I C L E I N F O

Keywords:
Multiplex imaging
Immunophenotyping
Denoising
Normalization
Background subtraction
Spatial omics

A B S T R A C T

Multiplex spatial proteomic methodologies can provide a unique perspective on the molecular and cellular
composition of complex biological systems. Several challenges are associated to the analysis of imaging data,
specifically in regard to the normalization of signal-to-noise ratios across images and subtracting background
noise. However, there is a lack of user-friendly solutions for denoising multiplex imaging data that can be applied
to large datasets. We have developed PENGUIN –Percentile Normalization GUI Image deNoising: a straightfor-
ward image preprocessing tool for multiplexed spatial proteomics data. Compared to existing approaches,
PENGUIN distinguishes itself by eliminating the need for manual annotation or machine learning models. It
effectively preserves signal intensity differences while reducing noise, improving downstream tasks such as cell
segmentation and phenotyping. PENGUIN’s simplicity, speed, and intuitive interface, available as both a script
and a Jupyter notebook, make it easy to adjust image processing parameters, providing a user-friendly experi-
ence. We further demonstrate the effectiveness of PENGUIN by comparing it to conventional image processing
techniques and solutions tailored for multiplex imaging data.

1. Introduction

In recent years, multiplexed imaging technologies have advanced
significantly, enabling spatially resolved profiling of biological samples
[1,2]. Imaging Mass Cytometry (IMC) [3] and Multiplex Ion Beam Im-
aging (MIBI) [4] make use of metal-conjugated antibodies for the
detection of proteins by means of mass spectrometry. This process in-
volves quantifying isotopic reporter masses released from tissue after the
ablation of small regions using a laser beam or ion beams. Other
antibody-based multiplex approaches, such as Co-Detection by IndEXing
(CODEX) [5], rely on fluorescent-labeled antibodies.

Despite the growing use of multidimensional proteomics spatial
technologies, the resulting data presents challenges that conventional
image analysis methods often struggle to address. A common challenge
is the presence of noise in data, which must be removed before analysis
[6]. Noise sources can vary based on the antibodies, detection channels,
and tissue types used, and may manifest as artifacts such as hot pixels or
background noise [6–8]. Additionally, some immunodetections may
exhibit weak signals and low signal-to-noise ratios [9]. Together, these
noise factors degrade image quality and complicate downstream

analyses of multiplex imaging data. Consequently, robust and reliable
denoising methods have become increasingly important as imaging
technologies are more widely applied [6].

Specifically, IMC noise includes hot pixels, shot noise and channel
crosstalk [10]. Channel crosstalk, where signals from one channel
interfere with adjacent channels, can lead to signal misidentification [6,
9]. To address this, methods like CATALYST [8] use pre-acquisition
signal compensation matrices, while post-acquisition solutions are also
available [7,11]. However, well-designed antibody panels can often
reduce the need for correction by minimizing overlap between channels
[9,10]. Hot pixels are characterized by individual pixels with signifi-
cantly higher signal intensities than their surroundings. Additionally,
small clusters of consecutive hot pixels, which do not represent biolog-
ical structures, may form due to nonspecific antibody binding, antibody
aggregates, or contamination by dust particles [7,10,12]. Shot noise,
resulting from ion counting imaging processes, is pixel-independent but
signal-dependent manifesting as random signal variations that typically
follow a Poisson distribution [10]. This means noise is more pronounced
at lower signal levels.

Hot pixels are commonly addressed using traditional image filtering

* Corresponding author.
E-mail address: n.f.de_miranda@lumc.nl (N.F.C.C. de Miranda).

Contents lists available at ScienceDirect

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

https://doi.org/10.1016/j.csbj.2024.10.048
Received 25 July 2024; Received in revised form 25 October 2024; Accepted 27 October 2024

Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

Available online 31 October 2024
2001-0370/© 2024 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:n.f.de_miranda@lumc.nl
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.10.048
https://doi.org/10.1016/j.csbj.2024.10.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.10.048&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

methods and thresholds. Researchers have also developed numerous
“homebrew” computational strategies, customized for specific projects
[11,13,14]. One notable approach, implemented in Steinbock, a Python
toolkit for processing multidimensional images, mitigates hot pixels by
comparing each pixel’s value to those of its eight surrounding neighbors.
If the difference between the pixel and any of its neighbors exceeds a
predetermined threshold, the pixel’s value is adjusted to match the
highest neighboring pixel value [15].

In addition to conventional denoising techniques, tools like Ilastik
provide supervised pixel classification, allowing for the distinction be-
tween background noise and true signal pixels for each marker [15–17].
In this approach, an experienced user trains the Ilastik Random Forest
pixel classifier by manually labeling pixels as signal or background.
Once trained, the model is applied across all images, generating a binary
expression map where non-noise pixels are assigned a value of 1. This
method has proven effective not only in removing background noise but
also in standardizing and normalizing signals across samples, thereby
reducing batch effects [17]. However, the requirement for manual
annotation across images can be labor-intensive. This manual curation
process is particularly challenging when dealing with large datasets,
making this approach less practical for large datasets.

Recently, Lu et al. [10] introduced IMC-Denoise, a two-step pipeline
that combines a Differential Intensity Map-based Restoration (DIMR)
algorithm to remove hot pixels and a self-supervised deep learning (DL)
algorithm called DeepSNiF for filtering shot noise. DeepSNiF, inspired
by the widely used Noise2Void algorithm, does not rely on pretrained
data. Instead, it trains a neural network to eliminate noise by leveraging
information from surrounding pixels within the same image, eliminating
the need for a separate, clean reference image. The process begins by
identifying hot pixels using Anscombe transformation differential maps.
Then, DeepSNiF filters shot noise by randomly masking pixels using a
stratified sampling approach. However, DL approaches like this are
often time-consuming, resource-intensive and require careful parameter
tuning.

Despite the availability of various IMC denoising methods, there is
still no consensus on the optimal approach, and the lack of a standard-
ized strategy hinders comparisons between datasets. Current methods
either require the manual identification of noisy pixels across all
markers – a time-consuming and inconsistent process – or fail to
adequately address all types of noise and nonspecific antibody signals.

In this work, we introduce PENGUIN (Percentile Normalization GUI
Image denoising), an enhanced pipeline for denoising multiplexed pro-
teomics data. PENGUIN employs scaling, thresholding, and percentile-
based filters to address various noise sources in multiplex images,
including hot pixels and shot noise. The method is fast, scalable, and
reproducible, without requiring manual pixel annotation or extensive
hardware resources. We demonstrate its effectiveness using an existing
IMC dataset, benchmarking it against current preprocessing methods
and those specifically designed for multiplex imaging data analysis.
Additionally, we show its versatility by applying PENGUIN to multiplex
immunofluorescence (IF) images, illustrating its applicability across
different imaging modalities. The tool is available on https://github.
com/deMirandaLab/PENGUIN.

2. Results

To mitigate noise in IMC images, the following considerations were
identified:

1. Hot pixels, characterized by random pixels exhibiting significantly
higher signal intensities than their surroundings, can be efficiently
addressed by filtering out sparse signals, specifically pixels that lack
neighboring signals (Supplementary Figure 1).

2. Shot noise, arising from inherent variability in photon detection, can
result in low-intensity signals in regions where no specific signal is
expected. This noise is particularly prominent in areas with weak or

no biological signal and can produce non-zero pixel values due to
random detection fluctuations (Supplementary Figure 1).

3. Noise typically occurs independently across different channels
within the same image, meaning one channel can be affected without
others being impacted. However, within a specific cohort, noise
generally follows consistent patterns across all images from the same
channel.

Based on these considerations, PENGUIN was developed to integrate
scaling, thresholding, and percentile-based filters for denoising IMC data
(Fig. 1 A). PENGUIN follows a multistep approach: 1) Images are satu-
rated at the 99th percentile to reduce the impact of extremely bright
pixels; 2) Signal intensities across each channel and image are normal-
ized to a scale from 0 to 1; 3) An adaptable threshold is applied to
remove low-intensity signals; and 4) Hot pixels are identified using
adaptable percentile filters and removed. A key feature of this strategy is
that the percentile filter is used solely for hot pixel identification,
ensuring their removal without affecting image clarity or edge defini-
tion. As a result, post-processed images maintain sharpness and edge
integrity. Additionally, the normalization of values from 0 to 1 simplifies
their direct use in subsequent analyses, such as cell segmentation.

To streamline the visualization and deployment of the preprocessing
pipeline, PENGUIN is provided as a user-friendly Jupyter notebook
(Fig. 1B). This tool allows users to directly observe how thresholds and
percentiles impact different markers, aiding in the selection of the most
suitable thresholds for each marker and image. The code for the pre-
processing pipeline is freely available, allowing users to also apply the
functions directly via scripting.

Key adjustable parameters in this pipeline include the Threshold (T)
value and the Percentile (P) value, both of which are critical to its per-
formance (Fig. 2). A higher T value removes more signal during the
initial phase of the pipeline. If a channel primarily contains background
signal, with only high-intensity values representing true signals, T
should be set high. Conversely, in channels with minimal background
noise, T can be lower or even omitted. The P parameter plays a crucial
role, with lower values (e.g., 25) being stricter, removing nearly all
sparse signals, while higher values (e.g., 75) are more lenient, allowing
more sparse signals to remain. Tailoring these parameters for each
channel is essential due to the significant variability in marker behavior.
For example, β-catenin and FOXP3 showed optimal noise reduction with
a T of 0.1 and a P of 50, while CD20 required a higher threshold of T 0.3
to effectively eliminate noise. In contrast, clear images for vimentin and
CD45 were achieved with P set at 25, without needing a threshold
setting (Fig. 2).

2.1. Comparison of available methods for IMC denoising

PENGUIN was evaluated against both traditional image denoising
techniques and IMC-specific methods using a public dataset of 39
cellular markers analyzed by IMC across 61 samples [18].

To enhance the performance of standard image denoising methods,
we applied saturation at the 99th percentile to remove bright outliers
and normalized each channel’s signal intensity between 0 and 1 [17].
We then tested a variety of classical filtering methods, including
Gaussian, mean, percentile, non-local means, bilateral, total variation,
wavelet, anisotropic diffusion, and BM3D filters (see Supplementary
Figures 1& 2). As expected, linear filters like Gaussian and mean filters
tended to blur the images, causing a loss of detail and definition in tissue
boundaries. While these filters did not directly eliminate hot pixels, they
made the pixels less noticeable by blurring them. The other classical
filters either failed to effectively reduce noise (e.g., anisotropic and
bilateral filters) or distorted the images, as seen with the non-local mean
filter, making them unsuitable for this type of data.

We also evaluated DL methods designed for denoising images
without requiring paired ground truth data, specifically Noise2Void
[19] and denoising autoencoders [20], trained for 20 or 50 epochs.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3921

https://github.com/deMirandaLab/PENGUIN
https://github.com/deMirandaLab/PENGUIN

Fig. 1. - Overview of the PENGUIN tool. (A) Overview of the PENGUIN pipeline: 1 - the original image contains noise and extreme outliers, which obscure the rest of
the signal. 2 - outliers are managed by capping values above the 99th percentile, enhancing visualization. Each channel and image are then normalized to a scale of
0 to 1. 3 - pixels with values below a selected threshold are removed. 4 - percentile filtering is applied to detect and remove noise pixels. For each central pixel, a
3 × 3 window is considered and the pixel values are sorted in ascending order. If the pixel is at the 0th percentile, it is classified as noise and set to 0; if it is above 0, it
is considered part of the signal. For example, a 50th percentile (P50) requires that 5 out of 9 pixels be positive, the 75th percentile requires 2 out of 9, and the 25th
percentile (P25) requires 7 out of 9. Depending on the characteristics of the channel, low percentile values may result in the removal of true signals, while high
percentile values may retain noise. (B) Sneak peek of the PENGUIN Jupyter notebook.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3922

Fig. 2. - Application of various percentiles (P90, P75, P50, P25, P10) and thresholds (T0.1, T0.3, T0.5 with P50) with PENGUIN were used to assess immunode-
tection of b-catenin, CD20, vimentin, CD45, and FOXP3. The optimal parameters for each marker are highlighted in green.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3923

These methods did not effectively denoise the IMC images and led to
image distortion, suggesting they may not be well-suited for this type of
data. However, it is important to note that DL models tend to perform
better with larger datasets, and as more IMC image datasets become
available, the performance of these models may improve. Additionally,
our experiments only employed a basic convolutional denoising
autoencoder, leaving room for significant optimization through
different combinations of layers, epochs, and parameters. However, DL
methods are time-intensive, requiring considerate effort for develop-
ment, tuning, and training, and often necessitate specialized hardware,
which that may not be readily accessible to all users.

Next, we applied two IMC-specific methodologies. First, we tested a
hot pixel filter [15] that uses a 3 × 3 kernel to determine if the difference
between a pixel and its maximum neighboring value exceeds a pre-
defined threshold; if so, the pixel is classified as noise and replaced with
the maximum neighbor’s value. This method was applied to both
normalized images, using thresholds ranging from 0.05 to 0.2, and raw
images with a default threshold of 50. While this approach successfully
removed some hot pixels, the processed images still contained noise, and
in some cases, real signals were lost (Supplementary Figures 1& 2).
Second, we applied IMC Denoise [10], using both the DIMR algorithm
alone and in combination with the DeepSNIF DL algorithm, following
the authors’ guidelines and default settings. The DIMR algorithm alone
proved insufficient for fully removing hot pixels. When combined with
DeepSNIF, similar issues arose as with Noise2Void, including image
distortions. As with other DL methods, the possible configurations for
IMC Denoise are virtually limitless; however, fine-tuning the optimal
parameters is a labor-intensive process. Additionally, separate models
must be trained for each channel, further complicating the imple-
mentation of this approach.

To evaluate IMC denoising performance with PENGUIN, we
employed our lab’s semi-automated background removal (SABR)

pipeline [17], which utilizes Ilastik (Fig. 3 & Supplementary Figure 4).
Given the lack of a true ground truth, we used the manually annotated
SABR-denoised dataset as a reference standard. Using this dataset, we
calculated the Peak Signal-to-Noise Ratio (PSNR), where higher values
denote reduced error, and the Structural Similarity Index (SSIM), which
ranges from − 1 to 1, with a score of 1 indicating perfect similarity
(Supplementary Figure 5). These metrics enabled a comparative analysis
of the denoising performance of raw (rescaled) and PENGUIN-denoised
images relative to the SABR dataset, our designated reference. Results
demonstrated a marked improvement in image quality over raw data,
with PENGUIN’s denoising closely aligning with the SABR-annotated
dataset. Furthermore, the signal distributions across raw, 99th percen-
tile normalized values, SABR, and PENGUIN-denoised images are pre-
sented in Supplementary Figures 6, 7, and 8. It is worth noting that SABR
denoising may occasionally result in signal loss for certain markers, as
observed with β-catenin immunodetection (Fig. 3 and Supplementary
Figure 4). By applying PENGUIN to the same image set, we observed
effective noise reduction akin to that achieved by the SABR pipeline,
with the added advantage of retaining more signal than SABR.

In summary, PENGUIN effectively eliminates noise from IMC images.
While it requires manual adjustment of thresholds and percentiles for
each channel, it does not necessitate developing specific classifiers to
differentiate between signal and noise for each marker. Additionally, the
settings are marker-dependent and often translatable between images,
making it easy to apply to new images obtained with the same antibody
panel. Unlike the Ilastik-based method, which produces binary images
indicating only the presence or absence of signals, PENGUIN generates
images with normalized values ranging from 0 to 1, capturing a range of
signal intensities. This allows for more nuanced analysis, as PENGUIN
not only retains more signal but also preserves critical details of cellular
structures.

Setting the thresholds and percentiles is straightforward, further

Fig. 3. - β-catenin, Vimentin, CD20, and CD45 immunodetection in two regions of interest, showing raw images, processed by the Ilastik-based SABR approach,
and PENGUIN.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3924

simplified by the provided notebook. Processing all 61 images per
channel took under 4 s on an Intel(R) Core(TM) i7–9700 CPU – a major
improvement over Ilastik, which requires 5 to 15 min per marker.
PENGUIN processing itself takes about 4 s per channel, with an addi-
tional 5 min for expert parameter selection. In contrast, SABR requires
approximately 10 min of algorithm training plus 5 min per channel for
processing. This highlights PENGUIN’s efficiency over both Ilastik and
SABR. Additionally, without the need for model training, PENGUIN’s
results are fully reproducible and readily accessible, offering a signifi-
cant improvement over existing methods.

2.2. PENGUIN enhances downstream analysis

After confirming the effectiveness of PENGUIN for image processing,
we evaluated its impact on downstream analysis. This included
comparing raw, unprocessed images with those corrected using the
Ilastik-based SABR method and the PENGUIN pipeline, focusing on cell
segmentation and cell phenotyping/clustering.

A key advantage of PENGUIN over previous approaches is that its
output can be directly used in cell segmentation pipelines, eliminating
the need to train an additional Ilastik model to distinguish between
membrane, nucleus, and background markers, thereby saving signifi-
cant time. Furthermore, as highlighted earlier and shown in Fig. 4,
PENGUIN’s normalization process preserves more signal and retains
important cellular features.

To compare these methods, we combined the normalized images
with their corresponding cell segmentation masks to calculate relative
marker expression per cell. Cells were then clustered using t-SNE to
identify cell subsets (Fig. 4A). Consistent with findings by Ijsselsteijn
et al. [17], normalization and background removal are crucial for
accurately identifying signals and cells, as well as normalizing
inter-sample variation in IMC data for automated downstream analysis.
Like current state-of-the-art techniques, PENGUIN adjusts for inter-
patient variability, resulting in well-defined cells and clusters. Next,
both the SABR and PENGUIN-denoised datasets were phenotyped
(Fig. 4B). PENGUIN-normalized cellular phenotypes were easily iden-
tifiable and displayed clear marker patterns, comparable to those in
SABR-normalized data. Additionally, mapping these phenotypes back
onto the images demonstrated that cellular distribution was consistent
with the original data (Fig. 4C).

2.3. PENGUIN can be applied to other image modalities

Various imaging modalities in multiplex spatial proteomics, such as
MIBI, CODEX, and multiplex IF, produce different types of images.
Encouraged by the successful outcomes of the PENGUIN pipeline, and
given that these modalities share similar limitations, we extended the
application of PENGUIN to a set of in-house generated IF images (Fig. 5).
The results demonstrated high-quality denoised images, achieved with
significantly reduced time, resources, and operator-related variability.

3. Discussion

Spatial proteomics data, such as that generated by IMC, offers unique
insights into the spatial organization of tissues, with broad applications.
However, managing signal-to-noise ratios, especially with large anti-
body panels, presents significant challenges. Therefore, effective
computational preprocessing methods are crucial to ensuring the reli-
ability of subsequent analyses [6]. While various custom algorithms
have been successful in denoising IMC data, the growing volume of data
calls for a standardized and efficient preprocessing pipeline.

In this context, we introduce PENGUIN, a denoising pipeline that
effectively processes IMC images using scaling, thresholding, and
percentile filters, yielding excellent results. We compared PENGUIN to
traditional filtering methods, DL-based approaches, and IMC-specific
solutions, demonstrating that it delivers clear, high-quality images

quickly, easily, and reproducibly. PENGUIN is available as a user-
friendly Jupyter notebook, enabling the simple adjustment of thresh-
olds and percentiles for each marker and streamlining the trans-
formation and saving of images. The core code is also available for direct
scripting.

Compared to the recently developed Ilastik-based SABR method,
PENGUIN eliminates the need for manual annotation or machine
learning model training, preserves signal intensity variations across
tissues, reduces noise, and retains more structural details. Additionally,
PENGUIN improves critical downstream tasks like cell segmentation and
phenotyping. Due to its simplicity, speed, intuitive interface, and
reproducibility, PENGUIN is a valuable tool for the analysis of IMC data
and, potentially, other multiplex imaging platforms.

4. Methods

All the tests were run in a Intel(R) Core(TM) i7–9700 CPU. The DL
models were run using a GPU Nvidia TU102 GeForce RTX 2080 Ti.

4.1. Dataset

All the results for IMC were obtained using the publicly available
cohort of 61 IMC raw images with 39 markers of colorectal cancer [18].

4.2. Denoising Methods comparison

Before application of the denoising filters, images were saturated at
the 99th percentile and normalized between 0 and 1. Raw images were
also tested, but normalization led to significant improvements in image
quality.

The following filters were applied to each channel: Gaussian filter
with sigma values of 0.7 and 1; mean filter; percentile filter with values
of 25, 50, and 75; non-local means filter using a patch size of 5, patch
distance of 11, and sigma of 0.2); bilateral filter; total variation filter
with a weight of 0.3; Wavelet filter; anisotropic diffusion filter and
BM3D filter with sigma values of 0.1, 0.2 and estimated sigma values
between these two. For parameters not explicitly specified, default set-
tings were used. Gaussian, mean, and percentile filters were imple-
mented using SciPy [21], while non-local means, bilateral, total
variation and wavelet filters were based on the scikit-image package
[22]. BM3D filtering was retrieved from its source package [23].

The hot pixel removal filter for IMC images was implemented
following Windager et al. [15], using a Scipy maximum filter with a
3 × 3 window. If the difference between the central pixel and its
maximum neighbor exceeded a defined threshold, the central pixel was
set to the value of the maximum neighbor. Thresholds ranging from 0.05
to 0.2 were applied to normalized images, while the default threshold of
50 was used for raw images.

Noise2Void was trained per channel as described by Krull et al. [19],
with 0.2 of the data used for validation. Loss was defined as MSE, with a
neighborhood radius 5 and UNET kernel size 3 for a patch size of 64.
Models were trained for 20, 50, and 100 epochs.

The convolutional autoencoder for image denoising were built as
described by Chollet et al. [20]. The encoder consisted of two consec-
utive 2D convolutional layers (32 filters, kernel size 3 ×3, ReLU acti-
vation) followed by max pooling (pool size 2 ×2). The decoder included
two transpose convolutional layers (32 filters, kernel size 3 ×3, ReLU
activation) and a final convolutional layer with 1 filter and sigmoid
activation. The Adam optimizer and binary cross-entropy loss function
were used. Training was performed for 20 or 50 epochs per channel. The
DL implementation was done using Tensorflow [24], with any unspec-
ified parameters set to default.

IMC Denoise [10] was implemented according to the instructions in
the tutorial notebook, with default parameters. IMC Denoise consists of
two steps: the DIMR algorithm and DeepSNIF. We tested both the DIMR
algorithm applied per channel (using 4 neighbors, a window size of 3,

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3925

Fig. 4. - Overview of downstream analysis. A) t-SNE plots generated from raw marker expression with SABR Ilastik-based cell masks(top), SABR Ilastik-denoised
marker expression with SABR Ilastik-based cell masks (middle), and PENGUIN-denoised marker expression and PENGUIN-based cell masks (bottom). The t-SNE
plots are colored by sample, CD3, CD8, CD103 and b-catenin expression levels. B) Dot plot showing the scaled expression of marker genes across epithelial, stromal,
immune lymphoid lineages (B cells, plasma B cells, T cells, innate lymphoid cells (ILC)) and immune myeloid lineages (dendritic cells, monocytes, macrophages, and
granulocytes) for each cell type identified using cell segmentation and marker expression from SABR and PENGUIN denoising strategies. C) Comparison of cell
segmentation and phenotype obtained using SABR and PENGUIN denoising strategies within a sample.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3926

and 3 iterations) and the combination of the DIMR algorithm followed
by the DeepSNIF, which was trained for 50 epochs.

4.3. PENGUIN implementation

PENGUIN is implemented in Python 3.10 and available as both a
code package and Jupyter notebook. For each image and channel, pixels
above the 99th percentile are capped at that value and normalized to a
scale of 0 to 1. Following this, pixels with values below a defined
threshold are removed, and a percentile filter (using a 3 ×3 window) is
applied to determine which pixels are either considered noise or signal.
The same thresholds and percentiles are applied consistently across all
images in the cohort for each channel. To demonstrate the approach, we
tested percentile values of 90, 75, 50, 25, and 10, as well as the 50th
percentile after removing pixels below thresholds of 0.1, 0.3, and 0.5.
This comparison was performed for β-catenin, CD20, vimentin, CD45,
and FOXP3, given their importance as markers and varying signal dis-
tributions. Two Jupyter notebooks are available: one for cases where
each region of interest has a separate TIFF file per channel, and another
for cases where all channels are contained in a single TIFF stack.

4.4. Comparison of methods for downstream analysis

4.4.1. PENGUIN parameters definition
The raw images were analyzed by an IMC expert using PENGUIN

notebook for better visualization. Parameters such as thresholds and
percentiles were adjusted for each channel using the Notebook tool
(Supplementary Table 1) and then applied uniformly across all images in
the cohort.

4.4.2. Ilastik-based background removal
For each marker, a random forest classifier was trained in Ilastik [16]

to distinguish between background and signal pixels, as described by
Ijsselsteijn et al. [17]. After thorough training on approximately 10 % of
the dataset, the classifier was applied to all images for a given marker.
The data was then exported as simple segmentation masks, with back-
ground pixels set to zero and signal pixels set to one.

4.4.3. Denoising evaluation metrics
To evaluate the quality of denoising in the absence of an actual

ground truth, we used SABR [25] as a reference, given its manual
annotation and reliability as a close approximation. We calculated the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM) to compare the performance of rescaled raw and
PENGUIN-denoised images against the SABR output, treated as the
reference standard. In order to make this comparison, positive pixels in
SABR (i.e., pixels considered signal) were replaced with their original
values from the rescaled raw image. PSNR is defined as:

PSNR = 10 • log10
(

MAX2
I

MSE

)

where MAXI is the maximum possible pixel value of the image, and MSE
is the mean squared error.

SSIM is defined as:

SSIM(x, y) = (l(x, y))a
• (c(x, y))B

•(s(x, y))y

where luminance (l) is measured by averaging pixel values, contrast (c)
is calculated as the standard deviation of pixel values, and structure (s) is
derived from the covariance between the signals, normalized by the
standard deviation. The parameters α > 0, β > 0, γ > 0 represent the
relative importance of each component. We used the scikit-image
package for both PSNR and SSIM calculations.

4.4.4. Cell segmentation & phenotyping
Cell masks were created using CellProfiler V3.0 [26]. For compari-

son, masks were generated from both raw data and
PENGUIN-normalized images. For raw data, a combination of Ilas-
tik/CellProfiler was applied: first, probability masks for the nucleus,
membrane, and background were generated in Ilastik using the DNA,
vimentin and keratin images. These masks were then loaded into a
CellProfiler pipeline to identify primary objects (nuclei), followed by
membrane assignment using the “Identify Secondary Objects” module.
Visual inspection was conducted to compare the masks with the original
IMC Images. After PENGUIN normalization, the normalized images
could be directly used to create cell segmentation masks in Ilastik using
the same workflow.

The two different cell segmentation masks (Ilastik-based and
PENGUIN-based) were loaded into ImaCytE [27], along with the raw,
Ilastik-denoised, and PENGUIN-denoised marker profiles, to define

Fig. 5. - PENGUIN applied to IF images, specifically for DAPI, CD4, PD-1 and CD8 immunofluorescent detection.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3927

relative marker expression per cell. FCS files were generated, and clus-
tering of cells was performed using t-SNE in Cytosplore [28] to identify
cell subsets.

4.5. Immunofluorescence labelling and imaging

Immunofluorescence labelling was performed using the OPAL
methodology. Briefly, four μm thick sections from formalin-fixed
paraffin-embedded tissues underwent deparaffinisation, rehydration,
endogenous peroxidase blocking, and antigen retrieval with 10 mM
citrate buffer (pH 6.0). Sections were then blocked with Superblock
solution (Thermo Fisher Scientific) and incubated for 1 h with anti-CD4.
Opal amplification was performed by consecutive 10-minute in-
cubations with a polymeric HRP-linker antibody conjugate (Immuno-
logic, the Netherlands) and OPAL650 reagent (Akoya Biosciences). The
sections were boiled for 15 min in 10 mM citrate buffer (pH 6.0). This
process of blocking, primary antibody incubation, followed by HRP and
OPAL amplification, was repeated for each target (Supplementary
Table 2). Between each step, sections were washed with PBS-Tween.
Finally, the sections were incubated with 1 µM DAPI, washed with
PBS (without Tween) and mounted using Prolong® Gold Antifade Re-
agent (Cell Signaling Technologies). The slides were imaged and spec-
trally unmixed using the Vectra 3 imaging system and the InForm
software (Akoya Biosciences), after which the component images were
normalised with PENGUIN. Parameters, including thresholds and per-
centiles, were set for each channel (Supplementary Table 2) and applied
across all images in the cohort.

Author statement

All authors approve of this manuscript and declare that the manu-
script is not under consideration elsewhere.

CRediT authorship contribution statement

Miguel Rocha: Writing – review & editing, Supervision, Funding
acquisition. Noel F.C.C. de Miranda: Writing – review & editing, Su-
pervision, Funding acquisition, Conceptualization. Ana Marta
Sequeira: Writing – review & editing, Writing – original draft, Valida-
tion, Software, Methodology, Formal analysis. Marieke E. Ijsselsteijn:
Writing – review & editing, Validation, Formal analysis.

Declaration of Competing Interest

The authors declare no conflicts of interests.

Acknowledgements

A.M.S. was supported by the Portuguese Foundation for Science and
Technology-FCT and FSE through Ph.D. fellowship:2020.0786BD. N.F.
C.C.d.M. is funded by the European Research Council under the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme (grant
agreement no. 852832)) and by VIDI ZonMW (project number
09150172110092).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.csbj.2024.10.048.

Data availability

The IMC data used in this study is publicly available from Roelands
et al. [18] and can be accessed through the BioImage Archive (Accession
number S-BIAD587, https://www.ebi.ac.uk/biostudies/bioimages/
studies/S-BIAD587). The PENGUIN pipeline is fully available and
ready to use at https://github.com/deMirandaLab/PENGUIN. The re-
pository also contains all the necessary code to replicate the methods
comparison, along with detailed Jupyter notebooks for easy under-
standing and implementation

References

[1] Bressan D, Battistoni G, Hannon GJ. The dawn of spatial omics. Science 2023;381
(6657). eabq4964.

[2] de Vries NL, et al. Unraveling the complexity of the cancer microenvironment with
multidimensional genomic and cytometric technologies. Front Oncol 2020;10:
1254.

[3] Giesen C, et al. Highly multiplexed imaging of tumor tissues with subcellular
resolution by mass cytometry. Nat Methods 2014;11(4):417. 22.

[4] Keren L, et al. MIBI-TOF: a multiplexed imaging platform relates cellular
phenotypes and tissue structure. Sci Adv 2019;5(10):eaax5851.

[5] Goltsev Y, et al. Deep profiling of mouse splenic architecture with CODEX
multiplexed imaging. Cell 2018;174(4):968–81. e15.

[6] Baharlou H, et al. Mass cytometry imaging for the study of human diseases-
applications and data analysis strategies. Front Immunol 2019;10:2657.

[7] Baranski A, et al. MAUI (MBI Analysis User Interface)-an image processing pipeline
for multiplexed mass based imaging. PLoS Comput Biol 2021;17(4):e1008887.

[8] Chevrier S, et al. Compensation of signal spillover in suspension and imaging mass
cytometry. Cell Syst 2018;6(5):612–20. e5.

[9] Milosevic V. Different approaches to imaging mass cytometry data analysis.
Bioinforma Adv 2023;3(1):vbad046.

[10] Lu P, et al. IMC-Denoise: a content aware denoising pipeline to enhance imaging
mass cytometry. Nat Commun 2023;14(1):1601.

[11] Wang YJ, et al. Multiplexed in situ imaging mass cytometry analysis of the human
endocrine pancreas and immune system in type 1 diabetes. Cell Metab 2019;29(3):
769–83. e4.

[12] Milosevic V. Different approaches to imaging mass cytometry data analysis.
Bioinform Adv 2023;3(1):vbad046.

[13] Keren L, et al. A structured tumor-immune microenvironment in triple negative
breast cancer revealed by multiplexed ion beam imaging. Cell 2018;174(6):
1373–87. e19.

[14] Rendeiro AF, et al. The spatial landscape of lung pathology during COVID-19
progression. Nature 2021;593(7860):564–9.

[15] Windhager J, et al. An end-to-end workflow for multiplexed image processing and
analysis. Nat Protoc 2023;18(11):3565–613.

[16] Berg S, et al. ilastik: interactive machine learning for (bio)image analysis. Nat
Methods 2019;16(12):1226–32.

[17] Ijsselsteijn ME, et al. Semi-automated background removal limits data loss and
normalizes imaging mass cytometry data. Cytom A 2021;99(12):1187–97.

[18] Roelands J, et al. Transcriptomic and immunophenotypic profiling reveals
molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut
2023;72(7):1326–39.

[19] Krull A, Buchholz T-O, Jug F. Noise2void-learning denoising from single noisy
images. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition 2019.

[20] Chollet F. Building autoencoders in keras. The Keras Blog 2016:14.
[21] Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nat Methods 2020;17(3):261–72.
[22] van der Walt S, et al. scikit-image: image processing in Python. PeerJ 2014;2:e453.
[23] Dabov K, et al. Image denoising by sparse 3-D transform-domain collaborative

filtering. IEEE Trans Image Process 2007;16(8):2080. 95.
[24] Abadi, M., et al., Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467; 2016.
[25] Ijsselsteijn ME, et al. Semi-automated background removal limits data loss and

normalizes imaging mass cytometry data. Cytom A 2021.
[26] McQuin C, et al. CellProfiler 3.0: next-generation image processing for biology.

PLoS Biol 2018;16(7):e2005970.
[27] Somarakis A, et al. ImaCytE: visual exploration of cellular micro-environments for

imaging mass cytometry data. IEEE Trans Vis Comput Graph 2021;27(1):98–110.
[28] Höllt T, et al. Cytosplore: interactive immune cell phenotyping for large single-cell

datasets. In: Computer Graphics Forum. Wiley Online Library; 2016.

A.M. Sequeira et al. Computational and Structural Biotechnology Journal 23 (2024) 3920–3928

3928

https://doi.org/10.1016/j.csbj.2024.10.048
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref1
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref1
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref2
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref2
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref2
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref3
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref3
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref4
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref4
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref5
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref5
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref6
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref6
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref7
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref7
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref8
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref8
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref9
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref9
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref10
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref10
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref11
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref11
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref11
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref12
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref12
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref14
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref14
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref15
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref15
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref16
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref16
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref17
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref17
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref18
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref18
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref18
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref19
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref19
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref19
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref20
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref21
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref21
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref22
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref23
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref23
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref24
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref24
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref25
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref25
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref26
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref26
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref27
http://refhub.elsevier.com/S2001-0370(24)00368-4/sbref27

	PENGUIN: A rapid and efficient image preprocessing tool for multiplexed spatial proteomics
	1 Introduction
	2 Results
	2.1 Comparison of available methods for IMC denoising
	2.2 PENGUIN enhances downstream analysis
	2.3 PENGUIN can be applied to other image modalities

	3 Discussion
	4 Methods
	4.1 Dataset
	4.2 Denoising Methods comparison
	4.3 PENGUIN implementation
	4.4 Comparison of methods for downstream analysis
	4.4.1 PENGUIN parameters definition
	4.4.2 Ilastik-based background removal
	4.4.3 Denoising evaluation metrics
	4.4.4 Cell segmentation & phenotyping

	4.5 Immunofluorescence labelling and imaging

	Author statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	datalink4
	References

