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A B S T R A C T

Multiplex spatial proteomic methodologies can provide a unique perspective on the molecular and cellular 
composition of complex biological systems. Several challenges are associated to the analysis of imaging data, 
specifically in regard to the normalization of signal-to-noise ratios across images and subtracting background 
noise. However, there is a lack of user-friendly solutions for denoising multiplex imaging data that can be applied 
to large datasets. We have developed PENGUIN –Percentile Normalization GUI Image deNoising: a straightfor-
ward image preprocessing tool for multiplexed spatial proteomics data. Compared to existing approaches, 
PENGUIN distinguishes itself by eliminating the need for manual annotation or machine learning models. It 
effectively preserves signal intensity differences while reducing noise, improving downstream tasks such as cell 
segmentation and phenotyping. PENGUIN’s simplicity, speed, and intuitive interface, available as both a script 
and a Jupyter notebook, make it easy to adjust image processing parameters, providing a user-friendly experi-
ence. We further demonstrate the effectiveness of PENGUIN by comparing it to conventional image processing 
techniques and solutions tailored for multiplex imaging data.

1. Introduction

In recent years, multiplexed imaging technologies have advanced 
significantly, enabling spatially resolved profiling of biological samples 
[1,2]. Imaging Mass Cytometry (IMC) [3] and Multiplex Ion Beam Im-
aging (MIBI) [4] make use of metal-conjugated antibodies for the 
detection of proteins by means of mass spectrometry. This process in-
volves quantifying isotopic reporter masses released from tissue after the 
ablation of small regions using a laser beam or ion beams. Other 
antibody-based multiplex approaches, such as Co-Detection by IndEXing 
(CODEX) [5], rely on fluorescent-labeled antibodies.

Despite the growing use of multidimensional proteomics spatial 
technologies, the resulting data presents challenges that conventional 
image analysis methods often struggle to address. A common challenge 
is the presence of noise in data, which must be removed before analysis 
[6]. Noise sources can vary based on the antibodies, detection channels, 
and tissue types used, and may manifest as artifacts such as hot pixels or 
background noise [6–8]. Additionally, some immunodetections may 
exhibit weak signals and low signal-to-noise ratios [9]. Together, these 
noise factors degrade image quality and complicate downstream 

analyses of multiplex imaging data. Consequently, robust and reliable 
denoising methods have become increasingly important as imaging 
technologies are more widely applied [6].

Specifically, IMC noise includes hot pixels, shot noise and channel 
crosstalk [10]. Channel crosstalk, where signals from one channel 
interfere with adjacent channels, can lead to signal misidentification [6, 
9]. To address this, methods like CATALYST [8] use pre-acquisition 
signal compensation matrices, while post-acquisition solutions are also 
available [7,11]. However, well-designed antibody panels can often 
reduce the need for correction by minimizing overlap between channels 
[9,10]. Hot pixels are characterized by individual pixels with signifi-
cantly higher signal intensities than their surroundings. Additionally, 
small clusters of consecutive hot pixels, which do not represent biolog-
ical structures, may form due to nonspecific antibody binding, antibody 
aggregates, or contamination by dust particles [7,10,12]. Shot noise, 
resulting from ion counting imaging processes, is pixel-independent but 
signal-dependent manifesting as random signal variations that typically 
follow a Poisson distribution [10]. This means noise is more pronounced 
at lower signal levels.

Hot pixels are commonly addressed using traditional image filtering 
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methods and thresholds. Researchers have also developed numerous 
“homebrew” computational strategies, customized for specific projects 
[11,13,14]. One notable approach, implemented in Steinbock, a Python 
toolkit for processing multidimensional images, mitigates hot pixels by 
comparing each pixel’s value to those of its eight surrounding neighbors. 
If the difference between the pixel and any of its neighbors exceeds a 
predetermined threshold, the pixel’s value is adjusted to match the 
highest neighboring pixel value [15].

In addition to conventional denoising techniques, tools like Ilastik 
provide supervised pixel classification, allowing for the distinction be-
tween background noise and true signal pixels for each marker [15–17]. 
In this approach, an experienced user trains the Ilastik Random Forest 
pixel classifier by manually labeling pixels as signal or background. 
Once trained, the model is applied across all images, generating a binary 
expression map where non-noise pixels are assigned a value of 1. This 
method has proven effective not only in removing background noise but 
also in standardizing and normalizing signals across samples, thereby 
reducing batch effects [17]. However, the requirement for manual 
annotation across images can be labor-intensive. This manual curation 
process is particularly challenging when dealing with large datasets, 
making this approach less practical for large datasets.

Recently, Lu et al. [10] introduced IMC-Denoise, a two-step pipeline 
that combines a Differential Intensity Map-based Restoration (DIMR) 
algorithm to remove hot pixels and a self-supervised deep learning (DL) 
algorithm called DeepSNiF for filtering shot noise. DeepSNiF, inspired 
by the widely used Noise2Void algorithm, does not rely on pretrained 
data. Instead, it trains a neural network to eliminate noise by leveraging 
information from surrounding pixels within the same image, eliminating 
the need for a separate, clean reference image. The process begins by 
identifying hot pixels using Anscombe transformation differential maps. 
Then, DeepSNiF filters shot noise by randomly masking pixels using a 
stratified sampling approach. However, DL approaches like this are 
often time-consuming, resource-intensive and require careful parameter 
tuning.

Despite the availability of various IMC denoising methods, there is 
still no consensus on the optimal approach, and the lack of a standard-
ized strategy hinders comparisons between datasets. Current methods 
either require the manual identification of noisy pixels across all 
markers – a time-consuming and inconsistent process – or fail to 
adequately address all types of noise and nonspecific antibody signals.

In this work, we introduce PENGUIN (Percentile Normalization GUI 
Image denoising), an enhanced pipeline for denoising multiplexed pro-
teomics data. PENGUIN employs scaling, thresholding, and percentile- 
based filters to address various noise sources in multiplex images, 
including hot pixels and shot noise. The method is fast, scalable, and 
reproducible, without requiring manual pixel annotation or extensive 
hardware resources. We demonstrate its effectiveness using an existing 
IMC dataset, benchmarking it against current preprocessing methods 
and those specifically designed for multiplex imaging data analysis. 
Additionally, we show its versatility by applying PENGUIN to multiplex 
immunofluorescence (IF) images, illustrating its applicability across 
different imaging modalities. The tool is available on https://github. 
com/deMirandaLab/PENGUIN.

2. Results

To mitigate noise in IMC images, the following considerations were 
identified: 

1. Hot pixels, characterized by random pixels exhibiting significantly 
higher signal intensities than their surroundings, can be efficiently 
addressed by filtering out sparse signals, specifically pixels that lack 
neighboring signals (Supplementary Figure 1).

2. Shot noise, arising from inherent variability in photon detection, can 
result in low-intensity signals in regions where no specific signal is 
expected. This noise is particularly prominent in areas with weak or 

no biological signal and can produce non-zero pixel values due to 
random detection fluctuations (Supplementary Figure 1).

3. Noise typically occurs independently across different channels 
within the same image, meaning one channel can be affected without 
others being impacted. However, within a specific cohort, noise 
generally follows consistent patterns across all images from the same 
channel.

Based on these considerations, PENGUIN was developed to integrate 
scaling, thresholding, and percentile-based filters for denoising IMC data 
(Fig. 1 A). PENGUIN follows a multistep approach: 1) Images are satu-
rated at the 99th percentile to reduce the impact of extremely bright 
pixels; 2) Signal intensities across each channel and image are normal-
ized to a scale from 0 to 1; 3) An adaptable threshold is applied to 
remove low-intensity signals; and 4) Hot pixels are identified using 
adaptable percentile filters and removed. A key feature of this strategy is 
that the percentile filter is used solely for hot pixel identification, 
ensuring their removal without affecting image clarity or edge defini-
tion. As a result, post-processed images maintain sharpness and edge 
integrity. Additionally, the normalization of values from 0 to 1 simplifies 
their direct use in subsequent analyses, such as cell segmentation.

To streamline the visualization and deployment of the preprocessing 
pipeline, PENGUIN is provided as a user-friendly Jupyter notebook 
(Fig. 1B). This tool allows users to directly observe how thresholds and 
percentiles impact different markers, aiding in the selection of the most 
suitable thresholds for each marker and image. The code for the pre-
processing pipeline is freely available, allowing users to also apply the 
functions directly via scripting.

Key adjustable parameters in this pipeline include the Threshold (T) 
value and the Percentile (P) value, both of which are critical to its per-
formance (Fig. 2). A higher T value removes more signal during the 
initial phase of the pipeline. If a channel primarily contains background 
signal, with only high-intensity values representing true signals, T 
should be set high. Conversely, in channels with minimal background 
noise, T can be lower or even omitted. The P parameter plays a crucial 
role, with lower values (e.g., 25) being stricter, removing nearly all 
sparse signals, while higher values (e.g., 75) are more lenient, allowing 
more sparse signals to remain. Tailoring these parameters for each 
channel is essential due to the significant variability in marker behavior. 
For example, β-catenin and FOXP3 showed optimal noise reduction with 
a T of 0.1 and a P of 50, while CD20 required a higher threshold of T 0.3 
to effectively eliminate noise. In contrast, clear images for vimentin and 
CD45 were achieved with P set at 25, without needing a threshold 
setting (Fig. 2).

2.1. Comparison of available methods for IMC denoising

PENGUIN was evaluated against both traditional image denoising 
techniques and IMC-specific methods using a public dataset of 39 
cellular markers analyzed by IMC across 61 samples [18].

To enhance the performance of standard image denoising methods, 
we applied saturation at the 99th percentile to remove bright outliers 
and normalized each channel’s signal intensity between 0 and 1 [17]. 
We then tested a variety of classical filtering methods, including 
Gaussian, mean, percentile, non-local means, bilateral, total variation, 
wavelet, anisotropic diffusion, and BM3D filters (see Supplementary 
Figures 1& 2). As expected, linear filters like Gaussian and mean filters 
tended to blur the images, causing a loss of detail and definition in tissue 
boundaries. While these filters did not directly eliminate hot pixels, they 
made the pixels less noticeable by blurring them. The other classical 
filters either failed to effectively reduce noise (e.g., anisotropic and 
bilateral filters) or distorted the images, as seen with the non-local mean 
filter, making them unsuitable for this type of data.

We also evaluated DL methods designed for denoising images 
without requiring paired ground truth data, specifically Noise2Void 
[19] and denoising autoencoders [20], trained for 20 or 50 epochs. 
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Fig. 1. - Overview of the PENGUIN tool. (A) Overview of the PENGUIN pipeline: 1 - the original image contains noise and extreme outliers, which obscure the rest of 
the signal. 2 - outliers are managed by capping values above the 99th percentile, enhancing visualization. Each channel and image are then normalized to a scale of 
0 to 1. 3 - pixels with values below a selected threshold are removed. 4 - percentile filtering is applied to detect and remove noise pixels. For each central pixel, a 
3 × 3 window is considered and the pixel values are sorted in ascending order. If the pixel is at the 0th percentile, it is classified as noise and set to 0; if it is above 0, it 
is considered part of the signal. For example, a 50th percentile (P50) requires that 5 out of 9 pixels be positive, the 75th percentile requires 2 out of 9, and the 25th 
percentile (P25) requires 7 out of 9. Depending on the characteristics of the channel, low percentile values may result in the removal of true signals, while high 
percentile values may retain noise. (B) Sneak peek of the PENGUIN Jupyter notebook.
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Fig. 2. - Application of various percentiles (P90, P75, P50, P25, P10) and thresholds (T0.1, T0.3, T0.5 with P50) with PENGUIN were used to assess immunode-
tection of b-catenin, CD20, vimentin, CD45, and FOXP3. The optimal parameters for each marker are highlighted in green.
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These methods did not effectively denoise the IMC images and led to 
image distortion, suggesting they may not be well-suited for this type of 
data. However, it is important to note that DL models tend to perform 
better with larger datasets, and as more IMC image datasets become 
available, the performance of these models may improve. Additionally, 
our experiments only employed a basic convolutional denoising 
autoencoder, leaving room for significant optimization through 
different combinations of layers, epochs, and parameters. However, DL 
methods are time-intensive, requiring considerate effort for develop-
ment, tuning, and training, and often necessitate specialized hardware, 
which that may not be readily accessible to all users.

Next, we applied two IMC-specific methodologies. First, we tested a 
hot pixel filter [15] that uses a 3 × 3 kernel to determine if the difference 
between a pixel and its maximum neighboring value exceeds a pre-
defined threshold; if so, the pixel is classified as noise and replaced with 
the maximum neighbor’s value. This method was applied to both 
normalized images, using thresholds ranging from 0.05 to 0.2, and raw 
images with a default threshold of 50. While this approach successfully 
removed some hot pixels, the processed images still contained noise, and 
in some cases, real signals were lost (Supplementary Figures 1& 2). 
Second, we applied IMC Denoise [10], using both the DIMR algorithm 
alone and in combination with the DeepSNIF DL algorithm, following 
the authors’ guidelines and default settings. The DIMR algorithm alone 
proved insufficient for fully removing hot pixels. When combined with 
DeepSNIF, similar issues arose as with Noise2Void, including image 
distortions. As with other DL methods, the possible configurations for 
IMC Denoise are virtually limitless; however, fine-tuning the optimal 
parameters is a labor-intensive process. Additionally, separate models 
must be trained for each channel, further complicating the imple-
mentation of this approach.

To evaluate IMC denoising performance with PENGUIN, we 
employed our lab’s semi-automated background removal (SABR) 

pipeline [17], which utilizes Ilastik (Fig. 3 & Supplementary Figure 4). 
Given the lack of a true ground truth, we used the manually annotated 
SABR-denoised dataset as a reference standard. Using this dataset, we 
calculated the Peak Signal-to-Noise Ratio (PSNR), where higher values 
denote reduced error, and the Structural Similarity Index (SSIM), which 
ranges from − 1 to 1, with a score of 1 indicating perfect similarity 
(Supplementary Figure 5). These metrics enabled a comparative analysis 
of the denoising performance of raw (rescaled) and PENGUIN-denoised 
images relative to the SABR dataset, our designated reference. Results 
demonstrated a marked improvement in image quality over raw data, 
with PENGUIN’s denoising closely aligning with the SABR-annotated 
dataset. Furthermore, the signal distributions across raw, 99th percen-
tile normalized values, SABR, and PENGUIN-denoised images are pre-
sented in Supplementary Figures 6, 7, and 8. It is worth noting that SABR 
denoising may occasionally result in signal loss for certain markers, as 
observed with β-catenin immunodetection (Fig. 3 and Supplementary 
Figure 4). By applying PENGUIN to the same image set, we observed 
effective noise reduction akin to that achieved by the SABR pipeline, 
with the added advantage of retaining more signal than SABR.

In summary, PENGUIN effectively eliminates noise from IMC images. 
While it requires manual adjustment of thresholds and percentiles for 
each channel, it does not necessitate developing specific classifiers to 
differentiate between signal and noise for each marker. Additionally, the 
settings are marker-dependent and often translatable between images, 
making it easy to apply to new images obtained with the same antibody 
panel. Unlike the Ilastik-based method, which produces binary images 
indicating only the presence or absence of signals, PENGUIN generates 
images with normalized values ranging from 0 to 1, capturing a range of 
signal intensities. This allows for more nuanced analysis, as PENGUIN 
not only retains more signal but also preserves critical details of cellular 
structures.

Setting the thresholds and percentiles is straightforward, further 

Fig. 3. - β-catenin, Vimentin, CD20, and CD45 immunodetection in two regions of interest, showing raw images, processed by the Ilastik-based SABR approach, 
and PENGUIN.
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simplified by the provided notebook. Processing all 61 images per 
channel took under 4 s on an Intel(R) Core(TM) i7–9700 CPU – a major 
improvement over Ilastik, which requires 5 to 15 min per marker. 
PENGUIN processing itself takes about 4 s per channel, with an addi-
tional 5 min for expert parameter selection. In contrast, SABR requires 
approximately 10 min of algorithm training plus 5 min per channel for 
processing. This highlights PENGUIN’s efficiency over both Ilastik and 
SABR. Additionally, without the need for model training, PENGUIN’s 
results are fully reproducible and readily accessible, offering a signifi-
cant improvement over existing methods.

2.2. PENGUIN enhances downstream analysis

After confirming the effectiveness of PENGUIN for image processing, 
we evaluated its impact on downstream analysis. This included 
comparing raw, unprocessed images with those corrected using the 
Ilastik-based SABR method and the PENGUIN pipeline, focusing on cell 
segmentation and cell phenotyping/clustering.

A key advantage of PENGUIN over previous approaches is that its 
output can be directly used in cell segmentation pipelines, eliminating 
the need to train an additional Ilastik model to distinguish between 
membrane, nucleus, and background markers, thereby saving signifi-
cant time. Furthermore, as highlighted earlier and shown in Fig. 4, 
PENGUIN’s normalization process preserves more signal and retains 
important cellular features.

To compare these methods, we combined the normalized images 
with their corresponding cell segmentation masks to calculate relative 
marker expression per cell. Cells were then clustered using t-SNE to 
identify cell subsets (Fig. 4A). Consistent with findings by Ijsselsteijn 
et al. [17], normalization and background removal are crucial for 
accurately identifying signals and cells, as well as normalizing 
inter-sample variation in IMC data for automated downstream analysis. 
Like current state-of-the-art techniques, PENGUIN adjusts for inter-
patient variability, resulting in well-defined cells and clusters. Next, 
both the SABR and PENGUIN-denoised datasets were phenotyped 
(Fig. 4B). PENGUIN-normalized cellular phenotypes were easily iden-
tifiable and displayed clear marker patterns, comparable to those in 
SABR-normalized data. Additionally, mapping these phenotypes back 
onto the images demonstrated that cellular distribution was consistent 
with the original data (Fig. 4C).

2.3. PENGUIN can be applied to other image modalities

Various imaging modalities in multiplex spatial proteomics, such as 
MIBI, CODEX, and multiplex IF, produce different types of images. 
Encouraged by the successful outcomes of the PENGUIN pipeline, and 
given that these modalities share similar limitations, we extended the 
application of PENGUIN to a set of in-house generated IF images (Fig. 5). 
The results demonstrated high-quality denoised images, achieved with 
significantly reduced time, resources, and operator-related variability.

3. Discussion

Spatial proteomics data, such as that generated by IMC, offers unique 
insights into the spatial organization of tissues, with broad applications. 
However, managing signal-to-noise ratios, especially with large anti-
body panels, presents significant challenges. Therefore, effective 
computational preprocessing methods are crucial to ensuring the reli-
ability of subsequent analyses [6]. While various custom algorithms 
have been successful in denoising IMC data, the growing volume of data 
calls for a standardized and efficient preprocessing pipeline.

In this context, we introduce PENGUIN, a denoising pipeline that 
effectively processes IMC images using scaling, thresholding, and 
percentile filters, yielding excellent results. We compared PENGUIN to 
traditional filtering methods, DL-based approaches, and IMC-specific 
solutions, demonstrating that it delivers clear, high-quality images 

quickly, easily, and reproducibly. PENGUIN is available as a user- 
friendly Jupyter notebook, enabling the simple adjustment of thresh-
olds and percentiles for each marker and streamlining the trans-
formation and saving of images. The core code is also available for direct 
scripting.

Compared to the recently developed Ilastik-based SABR method, 
PENGUIN eliminates the need for manual annotation or machine 
learning model training, preserves signal intensity variations across 
tissues, reduces noise, and retains more structural details. Additionally, 
PENGUIN improves critical downstream tasks like cell segmentation and 
phenotyping. Due to its simplicity, speed, intuitive interface, and 
reproducibility, PENGUIN is a valuable tool for the analysis of IMC data 
and, potentially, other multiplex imaging platforms.

4. Methods

All the tests were run in a Intel(R) Core(TM) i7–9700 CPU. The DL 
models were run using a GPU Nvidia TU102 GeForce RTX 2080 Ti.

4.1. Dataset

All the results for IMC were obtained using the publicly available 
cohort of 61 IMC raw images with 39 markers of colorectal cancer [18].

4.2. Denoising Methods comparison

Before application of the denoising filters, images were saturated at 
the 99th percentile and normalized between 0 and 1. Raw images were 
also tested, but normalization led to significant improvements in image 
quality.

The following filters were applied to each channel: Gaussian filter 
with sigma values of 0.7 and 1; mean filter; percentile filter with values 
of 25, 50, and 75; non-local means filter using a patch size of 5, patch 
distance of 11, and sigma of 0.2); bilateral filter; total variation filter 
with a weight of 0.3; Wavelet filter; anisotropic diffusion filter and 
BM3D filter with sigma values of 0.1, 0.2 and estimated sigma values 
between these two. For parameters not explicitly specified, default set-
tings were used. Gaussian, mean, and percentile filters were imple-
mented using SciPy [21], while non-local means, bilateral, total 
variation and wavelet filters were based on the scikit-image package 
[22]. BM3D filtering was retrieved from its source package [23].

The hot pixel removal filter for IMC images was implemented 
following Windager et al. [15], using a Scipy maximum filter with a 
3 × 3 window. If the difference between the central pixel and its 
maximum neighbor exceeded a defined threshold, the central pixel was 
set to the value of the maximum neighbor. Thresholds ranging from 0.05 
to 0.2 were applied to normalized images, while the default threshold of 
50 was used for raw images.

Noise2Void was trained per channel as described by Krull et al. [19], 
with 0.2 of the data used for validation. Loss was defined as MSE, with a 
neighborhood radius 5 and UNET kernel size 3 for a patch size of 64. 
Models were trained for 20, 50, and 100 epochs.

The convolutional autoencoder for image denoising were built as 
described by Chollet et al. [20]. The encoder consisted of two consec-
utive 2D convolutional layers (32 filters, kernel size 3 ×3, ReLU acti-
vation) followed by max pooling (pool size 2 ×2). The decoder included 
two transpose convolutional layers (32 filters, kernel size 3 ×3, ReLU 
activation) and a final convolutional layer with 1 filter and sigmoid 
activation. The Adam optimizer and binary cross-entropy loss function 
were used. Training was performed for 20 or 50 epochs per channel. The 
DL implementation was done using Tensorflow [24], with any unspec-
ified parameters set to default.

IMC Denoise [10] was implemented according to the instructions in 
the tutorial notebook, with default parameters. IMC Denoise consists of 
two steps: the DIMR algorithm and DeepSNIF. We tested both the DIMR 
algorithm applied per channel (using 4 neighbors, a window size of 3, 
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Fig. 4. - Overview of downstream analysis. A) t-SNE plots generated from raw marker expression with SABR Ilastik-based cell masks(top), SABR Ilastik-denoised 
marker expression with SABR Ilastik-based cell masks (middle), and PENGUIN-denoised marker expression and PENGUIN-based cell masks (bottom). The t-SNE 
plots are colored by sample, CD3, CD8, CD103 and b-catenin expression levels. B) Dot plot showing the scaled expression of marker genes across epithelial, stromal, 
immune lymphoid lineages (B cells, plasma B cells, T cells, innate lymphoid cells (ILC)) and immune myeloid lineages (dendritic cells, monocytes, macrophages, and 
granulocytes) for each cell type identified using cell segmentation and marker expression from SABR and PENGUIN denoising strategies. C) Comparison of cell 
segmentation and phenotype obtained using SABR and PENGUIN denoising strategies within a sample.
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and 3 iterations) and the combination of the DIMR algorithm followed 
by the DeepSNIF, which was trained for 50 epochs.

4.3. PENGUIN implementation

PENGUIN is implemented in Python 3.10 and available as both a 
code package and Jupyter notebook. For each image and channel, pixels 
above the 99th percentile are capped at that value and normalized to a 
scale of 0 to 1. Following this, pixels with values below a defined 
threshold are removed, and a percentile filter (using a 3 ×3 window) is 
applied to determine which pixels are either considered noise or signal. 
The same thresholds and percentiles are applied consistently across all 
images in the cohort for each channel. To demonstrate the approach, we 
tested percentile values of 90, 75, 50, 25, and 10, as well as the 50th 
percentile after removing pixels below thresholds of 0.1, 0.3, and 0.5. 
This comparison was performed for β-catenin, CD20, vimentin, CD45, 
and FOXP3, given their importance as markers and varying signal dis-
tributions. Two Jupyter notebooks are available: one for cases where 
each region of interest has a separate TIFF file per channel, and another 
for cases where all channels are contained in a single TIFF stack.

4.4. Comparison of methods for downstream analysis

4.4.1. PENGUIN parameters definition
The raw images were analyzed by an IMC expert using PENGUIN 

notebook for better visualization. Parameters such as thresholds and 
percentiles were adjusted for each channel using the Notebook tool 
(Supplementary Table 1) and then applied uniformly across all images in 
the cohort.

4.4.2. Ilastik-based background removal
For each marker, a random forest classifier was trained in Ilastik [16]

to distinguish between background and signal pixels, as described by 
Ijsselsteijn et al. [17]. After thorough training on approximately 10 % of 
the dataset, the classifier was applied to all images for a given marker. 
The data was then exported as simple segmentation masks, with back-
ground pixels set to zero and signal pixels set to one.

4.4.3. Denoising evaluation metrics
To evaluate the quality of denoising in the absence of an actual 

ground truth, we used SABR [25] as a reference, given its manual 
annotation and reliability as a close approximation. We calculated the 
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index 
(SSIM) to compare the performance of rescaled raw and 
PENGUIN-denoised images against the SABR output, treated as the 
reference standard. In order to make this comparison, positive pixels in 
SABR (i.e., pixels considered signal) were replaced with their original 
values from the rescaled raw image. PSNR is defined as: 

PSNR = 10 • log10
(

MAX2
I

MSE

)

where MAXI is the maximum possible pixel value of the image, and MSE 
is the mean squared error.

SSIM is defined as: 

SSIM(x, y) = (l(x, y) )a
• (c(x, y) )B

•(s(x, y) )y 

where luminance (l) is measured by averaging pixel values, contrast (c) 
is calculated as the standard deviation of pixel values, and structure (s) is 
derived from the covariance between the signals, normalized by the 
standard deviation. The parameters α > 0, β > 0, γ > 0 represent the 
relative importance of each component. We used the scikit-image 
package for both PSNR and SSIM calculations.

4.4.4. Cell segmentation & phenotyping
Cell masks were created using CellProfiler V3.0 [26]. For compari-

son, masks were generated from both raw data and 
PENGUIN-normalized images. For raw data, a combination of Ilas-
tik/CellProfiler was applied: first, probability masks for the nucleus, 
membrane, and background were generated in Ilastik using the DNA, 
vimentin and keratin images. These masks were then loaded into a 
CellProfiler pipeline to identify primary objects (nuclei), followed by 
membrane assignment using the “Identify Secondary Objects” module. 
Visual inspection was conducted to compare the masks with the original 
IMC Images. After PENGUIN normalization, the normalized images 
could be directly used to create cell segmentation masks in Ilastik using 
the same workflow.

The two different cell segmentation masks (Ilastik-based and 
PENGUIN-based) were loaded into ImaCytE [27], along with the raw, 
Ilastik-denoised, and PENGUIN-denoised marker profiles, to define 

Fig. 5. - PENGUIN applied to IF images, specifically for DAPI, CD4, PD-1 and CD8 immunofluorescent detection.
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relative marker expression per cell. FCS files were generated, and clus-
tering of cells was performed using t-SNE in Cytosplore [28] to identify 
cell subsets.

4.5. Immunofluorescence labelling and imaging

Immunofluorescence labelling was performed using the OPAL 
methodology. Briefly, four μm thick sections from formalin-fixed 
paraffin-embedded tissues underwent deparaffinisation, rehydration, 
endogenous peroxidase blocking, and antigen retrieval with 10 mM 
citrate buffer (pH 6.0). Sections were then blocked with Superblock 
solution (Thermo Fisher Scientific) and incubated for 1 h with anti-CD4. 
Opal amplification was performed by consecutive 10-minute in-
cubations with a polymeric HRP-linker antibody conjugate (Immuno-
logic, the Netherlands) and OPAL650 reagent (Akoya Biosciences). The 
sections were boiled for 15 min in 10 mM citrate buffer (pH 6.0). This 
process of blocking, primary antibody incubation, followed by HRP and 
OPAL amplification, was repeated for each target (Supplementary 
Table 2). Between each step, sections were washed with PBS-Tween. 
Finally, the sections were incubated with 1 µM DAPI, washed with 
PBS (without Tween) and mounted using Prolong® Gold Antifade Re-
agent (Cell Signaling Technologies). The slides were imaged and spec-
trally unmixed using the Vectra 3 imaging system and the InForm 
software (Akoya Biosciences), after which the component images were 
normalised with PENGUIN. Parameters, including thresholds and per-
centiles, were set for each channel (Supplementary Table 2) and applied 
across all images in the cohort.
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