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A B S T R A C T   

With climate change, population growth, and land degradation exerting mounting pressures on 
agricultural systems in developing countries, climate-smart agriculture (CSA) strategies have been 
prioritized as a means to strengthen smallholder farmers’ resilience. However, precise targeting 
methodologies remain a challenge. This study employs a comprehensive approach, integrating 
Socio-economic, and Biophysical (SEBP), and the Five Capitals Model analyses encompassing 
human, social, physical, natural, and financial capital. The study employs factor analysis for 
mixed data (FAMD), cluster analysis using partitioning around the medoids (PAM) and univariate 
and bivariate techniques to identify and classify distinct typologies of smallholder farming sys-
tems in Senegal’s Tambacounda and Sedhiou regions in 2020. A probit regression model gauges 
CSA adoption probability, to better focus CSA efforts. Results underscore the pivotal role of SEBP 
factors in shaping distinct farmer typologies, enabling precise CSA targeting. Geographical dis-
tribution patterns of these typologies reveal non-random clustering, particularly in specific re-
gions. Four farmer typologies emerge: Cluster 1 (Sedhiou, low-income, high climate challenges), 
Cluster 2 (Sedhiou and Tambacounda, low-to middle-income, moderate climatic challenges), 
Cluster 3 (Tambacounda, high income, favorable climate), and Cluster 4 (Tambacounda, low 
income, severe climate challenges). Technology mismatches emerge between farmers’ SEBP 
profiles and capital assets, prompting the identification of relevant technologies for soil fertility 
restoration and increased output. These findings highlight the importance of implementing CSAs 
in accordance with specific requirements, such as enhancing soil fertility, yield, and nutritional 
quality. A contextual understanding of local agricultural dynamics is likewise necessary for 
optimizing intervention strategies, according to the study.   

1. Introduction 

Farming systems in developing countries face challenges such as population growth, urbanization, land degradation, and demands 
for higher agricultural productivity; to address these challenges, innovations must urgently focus on climate change adaptation and 
mitigation, smallholder farmers’ livelihoods, and food security [1,2]. Smallholder farming systems are highly varied, with 
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agroecological zones, climate regimes, social groups, gender dynamics, and land uses all playing a crucial role [3]. Improved agri-
cultural technology uptake and impact can be achieved through innovative mixed methods strategies focusing on context-relevant 
biophysical and socio-economic variables [4]. Mwongera (2019) advocates for customized approaches in the form of CSA to 
bolster production, resilience, and mitigation [5]. Notenbaert (2017) emphasize that CSA, through on-farm (composting, intercrop-
ping) and off-farm (carbon financing, market efficiency) strategies, is pivotal for achieving food security and climate targets [6]. 

According to Upadhaya (2021), the categorization of farmers has proven valuable in examining the impact of non-economic and 
imperceptible factors, such as attitudes and motivations, on farmer behavior and their reactions to various situations [7]. Geographical 
and temporal factors significantly affect agricultural productivity, as shown by Notenbaert et al. (2009) such that certain regions’ 

Fig. 1. Fig. 1a Distribution (%) of each farmer cluster by department. 
Fig. 1b Spatial distribution of farmer clusters by arrondissement. The geospatial administrative layer was extracted from GADM (2022) maps 
and data. 
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agroecological attributes favor rain-fed crops, while others necessitate irrigation or grazing [8]. 
Unraveling farmer diversity via typologies is crucial for assessing agricultural households’ capacity to enhance productivity [9]. 

Farmer characterization involves grouping diverse livelihoods and socioeconomic statuses into clusters based on shared traits. These 
typologies aid in comprehending local farming systems [10], land use, intensification technology adoption, climate resilience, and 
environmental assessments [11]. 

Studies have been conducted with an aim to refine farmer typologies. By linking local farm infrastructure and livelihood practices, 
farming household typologies are delineated [12], enabling targeted interventions based on types. Le Page (2014) identified three 
fundamental farming family groups through rice companion modeling, considering agroecological factors, techniques, and socio-
economic approaches [13]. Wezel (2014) extensively explored agricultural system typology evolution, incorporating environmental 
variables [14]. 

Orounladji (2022) conducted an extensive investigation into the guinea fowl farming system. These findings not only shed light on 
the diverse aspects of guinea fowl farming in Benin, but also led to the identification of four distinct typologies of farmers [15]. These 
typologies were delineated according to factors such as geographical location, gender, educational background, undertaken activities, 
and incubation methods. The study further emphasized the importance of a comprehensive grasp of both phenotypic and molecular 
traits of the guinea fowl species in order to fully harness its potential. 

In Abidjan, Konmy (2023) identified three distinct rabbit farming typologies, differing in breeding parameters and labor sources 
[16]. Their categorization employed cage investment, watering system design, and female breeder quantity. However, the lack of vital 
agricultural records, particularly financial data, posed a significant obstacle to the typology development, despite explaining differ-
ences from the present study. 

Leveraging SEBP geographical data for targeting natural resource management, economic development, and poverty reduction is 
increasingly prevalent. Recent instances of prioritizing tasks based on development domains or spatial suggestions i.e. geographical 
units anticipating similar agricultural challenges or prospects underscore this trend [17]. 

Research on farmer typology seeks to categorize farmers by combining biophysical and socio-economic variables. Biophysical 
typology focuses on production elements, while socio-economic typology considers factors shaping smallholders’ decisions. Past 
studies have identified systematic variations between defined farmer types. Some employed SEBP variables for cluster analysis to 
describe farming and livelihood systems. Yet, this research area has potential for further progress. Our study aims to enhance SEBP- 
based farmer typologies for targeted CSA technology and intervention scaling. 

This study contributes by analyzing the impacts of diverse Capital Assets (human, natural, financial, social, and physical) on 
livelihood outcomes, which aids targeted CSA practices and farm characterization [18]. Chambers & Conway (1992) highlight sus-
tainable livelihoods’ resilience and resource preservation [19]. Bebbington (1999) underscores asset protection and conversion [20]; 
investigating rural strategies for resource conservation, transferability of successful capital holdings, and potential compensatory 
effects among capital types also enhances understanding [21]. 

This study seeks to develop a method for characterization of farmers that takes into account both their homogeneity and het-
erogeneity (within defined typologies or clusters) so that CSA solutions may be targeted more effectively and scaled more effectively 
among smallholder farmers. Doing so can reveal the diversity of smallholder farmers who may be differentially receptive to different 
CSA technology. This characterization can support: (i) better targeting of CSA implementation among smallholder farmers; (ii) tar-
geting specific CSA technologies to homogeneous clusters of farmers; and (iii) a focus on proper bundling of CSA technologies that 
improve farmer households’ Capital Asset endowments. These endowments include their natural capital, which supports household 
resilience for sustainability and resilience to climate change impacts. 

2. Materials and methods 

2.1. Study area 

The study was conducted in Senegal’s Sedhiou and Tambacounda regions, with Sedhiou located in the Casamance natural area in 
southwest Senegal (Fig. 1b). These two regions are the targeted zones of the Adaptation and Valorization of Entrepreneurship in 
Irrigated Agriculture (AVENIR), a project strategically designed to empower women and young farmers within the realm of agri-
culture. Subsistence rice farming, practiced particularly by women using traditional methods, is predominant in lowland areas of 
Sedhiou due to the ideal soil and climate conditions. However, factors such as decreased precipitation, protracted droughts, and soil 
degradation (salinization, acidification, and silting up) increasingly threaten the region’s rice production systems. As a result, the 
Senegalese government and donors have begun promoting lowland recovery to ensure smallholder rice production [22]. Tamba-
counda Region in the Sahelian plains of eastern Senegal is the country’s largest region. Local farmers in Tambacounda face challenges 
in marketing products due to low productivity levels, limited processing capacity, and challenging transport and storage conditions. 
This region, along with the eastern part of the country, also experiences high malnutrition rates and significant migration pressure, 
particularly towards Europe3.1. 

2.2. Sampling procedure and data collection 

This study was approved by the Institutional Review Board of The Alliance of Bioversity and CIAT, with ethics approval reference 
#2019-IRB30. The selection of sampling framework was based on the latest Senegalese General Census of Population and Housing, 
Agriculture and Livestock conducted by the National Agency of Statistics and Demography in 2013, which also informed the 
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appropriate stratification level, which we confirmed as the department [23]. This sampling frame guided us toward the multi-stage 
sampling design for the selection of survey respondents. Individual households were the target unit for the survey. Cochran’s sam-
pling formula [24] was used to calculate a representative sample size, sampling power, level of effect sizes, and error rates. Out of 692 
villages, 107 were randomly selected in Sedhiou, while 108 villages out of 1061 were randomly selected in the Tambacounda region. In 
each village, seven farming households were randomly selected via systematic sampling. Five of these had to include an eligible 
woman aged 35 years and above, and two households had to include an eligible younger person aged 18–34 years to be retained in the 
sample. Informed consent was obtained from all participants, as approved by The Alliance’s Institutional Review Board for Human 
Subjects, and was also recorded electronically using the designated data collection tool as needed. In instances where a participant 
declined to participate, they were thanked for their consideration, and it was emphasized that their decision would not result in any 
prejudice. For participants who agreed to participate, they were thanked, and the intervi ew process was carried out accordingly. A 
balanced matched sample of 824 smallholder farmers was obtained from these households using 1:1 propensity score matching (PSM) 
which is a statistical technique that estimates treatment effects by pairing treated and control units with similar covariate-based 
propensity scores, reflecting treatment likelihood prediction. 

We define a household as a person or group of persons who live together in the same house or compound, share the same 
housekeeping arrangements, and are catered for as one unit, meaning they commonly provide and share food [25]. The household 
head (chef de ménage) is regarded as the overall decision maker on land use and is instrumental in the approval of access of target 
respondents and survey administration. 

The data for the study was collected in the field using the SurveyCTO digital data collection tool. SurveyCTO serves as a mobile data 
collection platform tailored for researchers and professionals operating across offline and online environments, offering user-friendly, 
secure, and scalable capabilities. A team of 45 trained enumerators and supervisors collected data in the Sedhiou and Tambacounda 
regions. The principal household members were identified with the help of local contacts like the Regional Director of Rural Devel-
opment (DRDR) or village and household heads, and interviews were conducted with them. Interviews typically lasted around 1 h 
(±30 min) and were carried out by a single enumerator, with a single respondent, usually the principal woman or young farming 
member of each household. 

The variables data were collected on included household demographics, farm characteristics, management, production, amount 
and sources of income, uptake of promoted interventions, perceptions and sources of information regarding those interventions, 
distance to markets and agricultural input suppliers, attitudes toward farming, gendered control of production, and food security 
indicators such as dietary diversity and food availability [26]. 

2.3. Clustering analysis 

Unsupervised learning for dimensionality reduction created the variable used to develop the farmer typologies or clusters as 
defined in our study (Appendix: Table A1). By combining different statistical approaches, namely factor analysis for mixed data 
(FAMD) [27,28] and Partitioning Around the Medoids (PAM) clustering, we classified farmers into distinct homogenous clusters with 
similar SEPB characteristics and other similar exogenous factors such as livelihood capitals. FAMD—a principal component method 
dedicated to analyzing a data set containing quantitative and qualitative variables [29,30]—was used to reduce dimensionality and 
generate key indices [29]; it also made it possible to analyze similarities between individuals by considering a variety of variable types. 
In addition, correlation analysis was carried out on some of the variables’ subsets to determine the correlation of different variables. 
Both the FAMD and correlation analysis aimed to transform a linearly higher original set of variables into fewer uncorrelated variables 
without losing significant information before the clustering process [31]. 

Cluster analysis began by using daisy functionality to estimate the distance between two points considering the mixed data type. 
Next, a visualization of similar and dissimilar observations based on the computed distances was created. Before running the cluster 
analysis, the optimal number of clusters was calculated using silhouette, gap stat, and within sum of squares (WSS), which gives a 
visual range of the optimal number of clusters needed to estimate the distinctiveness [32]. 

After determining the optimal validated number of clusters for analysis, PAM or k-medoids were applied to find a sequence of 
centrally clustered objects called medoids that were then placed into a set of selected objects. The algorithm minimized the average 
dissimilarity of objects to their closest selected object. PAM maps a distance matrix into a specified number of clusters and allows 
clustering according to specified distance metrics. PAM is particularly useful for this study as it is less sensitive to outliers and can 
handle mixed data [28]. 

Univariate and bivariate analysis coupled with statistical significance tests helped to determine the similarities and dissimilarities 
within and between clusters, providing optimal, highly defined cluster characterization. Indicators used to estimate nutrition and food 
security included (i) Food Consumption Score (FCS); (ii) Food Expenditure Share (FES); (iii) Household Dietary Diversity Score 
(HDDS); and (iv) Household Food Insecurity Access Scale (HFIAS). The scoring threshold categories for the FCS were as follows: (i) 
poor: 0–21, (ii) borderline: 21.5–35, and (iii) acceptable: >35. Additionally, we applied the Five Capitals Model [18], a framework of 
sustainability used to gain insights into the rural livelihoods of the farmers in each cluster in terms of sustainability and rural poverty 
[20]. These capitals include human, social, financial, natural, and physical capital. Appendix: Table A2 indicates the variables used for 
the analysis, including the Cronbach alpha for data reliability and internal consistency test score and Kaiser-Meyer-Olkin (KMO) to 
measure how suited the data is for factor analysis. 

To estimate the likelihood of adoption, we used a general probit regression model below [33] to assess how covariates (cluster and 
capital assets) vary with differently grouped CSA technologies. 

Below is the estimated probit model regression: 
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CSAi = α + βiClusteri + βiCapital indexi + εi (1) 

The dependent variable (CSAi) is a dummy representing grouped CSA practices. Clusteri is a cluster classification variable with 
values of 1, 2, 3, or 4 denoting the cluster to which a single household has been assigned. Cluster1 1 consists of low-income farmers who 
have high climate-related agricultural challenges, Cluster1 2 are low-to mid-income farmers with moderate climate-related agricultural 
challenges, Cluster1 3 are highest income farmers with good climate conditions for agriculture, and Cluster1 4 are lowest income 
farmers with highest climate-related agricultural challenges. Capital indexi represents human, social, financial, natural, and physical 
capital indexes. А, βi, and βi are estimated parameters, and εi is the random error term. 

3. Results 

3.1. Description 

Fig. 1a and b presents the quantitative and spatial distribution of each identified clusters in the regions of Sedhiou and Tamba-
counda, by department. The farmers in Cluster 1 represent 36% of the sampled farmers. A large majority of them came from the 
Sedhiou department (36%), Goudomp department (21%), Tambacounda (28%), and Bounkiling department (13%). The farmers in 
Cluster 2 represent 24% of the sampled farmers; a large majority of them came from the Sedhiou department (28%), Goudomp 
department (22%), Goudiry (16%), and Tambacounda (11%). The farmers in Cluster 3 represent 15% of the sampled farmers; a large 
majority of them came from the Bakel department (58%), Sedhiou department (18%), Goudiry (7%), and Bounkiling (5%). The 
farmers in Cluster 4 represent 25% of the sampled farmers, with a large majority of them coma from the Koumpentoum department 
(43%), Goudiry (28%), Bounkiling (7%), and Bakel 6%. 

3.2. Characterization using SEBP 

We analyzed the homogeneity and heterogeneity of these clusters by varying them with different SEBP factors. Results are pre-
sented in Table 1. Over 70% of smallholder farmers in Cluster 1 (low-income, high climate-related agricultural challenges) are from 
Sedhiou region. Farmers in Cluster 2 (low-to mid-income, moderate climate-related agricultural challenges) are from the regions of 
Sedhiou (55%) and Tambacounda (45%). In Cluster 3 (highest income, good climate conditions for agriculture), 75% of farmers are 
from Tambacounda region. In Cluster 4 (lowest income, highest climate-related agricultural challenges), over 92% of smallholder 
farmers are from Tambacounda region (see Fig. 2). 

The characterization analysis for the different clusters also includes the farmers’ food and nutritional security conditions, as shown 
in Table 1. The higher the FCS, the greater the dietary diversity and the frequency of food consumed; a high FCS increases the like-
lihood that a household achieves nutrient adequacy. The FES measures household economic vulnerability and is used as an indicator of 
household food security. We categorized households into four groups according to their food expenditure share in the past 30 days. 
HDDS is used to assess the dietary quality and quantity generated using 12 food groups. The higher the score, the higher the dietary 
quality. HFIAS indicates experience in household food insecurity. The HFIAS value ranges from 0 to 27. An HFIAS of zero indicates that 
the household is food secure, and an HFIAS of 27 indicates the household is experiencing severe food insecurity. 

3.2.1. Cluster 1: low-income, high climate-related agricultural challenges 
Farmers in this cluster experience the lowest elevation (low altitude) of 565 m above sea level (ASL), the lowest mean annual 

amount of rainfall of 392 mm, and the highest mean temperature of 24 ◦C. The land is characterized by an average pH of 7.38. 73% of 
these farmers are in the low-wealth quintile, with 25.3% in the middle-wealth quintile and only 1.7% in the high-wealth quintile. 
Farmers in this cluster received the lowest amount of remittance income, at FCFA 67,051, and the lowest agricultural income, at FCFA 
143,108, while the average income from other sources was FCFA 757,507 (Appendix: Table A3). 

As shown in Table 2, the top irrigation technologies used by farmers in Cluster 1 are pouring water by hand using a container 
(43.5%), using a bucket (22.9%), and using irrigation canals (11.8%). No farmer from Cluster 1 used drip irrigation, while gravity-fed 
irrigation (1.8%), irrigation using electric or diesel pump (2.4%), and pipe irrigation (2.9%) were the least used technologies (Ap-
pendix: Table A3). 

This study indicates that 84% of farmers in Cluster 1 fall into the poor FCS category, 15.3% fall into the borderline category, and 
only 0.7% fall into the acceptable category. In addition, 68.7% of farmers are classified as having low FES, indicating poor food se-
curity, while 17.4% were classified as having moderate FES. Only 7.8% of farmers were classified as having high and 6% extremely 

Table 1 
Distribution of farmers in different clusters by region.  

Cluster  1 2 3 4 Overall P-value 

Region (%) Sedhiou (70.3) (55.3) (25.0) (7.8) <0.001 
<0.001 Tambacounda (29.7) (44.7) (75.0) (92.2) 

Total observations (n = 824) 300 199 120 205  

Notes: n values are presented with column percentages in parentheses: P-values indicate the likelihood that the null hypothesis (there if no difference 
or the difference is equal to zero) is correct given the sample data. 

C. Muriithi et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e20526

6

high FES, indicating good food security. The average HFIAS for Cluster 1 farmers was 3.93, and their average HDDS was 5.9 out of the 
possible 12 scores (Appendix: Table A3). 

3.2.2. Cluster 2: low-to mid-income, moderate climate-related agricultural challenges 
Farmers in this cluster experience the lowest elevation (low altitude) of 688 m ASL, a low mean annual rainfall of 526 mm, and a 

mean temperature of 23.4 ◦C. The land is characterized by an average pH of 7.07. In Cluster 2, 74% of farmers are in the low-wealth 
quintile, 23.3% are in the middle-wealth quintile, and only 3% are in the high-wealth quintile. The farmers in this cluster received a 
low amount of remittance income (FCFA 75,756) and a low agricultural income of FCFA 170,287, while the average income from other 
sources was FCFA 737,171 (Appendix: Table A3). 

As shown in Table 2, the main irrigation technologies used by farmers in Cluster 2 are pouring water by hand using a container 
(51.6%) and using a bucket (35.2%), while no farmer used drip irrigation, and all other technologies were used by between 1% and 6% 
of the farmers (Appendix: Table A3). 

In Cluster 2, 92% of farmers fall into the poor FCS category, 8% fall into the borderline category, and 0% fall into the acceptable 
category of adequate food intake. 75.9% of farmers fall into the low FES category, followed by 9.5% in the moderate category, 7% in 
the high category, and 7.6% in the very high category. Their average HDDS is 4.66, while their average HFIAS is 4.30 (Appendix: 
Table A3). 

Cluster 2 farmers occupy low-altitude, arid regions with alkaline soil, mostly low-income and reliant on manual irrigation. These 
conditions contribute to pronounced food insecurity, evident in poor FCS, low FES, HDDS, and HFIAS scores. 

Fig. 2. Number of farmers per cluster. (Matched Sample size of 824 women and youths).  

Table 2 
Irrigation technologies used by farmers in different clusters.   

Percentage of farmers by clusters  

Irrigation technologies (%) 1 2 3 4 Overall p-value 

Basin dug around plant (3.5) (0.6) (4.4) (0.0) <0.001 
Bucket (22.9) (35.2) (8.0) (43.5) 
Drip (0.0) (0.0) (0.9) (0.0) 
Electric or diesel pump (2.4) (0.6) (23.1) (13.0) 
Gravity-fed (river diversion) (1.8) (3.2) (5.3) (0.0) 
Irrigation canals/channel (11.8) (2.9) (16.9) (0.0) 
Pipe (2.9) (0.3) (15.6) (4.3) 
Pouring water by hand (using container) (43.5) (51.6) (15.1) (30.4) 
Sprinkler (11.2) (5.6) (10.7) (8.7) 
Total Observations (n = 759) 170 341 225 23  

Notes: n values (number of farmers who practice any form of irrigation) are presented with column percentages in parentheses. P-values indicate the 
likelihood that the null hypothesis (there if no difference or the difference is equal to zero) is correct given the sample data. 
Thus, in this cluster, farmers reside in low-altitude, arid areas with alkaline soil. Mostly low-income, they rely on manual irrigation and face severe 
food insecurity, marked by poor FCS and low FES scores, indicative of limited dietary access. 
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3.2.3. Cluster 3: highest income, good climate conditions for agriculture 
Farmers in this cluster experience an elevation (high altitude) of 1038 m ASL, a high mean annual rainfall of 911 mm, and a low 

mean temperature of 21 ◦C. The land is characterized by an average pH of 6.12. 37.5% of these farmers are in the low-wealth quintile, 
24.2% are in the high-wealth quintile, and only 38.3% are in the middle-wealth quintile. The farmers in this cluster received a high 
amount of remittance income (FCFA 173,033), a high agricultural income of FCFA 224,413, and the highest average income from 
other sources received is FCFA 1,434,134 (Appendix: Table A3). 

As shown in Table 2, farmers in Custer 3 used the following watering techniques: electric or diesel pumps (23.1%), irrigation canals 
or channels (16.9%), pipes (15.6%), pouring water by hands (15.1%), and sprinklers (10.7%) (Appendix: Table A3). 

In Cluster 3, only 0.8% are in the acceptable FCS category, 8.3% are in the borderline FCS category, and 90.8% are in the poor FCS 
category. In terms of FES, 53.6% of farmers fall into the low category, 17.9% into the moderate category, 9.8% into the high category, 
and 18.8% into the very high category. Their HDDS on average is 4.11, while their HFIAS on average is 3.98 (Appendix: Table A3). 

Cluster 3 farmers thrive in high-altitude regions with favorable pH, balanced wealth distribution, advanced irrigation methods, and 
substantial income diversity. However, prevalent poor FCS and low FES categories, along with limited dietary diversity, underscore 
persistent food security challenges. 

3.2.4. Cluster 4: lowest income, highest climate-related agricultural challenges 
Farmers in this cluster experience an elevation (high altitude) of 1132 m above sea level (ASL), a high mean annual rainfall of 913 

mm, and a low mean temperature of 21 ◦C. The land is characterized by an average pH of 6.09. 82% of these farmers are in the low- 
wealth quintile, 2.9% are in the high-wealth quintile, and only 15.1% are in the middle-wealth quintile. The farmers in this cluster 
received the lowest amount of remittance income (FCFA 11, 617) and the lowest agricultural income of FCFA 60,063, and the lowest 
average income from other sources was FCFA 519,080 (Appendix: Table A3). 

As shown in Table 2, the top irrigation technologies used by farmers in Cluster 4 are a bucket (43.5%), pouring water by hand using 
a container (30.4%), and using a sprinkler (8.7%) (Appendix: Table A3). 

In Cluster 4, 99% are in the poor FCS category, 1% in the borderline FCS category, and 0% in the acceptable FCS category. 47.8% of 
farmers are in the low category, 30.6% are in the moderate category, 14.6% are in the high category, and 7% are in the very high 
category. Their average HDDS was 2.47, while their average HFIAS was 7.53 (Appendix: Table A3). 

Cluster 4 farmers reside in high-altitude regions with significant rainfall and modest pH. Predominantly low-income, they employ 
basic irrigation methods and face alarming food insecurity, as reflected by their poor FCS and low FES status, accentuated by low HDDS 
and elevated HFIAS scores, indicating vulnerability and constrained dietary options. 

Fig. 3. Spider plot indicating levels of normalized capital scores of livelihoods by clusters. (KEY WORD: HumanKindex – human capital index, 
SocialKindex – social capital index, FinancialKindex – financial capital index, NaturalKindex – natural capital index, PhysicalKindex – physical 
capital index). 
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3.3. Capitals 

To understand the 4 clusters, we further use the Five Capital Model of livelihood. Although the definition of the five capitals varies 
[34,35], in this analysis, they are defined as (1) human capital, (2) social capital, (3) physical capital, (4) natural capital, and (5) 
financial capital [18], as indicated in (Appendix TableA2). This table also includes two test scores: (i) the Cronbach’s alpha test, which 
measures the reliability or internal consistency of the indicators used, and (ii) the Kaiser-Meyer-Olkin (KMO) test, which measures 
sampling adequacy to indicate if our samples are suitable for generating the capital composite indices using FAMD. We constructed a 
composite index (from several indicator variables: Appendix: Table A2) using a FAMD for each of the five capitals [36]. 

Fig. 3 indicates the distributions of clusters across the five capitals. In the diagram, farmers in Cluster 3 (green) are characterized by 
the highest social, financial, and natural capital level and a slightly high (above 50%) level of human capital. Farmers in Cluster 4 are 
characterized by the lowest level of all the five capitals. Farmers in Cluster 2 are characterized by the highest level of physical and 
human capital and a slightly higher level of natural capital. In Cluster 1, farmers are characterized by more human capital and less 
physical, natural, financial, and social capital. 

3.4. Adoption 

We used an approach by Paudel et al. (2017) [37], who defined CSA technology as practices or technologies that support at least 
one of the three pillars of CSA - Productivity, Resilience, and Mitigation in an agriculture subject to climate change and variability. The 
authors group CSA technologies as follows: (i) water-smart technologies that improve water usage efficiency: water channels and 
irrigation technologies, rainwater harvesting, community water management, laser land leveling, water conservation, drip irrigation, 
and on-farm water management strategies; (ii) seed-smart technologies used to improve harvests by developing climate resilient seed 
types, using seed selection procedures, and enhancing seed types or short-duration crop varieties; (iii) knowledge-smart technologies 
that combine science and local knowledge to enhance processing, integrate pest control, and develop contingency crop planning; (iv) 
carbon smart interventions that reduce greenhouse gas emissions: agroforestry, livestock and manure management, intercropping, and 
green manuring; and (v) nutrient smart interventions that improve nutrient use efficiency and include site-specific integrated nutrient 
management, green manuring, and legume intercropping [2,37]. 

The analysis shows that the adoption potential for CSA practices varies significantly across farmer clusters. From the regression 
results in Table 3, we see a significant positive relation between farmers in Cluster 2 and the adoption of seed-smart CSA technologies 
compared to the Cluster 1 farmers. Farmers in Cluster 3 are less likely to adopt carbon and nutrient smart CSA technologies and have a 
higher likelihood of adopting seed and water smart CSA technologies than Cluster 1 farmers. Farmers in Cluster 4 are more likely to 
adopt carbon smart technologies and less likely to adopt knowledge and water smart technologies than those in Cluster 1. 

We also note the positive and negative relationship between the five capitals and the adoption of CSAs. Financial capital plays an 
important role in modern society, enabling other types of capital to be owned and traded. It has a positive relationship (significant at 
alpha = 0.1) with the adoption of carbon and nutrient-smart CSA technologies and a negative relationship with the adoption of water- 
smart technologies. 

Any stock or flow of energy and materials that create products and services is considered natural capital. It is the foundation of not 
just production but also family and societal life. Therefore, adopting knowledge-based smart technology is positively related to 
increased household natural capital growth. 

Fig. 4 illustrates all the possible pathways from clusters to levels of capital to adoption—by which farmers in different clusters with 
different degrees of capital adopt CSA technology. The farmers are represented as follows: Cluster 1 in red (low-income, high climate- 
related agricultural challenges); Cluster 2 in blue (low to mid-income, moderate climate-related agricultural challenges); Cluster 3 in 
green (highest income, best agricultural climate); and Cluster 4 in purple (lowest income, highest climate-related agricultural 

Table 3 
Probit regression results: Grouped technologies.   

Dependent variable:   

Carbon and nutrient smart SE Knowledge smart SE Seed smart SE Water smart SE 

Cluster 1 Reference 
Cluster 2 − 0.119 (0.165) 0.241 (0.164) 0.724** (0.302) 0.332* (0.172) 
Cluster 3 − 1.230*** (0.170) 0.204 (0.199) 1.873*** (0.287) 1.512*** (0.179) 
Cluster 4 0.673*** (0.231) − 0.824*** (0.287) − 3.457 (175.851) − 0.509** (0.239) 
Human Index 0.127 (0.228) − 0.151 (0.246) − 0.684 (0.605) 0.032 (0.189) 
Social Index 0.888 (0.645) 0.264 (0.387) − 0.339 (0.522) − 0.81 (0.618) 
Financial Index 0.984* (0.505) 0.092 (0.327) 0.482 (0.299) − 1.088* (0.567) 
Natural Index − 0.085 (0.160) 0.443** (0.187) 0.086 (0.185) − 0.029 (0.182) 
Physical Index 0.096 (0.164) − 0.16 (0.221) − 0.038 (0.169) − 0.736 (0.843) 
Constant 1.267*** (0.126) − 1.540*** (0.124) − 2.453*** (0.263) − 1.420*** (0.139) 
Observations 824 824 824 824 
Log Likelihood − 236.691 − 192.792 − 115.259 − 220.608 
Akaike Inf. Crit. 491.383 403.583 248.517 459.215  

Notes: SE – Standard Error, * means significantly different at 10%, ** means significantly different at 5%, *** means significantly different at 1%. 
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challenges). Most farmers applied carbon and nutrient-smart practices regardless of capital or cluster. The use of water and seed-smart 
technology use correlates closely with farmers with high incomes and suitable environments (Cluster 3) and high endowments of social 
and financial capital. 

Fig. 4a, b, Fig. 4c and d shows that farmers in Clusters 1 and 2, with their financial, human, and natural capital endowments, have 
historically adopted carbon and knowledge-smart CSA technologies. In contrast, Cluster 3 farmers, endowed with robust social, 
natural, human, and financial capitals, have historically adopted water and seed and breed CSA technologies. Cluster 4 farmers, with 
their characteristic financial, natural, and social capital endowments, have historically adopted carbon and nutrient smart CSA 
technologies. 

As shown in Fig. 5, the adoption of agricultural practices varies across different clusters. Most farmers in Cluster 1 practice crop 
rotation, fallow, minimum tillage, agroforestry, and intercropping. The common agricultural practices by farmers in Cluster 2 include 

Fig. 4. aAlluvial plot of adoption helps us visualize the flow of data (from clusters to adoption of CSA) across capital variable. This diagram 
beautifully illustrates what clusters adopted and did not adopt carbon and nutrient smart CSA technologies. 
Fig. 4bAlluvial plot of adoption helps us visualize the flow of data (from clusters to adoption of CSA) across capital variable. This diagram beau-
tifully illustrates what clusters adopted and did not adopt knowledge smart CSA technologies. 
Fig. 4cAlluvial plot of adoption helps us visualize the flow of data (from clusters to adoption of CSA) across capital variable. This diagram beautifully 
illustrates what clusters adopted and did not adopt seed smart CSA technologies. 
Fig. 4dAlluvial plot of adoption helps us visualize the flow of data (from clusters to adoption of CSA) across capital variable. This diagram beau-
tifully illustrates what clusters adopted and did not adopt water smart CSA technologies. 
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minimum tillage, farrow, crop rotation, and agroforestry. Notable common agricultural practices by farmers in Cluster 3 include flood 
irrigation and farmyard manure, and common practices among the farmers in Cluster 4 are crop rotation, fallow, and intercropping. 

These findings suggest that adoption differs by cluster. Cluster 1 predominantly employs crop rotation, fallow, minimum tillage, 
agroforestry, and intercropping. In Cluster 2, common practices encompass minimum tillage, farrow, crop rotation, and agroforestry. 
Flood irrigation and farmyard manure stand out in Cluster 3, while Cluster 4 farmers often utilise crop rotation, fallow, and 
intercropping. 

4. Discussion 

4.1. Validity 

The reliability analysis results (Appendix: Table A2) indicate that most data used are reliable and valid. Cronbach alphas were 
below 0.7, indicating a low internal consistency of data (inter-relatedness of the items). According to Tavakol and Dennick (2011), the 
number of test items, item inter-relatedness, and dimensionality affect the alpha value [38]. There are different reports about the 
acceptable alpha values, ranging from 0.70 to 0.95 [39–41]. A low alpha value could be due to a low number of questions, poor 
inter-relatedness between items, or heterogeneous constructs. For example, some should be revised or discarded if a low alpha is due to 
poor correlation between items. If an alpha is too high, it may suggest that some items are redundant as they test the same question in a 
different guise. A maximum alpha value of 0.90 has been recommended [42]. 

Fig. 4. (continued). 
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The overall measure of sampling adequacy (KMO test) for the FAMD was between 0.5 and 0.56, which puts it into the miserable 
range. In this case, the results of each procedure indicate the data is generally appropriate for factor analysis but not very adequate. 
According to Dziuban and Shirkey (1974), using sampling adequacy measurements allows for decisions regarding individual variables 
and determining the overall quality of the analysis [43]. By using the KMO index, the investigator may identify individual variables 
that might lead to erroneous interpretation. Because factor-analytic investigations require prior judgments concerning which variables 
should be included, measuring sampling adequacy might be a logical intermediate step to assessing the efficacy of those judgments. 
The low Cronbach alpha and KMO test scores could be attributed to our sample size. 

4.2. Targeting 

Combining SEBP factors to identify and estimate potential smallholder farmers’ clusters was a successful approach for possible CSA 
targeting. Table 4 displays the relationship between agricultural practices, their underlying characteristics, and their impact on 
farmers’ adoption behavior and production outcomes. This approach reveals the best CSA targeting method as it relies on biophysical 
factors or natural capital to differentiate the varying needs of farmers in similar clusters. For example, farmers in Clusters 3 and 4 are 
predominantly located in Tambacounda region (Fig. 1), characterized by high elevation and high amounts of rainfall. The likelihood of 
adoption varies between the two clusters. Though the main goal is to improve soil fertility and water use management, the farmers in 
Cluster 3 are likely to adopt seed- or breed-smart CSAs and water-smart CSA technologies. In contrast, farmers in Cluster 4 are likely to 
adopt carbon and nutrient-smart CSAs. Therefore, this approach helps us use SEBP factors and natural capital and choose appropriate 
CSA targets based on the likelihood of adoption and the problems the farmers in different clusters face. 

There is also a need to bundle CSA technologies and develop participatory solutions with input based on representative cluster 
challenges. For example, farmers in Cluster 1 are likely to adopt knowledge- and water-smart technologies, which will allow them to 
recommend solutions that address issues such as nitrogen inefficiencies, fertility, and water use management. The likely CSA com-
bination bundle for farmers in such clusters would be organic and inorganic fertilizers with improved crop varieties and cover cropping 
(Table 5). 

To estimate natural capital in households, we examined crops, land, and soil characteristics: indicators of stock levels of natural 
ecosystems among the smallholder farmer households. We see that the natural capital index has a significant positive relationship with 
adopting knowledge-smart technologies. Farming activities and natural capital are inseparable and are gaining attention due to 
climate change and reduced production concerns. The agricultural practices that smallholder farmers apply directly influence the 
quality of natural capital and indirectly climate change. Farmers in Clusters 2 and 3 are endowed with high levels of natural capital, 
while farmers in Clusters 1 and 3 have low levels of natural capital, which can be indirectly linked to the different livelihoods of 
farmers in this cluster. 

The soil condition for farmers in Cluster 1 is fertile based on a high cation exchange capacity (CEC) level, sandy, clay, and silt soil 
availability, and neutral soil pH levels. Our analysis shows farmers in this cluster use few organic and organic fertilizers and experience 
low rainfall amounts. Some of the practices common among these farmers are agroforestry, contour plowing, and leaving land fallow, 
and the main occupation of these farmers include crop and livestock farming. The farmers in this cluster are likely to adopt knowledge 

Fig. 5. Top agricultural practices by clusters.  
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and water-smart CSA technologies that can boost nitrogen levels, improving plant root growth for increased production. 
Farmers in Cluster 2 receive average rainfall amounts, and the soil is sandy and clay with neutral pH levels. Though there are higher 

nitrogen levels compared to Cluster 1, the soil CEC is average in Cluster 2 than Cluster 1. Common technologies applied in this cluster 
are fallow and minimum tillage, while the common occupations are crop and livestock farming, and farmers in this cluster are likely to 
adopt seed and water-smart CSA technologies. These technologies should boost soil fertility and raise nitrogen levels to boost 

Table 4 
Summary of farmers’ typologies, i.e., cluster characteristics.  

Cluster  1 2 3 4 

Region  Sedhiou Sedhiou and 
Tambacounda 

Tambacounda Tambacounda 

Biophysical Elevation and 
rain 

Low elevation (low 
land), low rainfall 

Low elevation (low 
upland), average 
rainfall 

High elevation, high rainfall High elevation, high 
rainfall 

Nitrogen- 
responsible for 
root growth 

Low nitrogen levels Fair nitrogen levels High nitrogen levels High nitrogen levels 

Soil Sandy, clay, and silt soil Sandy and clay soil Sandy and clay, low silt Sandy and clay, low 
silt 

Soil Cation 
Exchange 
Capacity (CEC)- 
soil fertility 

High CEC Average CEC Average CEC Low CEC 

Social-economic Income Average income levels Average income levels Highest income levels Lowest income levels 
Education Low levels of education Low levels of education Low levels of education Lowest levels of 

education 
Occupation Crop, livestock farming, 

and household chores 
Crop and livestock 
farming 

Crop and livestock farming Crop and livestock 
farming 

Household type Male-headed or female- 
headed households 

Male-headed, joint 
household, or female- 
headship 

Male-headed or joint household 
headship 

Male-headed 

Social group Producer group, 
religious group, Savings 
and credit group, civic 
group, and charitable 
group 

Producer group, 
religious group, Savings 
and credit group, 
charitable group 

Marketing or commercialization, 
agricultural producer, Irrigation 
water use association (IWUA), water 
user group, religious group 

Producer group, 
religious group, 
Savings and credit 
group 

Capitals  High in human and 
social capital, 
Low in physical, natural, 
and financial capital 

High in human, 
physical, and natural 
capital 
Low in social and 
financial capital 

High in human, social, financial, and 
natural capital 
Low in physical capital 

Low in human, 
social, physical, 
financial, and natural 
capital 

Practices  Agroforestry Minimum tillage Farmyard manure Crop rotation  
Contour plowing Fallow Flood irrigation Fallow  
Crop rotation   Intercropping  
Fallow     
Minimum tillage    

Irrigation 
method  

Pouring water by hand Pouring water by hand Electric or diesel pump Bucket  
Bucket Bucket Irrigation channels Pouring water by 

hand  
Irrigation canals  Pipes Electric or diesel 

pump  
Sprinkler  Pouring water by hand Sprinkler 

Adoption 
Sg – 
significant 
NSg – not 
significant 

Carbon and 
nutrient smart 

- (Sg) -(NSg) -(Sg) þ(Sg) 

Knowledge smart þ(Sg) þ(NSg) þ(NSg) -(Sg) 
Seed or breed 
smart 

þ(NSg) þ(Sg) þ(Sg) -(NSg) 

Water-smart þ(Sg) þ(Sg) þ(Sg) -(Sg) 
Production Village access Paved, gravel, and 

footpath 
Paved, gravel, and 
footpath 

Paved, gravel, and footpath gravel and footpath 

Distance Long distance to seed 
and product market 

Long distance to seed 
and product market 

Short distance to seed and product 
market 

Short distance to seed 
and product market 

Fertilizer Below-average use of 
organic and inorganic 
fertilizers 

Average use of organic 
and inorganic fertilizers 

High use of organic and inorganic 
fertilizers 

Low use of organic 
and inorganic 
fertilizers  

Harvest Average harvest, low- 
marketed product 

Average harvest, low- 
marketed product 

High-harvest, high-marketed product Low-harvest, lo- 
marketed product 

Nutrition  High FCS, 
High HDDS, 
Average FES 
Low HFIAS 

Average FCS, 
Average HDDS, 
Low FES 
Low HFIAS 

Average FCS, 
Average HDDS, 
High FES 
Low HFIAS 

Low FCS, 
Low HDDS, 
Average FES 
High HFIAS  
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productivity among farmers. 
Farmers in Cluster 3 receive the highest amount of rainfall and have the highest harvest of tree and crop products. This cluster’s 

sandy and clay soil characteristics are acidic, with average fertility and the highest nitrogen levels. Common practices include using 
farmyard manure, flood irrigation, and high levels of organic and inorganic fertilizer. However, despite good conditions for plant 
growth, the farmers in this cluster are likely to adopt seed and water-smart CSA technologies and less likely to adopt carbon and 
nutrient-smart technologies that would likely improve soil fertility (CEC). 

Despite receiving high rainfall, the farmers in Cluster 4 experience low crop production. The sandy, clay, and low silt soils in this 
cluster are characterized as acidic and less fertile based on low CEC. The soils have high nitrogen levels despite the low use of inorganic 
and organic fertilizers. The farmers in this cluster are likely to adopt carbon and nutrient smart technologies and less likely to adopt 
knowledge- and water-smart technologies. Appropriate carbon and nutrient smart technologies are needed to maximize the high 
rainfall, maintain high nitrogen levels, and boost soil fertility. 

This study underscores the pivotal role played by the five capitals of livelihood in molding farmers’ adaptive capacity and 
consequently driving the adoption of CSA practices. The interplay among these capital characteristics directly influences a farmer’s 
adaptive capacity. Human capital development equips farmers with essential knowledge and skills, while social capital facilitates the 
exchange of information and collaborative efforts. Adequate physical and natural capital provide the necessary resources for effective 
CSA implementation, and financial capital ensures the feasibility of investing in adaptable strategies. By harnessing and synergizing 
these capital elements, farmers can enhance their adaptive capacity, navigate climatic challenges more adeptly, and expedite the 
uptake of sustainable CSA practices. 

Importantly, these insights extend beyond the study regions, offering valuable guidance for global contexts. 
Abdul-Razak & Kruse (2017) found economic resources, training, and technology to be crucial for small farmers’ adaptive capacity, 

while infrastructure, social capital, and institutions were less significant [44]. In Ghana, remittances from relatives living outside the 
communities signified the importance of family/community bonds in decreasing vulnerability to climate change since remittances play 
a significant role in lessening the burden associated with climate impacts. As noted by Kabobah et al. (2018), remittances from external 
relatives demonstrate the role of strong ties in reducing climate vulnerability [45]. 

4.3. Recommendation summary 

Table 5 indicates the possible CSA technologies recommendation based on the challenges the farmers in different clusters face and 
the likelihood of adoption. 

5. Conclusion 

The primary purpose of this study was to offer techniques for identifying smallholder farmer typologies (or clusters) based on given 
SEBP factors for CSA technology targeting. Diverse smallholder farmer profiles face different agricultural and climatic issues, thus 
requiring tailored interventions and advice [46]. Thus, grouping farmers into relevant typologies or clusters enables better targeting 
and prioritization of CSA technology, research, and development for the members of such clusters. Clustering farmers using SEBP 

Table 5 
Possible recommendation scenarios for CSA targeting by clusters.  

Cluster 1 2 3 4 

Problem/challenge Improve nitrogen levels for 
root formation 

Improve nitrogen levels for 
root formation   

Maintain or improve high soil 
fertility (CEC) 

Maintain and improve high 
soil fertility (CEC) 

Improve soil fertility (CEC) Improve soil fertility (CEC) 

Water use improvement due 
to low rainfall 

Water use improvement due to 
low rainfall 

Water use improvement due 
to heavy rainfall 

Water use improvement due 
to heavy rainfall 

Maintain soil bulk density 
(porosity) 

Maintain soil bulk density 
(porosity) 

Improve soil bulk density 
(porosity) 

Maintain soil bulk density 
(porosity) 

Maintain soil acidity Maintain soil acidity Reduce soil acidity Reduce soil acidity 
Likelihood of adoption Knowledge smart Seed and breed-smart Seed and breed smart Carbon and nutrient smart 

Water smart Water smart Water smart  
Specific practices (Paudel 

et al., 2017) 
Improved/short-duration 
crop varieties 

Improved/short-duration crop 
varieties 

Improved/short-duration 
crop varieties 

Agroforestry/Horticulture 

Green Manuring Green manuring Site-specific integrated 
nutrient management 

Intercropping 

Organic and inorganic 
fertilizers 

Organic and inorganic 
fertilizers   

Integrated pest management Integrated pest management   
Contingent crop planning Contingent crop planning Contingent crop planning Contingent crop planning 
Rainwater Harvesting- Farm 
Ponds 

Rainwater Harvesting- Farm 
Ponds 

Drainage Management Drainage Management 

Drip Irrigation Drip Irrigation Drip Irrigation Drip Irrigation 
Sprinkler Irrigation Sprinkler Irrigation Cover crops method Cover crops method 
Cover crops method Cover crops method    
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factors is important for target mapping, improving the adaptability and performance of individual clusters, determining potential 
opportunities and barriers to technology adoption, and ensuring the formulation of sector-specific policies, appropriate agricultural 
research, and the development of practical tools for the appropriate targeting of CSA technologies [47]. 

Among the Five Capitals of livelihood, natural capital has emerged as a key asset associated with adopting CSA technologies by 
farmers of various typologies. We ascribe this to the extent to which human activities, directly and indirectly, influence the man-
agement of natural household assets on their farms. This management, in turn, contributes to the exploitation or protection of these 
assets. More positive attitudes to natural capital can lead to changes in crop production, which can indirectly influence CC, impacting 
household livelihood and food security. Improving and conserving natural capital is critical for smallholder farmers to build sus-
tainable and resilient livelihoods. These actions are linked to better soil conditions and fertility, successful crop development, and 
better CC resiliency. 

As a result, research focused on elucidating potential challenges for smallholder farmer typologies or clusters related to natural 
capital, present coping mechanisms employed by these families, and the likely CSA proposal based on their likelihood of adoption. 
There is a strong belief that this study will provide insights into subjects of critical importance to the academic community and develop 
practical CSA targeting and scaling methods. 

6. Limitation 

In this study, the small sample size may have contributed to the low reliability measure and weak sampling adequacy. The limi-
tation of the findings to one setting (baseline) reduced the ability to establish causal relationships, and generalization. Future research 
should involve a larger sample size, involve multiple settings, and take a longitudinal approach to enhance the robustness of the 
conclusions drawn. 
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Appendix  

Table A1 
Description of variables  

Variable Description 

Elevation (meters above sea level (m 
asl) 

Distance above sea level. 

Precipitation A proxy of the amount of rain received. 
pH Measure of the acidity or basicity of a soil. 
Temperature The degree or intensity of heat present. 
Nitrogen – g/kg Nutrient element responsible for increase of root growth and foraging capacity for phosphorus. 
Texture The proportion of sand-, silt-, and clay-sized particles that make up the mineral fraction of the soil. 
Sand It consists of small particles of weathered rock. Sandy soils are one of the poorest types of soil for growing plants because 

they have very low nutrients and poor water-holding capacity, making it hard for the plant’s roots to absorb water. This 
type of soil is very good for the drainage system. Sandy soil is usually formed by the breakdown or fragmentation of rocks 
like granite, limestone, and quartz. 

(continued on next page) 
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Table A1 (continued ) 

Variable Description 

Silt Silt has smaller particles than sandy soil and consists of rock and other mineral particles smaller than sand and larger than 
clay. Its smooth and fine soil quality holds water better than sand. 

Cation Exchange Capacity (CEC- 
cmolc/kg) 

Used to describe the holding capacity of a particular soil for positively charged elements (cations). 
It is a key determinant of soil fertility. The more the CEC in the soil, the more the ability to hold more cations, making it 
sufficient in calcium, magnesium etc. So. More fertility. 

Bulk density (bd) Bulk density. 
Dry weight of the soil divided by its volume. Dry weight will be soil particles and the air in between the particles. It is used 
to indicate soil compaction. 
High bulk density is an indicator of low soil porosity and soil compaction. High bulk density impacts available water 
capacity, root growth, and air and water movement through soil. Compaction increases bulk density and reduces crop 
yields and vegetative cover available to protect soil from erosion. 

Agricultural income (annual) Total agricultural income. 
Other incomes (no agricultural) 

(annual) 
Total income from other sources. 

Remittance income (annual) Total income from migration and remittances. 
Food consumption score (FCS) A composite score of household dietary diversity, frequency of food group consumption, and relative nutritional 

importance of food groups consumed by the household in the past seven days (categories: poor, borderline, acceptable). 
Food expenditure share (FES) Proportion of household expenditure used for food as compared to the total food and non-food expenditure (categories: 

low, moderate, high, very high). 
Household dietary diversity score 

(HDDS) 
Food groups consumed by the household using 12 food groups (count). 

Household food insecurity access 
scale (HFIAS) 

Index of the severity of food insecurity, using a standard set of nine questions to represent increasing levels of severity over 
a period of seven days (score from 0 to 27—the higher the score, the more food insecurity the household experienced). 

Agricultural practices Agricultural practices. 
Number of social groups Total number of social groups. 
Total household members Total household members 
Total land area Total land area 
Total men hired Total men hired 
Total women hired Total women hired 
Land Number of plots owned or leased 
Crops Number of irrigated crops 
Hours Total hours worked on a farm by household per year   

Erosion Experience in soil erosion 
Irrigation method Irrigation method applied   

Table A2 
Capital description variable and test  

Capital Variables Cronbach’s alpha Kaiser-Meyer-Olkin factor 
adequacy (KMO) 

Human Gender of eligible respondent. 0.051 0.5 
Age of eligible respondent. 
Education of eligible respondent. 
Occupation of eligible respondent. 
Total household members. 
Number of members involved in providing tree management labor. 

Social Number of social groups 0.099 0.51 
The specific social groups the household engages with 
Has the household received any kind of formal support from the government or NGO over the 
past 12 months 
Over the last 12 months, how many times have you or a member of your household provided 
labor to someone else in the village who needed help? 
Over the last 12 months, how many times have you or a member of your household provided 
food to someone else in the village who needed help? 
Are there any government or NGO programs or activities in this village that help households 
when faced with a shock? 
In the last year, was there a time when people in the household needed health services but 
could not get them? 
Do you or does anyone else in your household personally know an elected government 
official? 
Could you ask the official to help your family or village if help was needed? 

Financial Total agricultural income. 0.667 0.51 
Total remittance income. 
Income for other sources. 
Wealth index. 
Has a bank. 
Use mobile phones for financial transactions. 
Regularly save cash. 

(continued on next page) 
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Table A2 (continued ) 

Capital Variables Cronbach’s alpha Kaiser-Meyer-Olkin factor 
adequacy (KMO) 

Natural Number of tree varieties grown. 0.247 0.56 
Number of crop varieties grown. 
Total land area. 
Number of pieces of land owned. 
Biophysical factors (texture, elevation, ph, cec, nitrogen, temperature, precipitation, clay, 
silt, bd). 

Physical Total livestock owned. 0.526 0.52 
Total domestic items owned. 
Total transport items owned. 
Total farm assets items owned.  

α ≥ .9 Excellent 
.9>α > .8 Good 
.8 >α > .7 
Acceptable 
.7>a≥.6 
Questionable 
.6 > α ≥ .5 Poor 
.5> α 
Unacceptable 

0 to 0.49 unacceptable 
0.50 to 0.59 miserable 
0.60 to 0.69 mediocre 
0.70 to 0.79 middling 
0.80 to 0.89 meritorious 
0.90 to 1.00 marvelous   

Table A3 
Summaries of different variables. P-values indicate the likelihood that the null hypothesis (there if no difference or the difference is equal to zero) is 
correct given the sample data.  

Clusters  1 2 3 4 pvalue 

N  300 199 120 205  
Department (%) Sedhiou 107(35.7) 55(27.6) 21(17.5) 2(1.0) <0.001 

Bounkiling 40(13.3) 11(5.5) 6(5.0) 14(6.8) 
Goudomp 64(21.3) 44(22.1) 3(2.5) 0(0.0) 
Bakel 6(2.0) 18(9.0) 69(57.5) 13(6.3) 
Koumpentoum 10(3.3) 18(9.0) 4(3.3) 89(43.4) 
Goudiry 8(2.7) 31(15.6) 8(6.7) 58(28.3) 
Tambacounda 65(21.7) 22(11.1) 9(7.5) 29(14.1) 

TotalHHMembers (mean (SD))  11.43(8.28) 13.56(8.56) 8.43(7.92) 8.33(6.94) <0.001 
Resp_Gender (%) Male 60(20.0) 32(16.1) 21(17.5) 36(17.6) 0.718  

Female 240(80.0) 167(83.9) 99(82.5) 169(82.4) 
Resp_Age (mean (SD))  39.05(11.52) 38.34(11.80) 39.81(11.56) 39.90(12.22) 0.539 
AgeGroup (%) 18–34 115(38.3) 80(40.2) 47(39.2) 70(34.3) 0.644  

35+ years 185(61.7) 119(59.8) 73(60.8) 134(65.7) 
Resp_Marital (%) Divorced 3(1.0) 1(0.5) 2(1.7) 1(0.5) 0.453 

Married monogamous 160(53.3) 115(57.8) 66(55.0) 102(49.8) 
Married polygamous 79(26.3) 39(19.6) 27(22.5) 63(30.7) 
Never married 31(10.3) 22(11.1) 13(10.8) 21(10.2) 
Partnered 0(0.0) 2(1.0) 0(0.0) 0(0.0) 
Widow or widower 27(9.0) 20(10.1) 12(10.0) 18(8.8) 

Resp_Education (%) No formal schooling 227 (75.7) 144(72.4) 91(75.8) 175(85.4) 0.017 
Some/Still Primary 36(12.0) 19(9.5) 14(11.7) 8(3.9) 
Completed Primary 10(3.3) 13(6.5) 4(3.3) 7(3.4) 
Some/still secondary 1(0.3) 0(0.0) 0(0.0) 0(0.0) 
Completed Secondary 11(3.7) 11(5.5) 7(5.8) 2(1.0) 
Some/still college 6 (2.0) 5(2.5) 0(0.0) 2(1.0) 
Completed college 6(2.0) 5(2.5) 0(0.0) 7(3.4) 
Vocational School 1(0.3) 2(1.0) 2(1.7) 4(2.0) 
Some/still University 2(0.7) 0(0.0) 1(0.8) 0(0.0) 
Completed university 0(0.0) 0(0.0) 1(0.8) 0(0.0) 

Resp_Occupation (%) None 2(0.7) 2(1.0) 4(3.3) 2(1.0) <0.001 
Farming (crop only) 179(59.7) 77(38.7) 77(64.2) 125(61.0) 
Farming (crop + livestock) 82(27.3) 99(49.7) 29(24.2) 66(32.2) 
Casual laborer on-farm 0(0.0) 0(0.0) 0(0.0) 2(1.0) 
Casual laborer off-farm 1(0.3) 1(0.5) 0(0.0) 0(0.0) 
Commerce 14(4.7) 3(1.5) 1(0.8) 2(1.0) 
Handcraft/weaving/basket 1(0.3) 2(1.0) 1(0.8) 0(0.0) 
Herding 0(0.0) 1(0.5) 0(0.0) 0(0.0) 
Household chores 11(3.7) 6(3.0) 5(4.2) 3(1.5) 
Self-employed off-farm 2(0.7) 1(0.5) 0(0.0) 2(1.0) 
Salaried employment 2(0.7) 3(1.5) 0(0.0) 0(0.0) 
School/college child 4(1.3) 4(2.0) 2(1.7) 3(1.5) 
Other occupation 2(0.7) 0(0.0) 1(0.8) 0(0.0) 

(continued on next page) 
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Table A3 (continued ) 

Clusters  1 2 3 4 pvalue 

Household Type (%) Male headed 172(57.3) 94(47.2) 53(44.2) 182(88.8) <0.001 
Female-headed 36(12.0) 21(10.6) 10(8.3) 9(4.4) 
Joint 92(30.7) 84(42.2) 57(47.5) 14(6.8) 

wealth_index_quintile (%) Low 219(73.0) 148(74.4) 45(37.5) 168(82.0) <0.001 
Middle 76(25.3) 45(22.6) 46(38.3) 31(15.1) 
High 5(1.7) 6(3.0) 29(24.2) 6(2.9) 

Wealth index (mean (SD))  − 0.12(1.66) − 0.01(1.67) 2.10(2.65) − 0.54(1.84) <0.001 
FoodCS (mean (SD))  12.93(7.28) 9.77(7.36) 9.78(7.66) 4.66(4.46) <0.001 
FoodCS Category (%) Poor 252(84.0) 183(92.0) 109(90.8) 203(99.0) <0.001  

Borderline 46(15.3) 16(8.0) 10(8.3) 2(1.0)  
Acceptable 2(0.7) 0(0.0) 1(0.8) 0(0.0) 

FESCategory (%) Low FES 193(68.7) 120(75.9) 60(53.6) 75(47.8) <0.001 
Moderate FES 49(17.4) 15(9.5) 20(17.9) 48(30.6) 
High FES 22(7.8) 11(7.0) 11(9.8) 23(14.6) 
Very high FES 17(6.0) 12(7.6) 21(18.8) 11(7.0) 

FoodExpShare (mean (SD))  38.11(22.45) 29.52(24.54) 42.24(29.33) 36.74(27.69) <0.001 
HDDS (mean (SD))  5.90(2.82) 4.66(2.77) 4.11(2.94) 2.47(1.97) <0.001 
HFIAS (mean (SD))  3.93(4.38) 4.30(5.13) 3.98(4.83) 7.53(5.80) <0.001 
numSG (mean (SD))  0.67(0.66) 0.51(0.59) 0.65(0.66) 0.36(0.50) <0.001 
NumIrriCrops (mean (SD))  1.16(1.25) 2.34(1.10) 1.90(1.10) 0.22(0.56) <0.001 
NumCSAs (mean (SD))  1.36(0.82) 1.50(0.76) 1.62(1.00) 1.33(0.72) 0.004 
AgriInc (mean (SD))  143108.28 

(207765.44) 
170286.60 
(246493.52) 

224413.04 
(292335.57) 

60063.52 
(124850.60) 

<0.001 

OtherIncomes (mean (SD))  757507.11 
(751071.09) 

737170.54 
(844934.85) 

1434134.20 
(1523567.13) 

519080.86 
(640065.26) 

<0.001 

RemitIncome (mean (SD))  67051.33 
(196680.19) 

75756.09 
(225567.60) 

173033.43 
(537959.09) 

11617.59 
(55177.24) 

<0.001 

precip (mean (SD))  392.44 
(291.93) 

526.16 
(389.85) 

911.23(494.72) 913.35 
(226.08) 

<0.001 

clay (mean (SD))  13.78(4.64) 15.01(5.79) 19.31(6.83) 18.42(4.32) <0.001 
oc (mean (SD))  6.86(4.16) 9.30(6.39) 16.13(9.67) 13.84(4.84) <0.001 
silt (mean (SD))  10.08(2.66) 9.70(2.63) 9.51(3.32) 8.56(1.90) <0.001 
sand (mean (SD))  76.09(6.27) 75.09(7.21) 67.78(14.60) 73.06(5.41) <0.001 
temp (mean (SD))  24.18(1.48) 23.43(2.10) 20.73(4.59) 21.05(1.84) <0.001 
nitrogen (mean (SD))  0.53(0.21) 0.59(0.26) 0.81(0.39) 0.79(0.23) <0.001 
cec (mean (SD))  10.08(2.99) 9.47(3.13) 8.91(3.29) 7.45(2.15) <0.001 
ph (mean (SD))  7.38(0.80) 7.07(0.95) 6.12(1.44) 6.09(0.50) <0.001 
texture (mean (SD))  9.21(1.38) 8.89(1.73) 7.20(2.25) 8.03(1.47) <0.001 
elevatn (mean (SD))  565.20 

(267.26) 
687.68 
(394.68) 

1037.95 
(519.55) 

1132.38 
(357.35) 

<0.001 

bd (mean (SD))  1380.37 
(123.33) 

1340.40 
(241.60) 

1277.46 
(301.27) 

1358.37 
(55.10) 

<0.001 

TreeMarket -walking minutes (mean 
(SD))  

661.98 
(4324.82) 

800.58 
(4415.93) 

30.29 (28.65) 18.83 (15.84) 0.769 

CropSeedSource -walking minutes (mean 
(SD))  

40.61 (39.18) 47.28 (66.96) 64.87 (70.21) 21.00 (24.01) 0.282 

ProductSalesMarket -walking minutes 
(mean (SD))  

64.94 
(136.86) 

38.43 (45.11) 43.86 (38.86) 64.29 (51.74) 0.108 

AgroProcessedProductSalesMarket 
-walking minutes (mean (SD))  

55.00 (8.66) 31.44 (19.11) Na (NA) 120.00 
(84.85) 

0.011 

TotalHarvest(KG) (mean (SD))  522.38 
(641.79) 

488.57 
(516.80) 

1710.96 
(2428.04) 

219.16 
(364.47) 

<0.001 

TotalMarketed(KG) (mean (SD))  198.31 
(310.63) 

180.27 
(259.03) 

1478.39 
(2230.30) 

214.38 
(316.09) 

<0.001 

Organic (manure, compost) (mean (SD))  389.86 
(577.58) 

859.35 
(3476.26) 

1152.64 
(1351.32) 

290.00 
(266.41) 

0.474 

Inorganic (mean (SD))  101.35 
(110.01) 

65.34 (68.06) 157.49 
(246.73) 

79.78 (72.31) 0.003 

Both (Organic and Inorganic) (mean 
(SD))  

100.25 
(70.48) 

152.00 
(160.49) 

1251.25 
(1677.64) 

350.00 
(353.55) 

0.176 

Social group (%) Agricultural marketing/ 
commercialization 
(including livestock/ 
fisheries) 

11 (5.4) 3 (2.9) 10 (12.8) 3 (4.1) <0.001 

Agricultural producers’ 
group (Including/livestock/ 
fisheries) 

74 (36.6) 46 (45.1) 34 (43.6) 32 (43.8) 

charitable group (helping 
others) 

11 (5.4) 5 (4.9) 1 (1.3) 0 (0.0) 

(continued on next page) 
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Table A3 (continued ) 

Clusters  1 2 3 4 pvalue 

Civic groups (improving 
community) 

11 (5.4) 3 (2.9) 3 (3.8) 0 (0.0) 

Environment/climate 
management group 

0 (0.0) 0 (0.0) 1 (1.3) 1 (1.4) 

Food security and nutrition 2 (1.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Irrigation water use 
association (IWUA) 

1 (0.5) 0 (0.0) 5 (6.4) 1 (1.4) 

Local government 0 (0.0) 0 (0.0) 1 (1.3) 1 (1.4) 
Mutual help or insurance 
group (including burial 
societies) 

1 (0.5) 1 (1.0) 2 (2.6) 0 (0.0) 

Other group (only if it does 
not fit into one of the other 
categories) 

31 (15.3) 3 (2.9) 7 (9.0) 6 (8.2) 

Religious group 26 (12.9) 29 (28.4) 5 (6.4) 12 (16.4) 
Savings and credit group 
(including SACCOs/merry- 
go-rounds/VSLAs) 

28 (13.9) 9 (8.8) 1 (1.3) 14 (19.2) 

Water users’ group 6 (3.0) 3 (2.9) 8 (10.3) 3 (4.1) 
Access to the village (%) Paved road (e.g., asphalt) 16 (5.3) 12 (6.0) 11 (9.2) 5 (2.4) <0.001 

Dirt or gravel road 138 (46.0) 106 (53.3) 78 (65.0) 121 (59.0) 
Mixed paved and dirt 1 (0.3) 7 (3.5) 3 (2.5) 3 (1.5) 
Footpath/trail 57 (19.0) 32 (16.1) 15 (12.5) 58 (28.3) 
Don’t know 2 (0.7) 12 (6.0) 0 (0.0) 1 (0.5) 
Refused 1 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 
Other 85 (28.3) 30 (15.1) 13 (10.8) 17 (8.3)  
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picture, Land Use Pol. 75 (2018), https://doi.org/10.1016/j.landusepol.2018.04.012. 

[11] I. Daloǧlu, J.I. Nassauer, R.L. Riolo, D. Scavia, Development of a farmer typology of agricultural conservation behavior in the american corn belt, Agric. Syst. 
129 (2014), https://doi.org/10.1016/j.agsy.2014.05.007. 

[12] S. Kumar, P. Craufurd, A. Haileslassie, T. Ramilan, A. Rathore, A. Whitbread, Farm typology analysis and technology assessment: an application in an arid region 
of South Asia, Land Use Pol. 88 (2019), 104149, https://doi.org/10.1016/j.landusepol.2019.104149. ISSN 0264-8377. 
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