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Despite the identification of many genes and pathways involved in the persistence
phenomenon of bacteria, the relative importance of these genes in a single organism
remains unclear. Here, using Escherichia coli as a model, we generated mutants of
21 known candidate persister genes and compared the relative importance of these
mutants in persistence to various antibiotics (ampicillin, gentamicin, norfloxacin, and
trimethoprim) at different times. We found that oxyR, dnaK, sucB, relA, rpoS, clpB,
mqsR, and recA were prominent persister genes involved in persistence to multiple
antibiotics. These genes map to the following pathways: antioxidative defense pathway
(oxyR), global regulators (dnaK, clpB, and rpoS), energy production (sucB), stringent
response (relA), toxin–antitoxin (TA) module (mqsR), and SOS response (recA). Among
the TA modules, the ranking order was mqsR, lon, relE, tisAB, hipA, and dinJ.
Intriguingly, rpoS deletion caused a defect in persistence to gentamicin but increased
persistence to ampicillin and norfloxacin. Mutants demonstrated dramatic differences
in persistence to different antibiotics at different time points: some mutants (oxyR,
dnaK, phoU, lon, recA, mqsR, and tisAB) displayed defect in persistence from early
time points, while other mutants (relE, smpB, glpD, umuD, and tnaA) showed defect
only at later time points. These results indicate that varying hierarchy and importance
of persister genes exist and that persister genes can be divided into those involved
in shallow persistence and those involved in deep persistence. Our findings suggest
that the persistence phenomenon is a dynamic process with different persister genes
playing roles of variable significance at different times. These findings have implications
for improved understanding of persistence phenomenon and developing new drugs
targeting persisters for more effective cure of persistent infections.
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Introduction

Persisters are a small subpopulation of generally quiescent
bacterial cells that are tolerant to bactericidal antibiotics
(Lewis, 2010). In contrast to resistant cells, persisters are
phenotypically and genetically identical to susceptible bacteria
(Balaban et al., 2004). Studies have shown that persisters
play a role in treatment failure in persistent infections
such as tuberculosis (Zhang et al., 2012), urinary tract
infections (Blango and Mulvey, 2010), and biofilm infections
(Singh et al., 2009; Levin et al., 2014), underscoring the
need for improved understanding of bacterial persistence
and better treatment. Although the phenomenon of
bacterial persistence was discovered over 70 years ago
(Hobby et al., 1942; Bigger, 1944), it is only recently that
researchers began to understand the mechanisms of persister
formation.

A number of genes and pathways have been found to
be associated with persister formation or survival. Since
the first toxin protein HipA was linked to persistence in
Escherichia coli in Moyed and Bertrand (1983), increasing
evidence suggests that persistence is only partially attributed
to the toxin–antitoxin (TA) modules (Lewis, 2010). Other
genes involved in persistence are found in the pathways of
stringent response (Korch et al., 2003), SOS response (Debbia
et al., 2001; Dorr et al., 2009), energy metabolism (Ma et al.,
2010; Girgis et al., 2012), global regulators such as PhoU
(Li and Zhang, 2007), trans-translation (Shi et al., 2011; Li
et al., 2013) and signaling pathways (Vega et al., 2012).
These findings suggest that persistence is a very complex
phenomenon with redundant mechanisms. Despite the above
progress, the studies that led to the identification of various
persister genes were performed in different strains, or with
the same strain but one antibiotic or one time point, or
by different investigators under different conditions. Thus,
the relative importance of the identified persister genes and
pathways in persister formation is unknown and has never
been evaluated in a single study under the same conditions
in the same strain over different time points. We hypothesize
that not all persister genes are created equal and that different
persister genes may play a different role under different
conditions.

In the present study, we assessed whether some
persister genes or pathways play more important roles
than others in conferring the persistence phenotype.
Taking advantage of the convenient genetic manipulation
of the model organism E. coli, we constructed deletion
mutants of 21 known persister genes (Zhang, 2014)
and ranked their relative importance in persistence in
different antibiotic exposure assays. Our data revealed
varying degrees of decreased persistence among different
mutants. They also showed that different persistence
genes have a different role with variable importance
in persistence at different times. Our findings provide
valuable information on bacterial persistence genes and
shed new light on the complexity of the persistence
phenomenon.

Materials and Methods

Bacterial Strains and Growth Media
The E. coli K12 W3110 bacterial strain used in this work is
the wild-type (F−mcrAmcrB IN(rrnD-rrnE)1 lambda−), and was
used for construction of knockout mutants of 21 persister genes.
Luria–Bertani (LB; 0.5% NaCl) broth and agar (15 g/L) were
used for routine cultivation of the E. coli strains. To ensure the
reproducibility of the results, LB medium was prepared by filter
sterilization rather than by autoclaving.

Construction of E. coli W3110 Knockout
Mutants
Disruption of 21 candidate persister genes in the E. coli
chromosome was achieved by using the λ Red recombination
system, as previously described by Datsenko and Wanner
(2000). Further details of primers designed for this purpose and
additional external primers used to verify the correct integration
of the PCR fragments by homologous recombination are shown
in Supplementary Table S1.

Persister Assay
Persistence was measured by determining bacterial survival
in the form of colony forming units upon exposure to four
antibiotics, namely, ampicillin at 100 μg/ml; norfloxacin at
4 μg/ml; gentamicin at 20 μg/ml; and trimethoprim at 64 μg/ml
(Li et al., 2013). A single type of antibiotic was used for
each knockout gene mutant. E. coli cells were grown to
stationary phase in LB medium, and 1:100 dilutions (Luidalepp
et al., 2011) were made in fresh medium containing a specific
antibiotic. The antibiotic exposure was carried out over a
period of several hours to 7 days at 37◦C without shaking.
Samples were withdrawn at the indicated times, diluted in sterile
saline, and plated on LB agar without antibiotics. Colonies
were counted on the following day after overnight incubation
at 37◦C.

Susceptibility of Mutants to Various Antibiotics
Minimum inhibitory concentration (MIC) and minimum
bactericidal concentrations (MBC) of ampicillin, gentamicin,
norfloxacin, and trimethoprim were determined by using serial
twofold dilutions of the antibiotics in LB broth. The bacterial
inocula consisted of 106 to 107 bacteria/ml of diluted stationary-
phase cultures, and the samples were incubated for 18 h at 37◦C
without shaking. The MIC was recorded as the minimum drug
concentration that prevented visible growth, and the MBC was
recorded as the lowest concentration that killed 99.9% of the
initial inoculum.

Persister Gene Scoring
Persister genes were ranked according to cell survival under
exposure to four different antibiotics at different times. The
persisters genes whose mutants showed significant difference
compared to the parent strain were scored as “1” point, whereas
those mutants that did not show significant difference compared
to the parent strain were scored as “0”. All scores for a given
mutant were calculated from the sum of values from different
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antibiotic exposures to obtain the ranking of the persister genes
(Table 1; Supplementary Tables S2–S4).

Statistical Analysis of Data
The statistical significance of the data (wild-type versus
mutant upon exposure to a specific antibiotic) was evaluated
with non-parametric tests (Mann–Whitney U tests). Data are
representative of three independent experiments. All data are
presented as the mean ± SD. A P-value <0.05 was considered
statistically significant.

Results

Susceptibility of Deletion Mutants of Known
Persister Genes to Various Antibiotics
To determine the persister levels for the persister gene deletion
mutants, the stationary phase cultures of the mutants and
the wild-type strain W3110 were exposed to the following
four antibiotics, respectively, including ampicillin (100 μg/ml),
norfloxacin (4 μg/ml), gentamicin (20 μg/ml), and trimethoprim
(64 μg/ml). The survival of the mutants at different time points
under exposure of a single antibiotic was assessed. The results
showed that about half the mutants were more susceptible to
most antibiotics than the parent strain W3110. Upon treatment
with ampicillin, the persister levels of most knockout strains
decreased significantly at 2 h, while those of the wild-type strain
decreased from 4 h antibiotic exposure (data not shown). It is
worth noting that persister levels in oxyR, dnaK, recA, lon, relA,

glpD, mqsR, phoU, and sucB mutants were below the limit of
detection (10 CFU/ml) after ampicillin exposure after 1 day,
whereas about three orders of magnitude (0.01%) of the parent
control strainW3110 cells still remained (Figure 1). The persister
gene mutants were ranked from 4 h, because almost all the
mutants demonstrated the same magnitude of decrease before
this time point. The results showed that deletion of recA, lon,
oxyR, phoU, dnaK, and mqsR significantly decreased persister
formation (>6.9-fold) compared with W3110. At 8 h, in addition
to the six genes above, the relA, sucB, and glpD mutants also
displayed a dramatic decrease in persister levels. Furthermore,
the relE and clpB mutants showed a significant decrease at
24 h. Therefore, the 11 genes could be divided into three
groups according to the time points when a significant defect in
persistence was observed, suggesting that different persister genes
play roles of variable importance at different time points during
the persistence phenomenon.

The pattern of results from the norfloxacin treatment was
similar to that obtained using ampicillin. Cells were progressively
killed during an 8 h period. The decrease in persister levels was
observed from 2 h after norfloxacin treatment and no surviving
bacteria were detected in nine mutants (dnaK, relA, oxyR, clpB,
recA, relE, glpD, lon, and tisAB) at 24 h (Figure 2), whereas the
parent strain had 2 × 102 viable bacteria left.

The persister gene ranking was initiated at 4 h owing to
the same reason mentioned above. As shown in Figure 2, only
�dnaK, �tisAB and �recA mutants showed more than 5.4-fold
decrease in persister cell survival at 4 h. Moreover, the persister
cell survival in �dnaK was found to drop sharply even from

TABLE 1 | Comprehensive ranking of persister genes and pathways according to scores∗ .

Mutated persister genes Persistence pathways KEGG pathways Score

1 oxyR Antioxidant defense 10

2 dnaK Global regulator RNA degradation 9

3 sucB Energy production Lysine degradation| Citrate cycle (TCA cycle)| Carbon metabolism 8

relA Stringent response Purine metabolism 8

4 rpoS Global regulator 7

5 clpB Global regulator 6

mqsR TA module 6

recA SOS response Homologous recombination 6

6 lon TA module/protease 5

7 phoU Global regulator 4

smpB Trans-translation 4

glpD Energy production Glycerophospholipid metabolism 4

relE TA module 4

8 ssrA Trans-translation 3

uvrA SOS response Nucleotide excision repair 3

tisAB TA module 3

9 tnaA Signaling pathway Tryptophan metabolism 1

umuD SOS response 1

hipA TA module 1

10 pspF Signaling pathway 0

dinJ TA module 0

∗Persister genes were ranked according to cell survival under exposure to four different antibiotics at different times. The persisters genes whose mutants show significant
difference compared to the parent strain were scored as “1” point, whereas those mutants that did show significant difference were scored as “0”. All scores for a given
mutant are calculated from the sum of different antibiotic exposures to obtain the ranking order of the 21 persister genes.
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FIGURE 1 | Deletion mutant ranking depends on cell survival over time
under conditions of ampicillin exposure. Stationary phase cultures of
W3110 (gray bars) and single-gene mutants (white bars) were diluted 100-fold
and exposed to 100 μg/ml ampicillin for 4, 8, and 24 h. The data for each
mutant was plotted and compared with that of W3110. Error bars indicate the
standard deviation (n = 3). The asterisk indicates statistical significance as
determined using Mann–Whitney U tests (∗P < 0.05).

FIGURE 2 | Deletion mutant ranking depends on cell survival over time
under conditions of norfloxacin exposure. Stationary phase cultures of
W3110 and single-gene mutants were diluted 100-fold and exposed to
4 μg/ml norfloxacin for 4, 8, and 24 h. The data for each mutant was plotted
and compared with that of W3110. Error bars indicate the standard deviation
(n = 3). The asterisk indicates statistical significance as determined using
Mann–Whitney U tests (∗P < 0.05).
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the first 2 h. Other two mutants (tisAB, recA) demonstrated
significant decrease in persister levels from 4 h (Figure 2).
At 24 h, the other nine mutants (relA, relE, clpB, oxyR, lon,
glpD, mqsR, umuD, and tnaA) exhibited a dramatic decrease
by more than 2.7-fold compared with the wild-type (Figure 2).
These nine genes (relA, oxyR, clpB, relE, glpD, lon, mqsR, umuD,
and tnaA) compared to dnaK, recA, tisAB could be long-time
stress dependent genes, and may be called ‘deep persister’ genes
to quinolone stress. From our data, dnaK showed the highest
sensitivity to norfloxacin among the 21 mutants with the shortest
survival time, suggesting the importance of dnaK in persister
cell formation under stress of fluoroquinolone antibiotics. Other
genes, including relA, clpB, glpD, relE, oxyR, lon, etc., may support
persistence later, from 8 h (Figure 2).

When stationary phase cells were transferred to freshmedium,
considerably fewer gentamicin-tolerant persisters were alive after
4 h. All of the mutant cells were completely killed by gentamicin
in 8 h including the wild-type strain (data not shown). Given the
rapid sterilization by gentamicin, we ranked these mutants 0.5 h
onward. After 2 h treatment, gentamicin effectively sterilized
rpoS, smpB, phoU, oxyR, and dnaK mutants and the number
of CFU dropped below the detection limit, whereas the wild-
type strain had about 2.3 × 102 (0.001%) viable bacteria left.
Interestingly, unlike the high persistence during ampicillin and
norfloxacin treatment, we found that deletion of rpoS caused
a significant decrease in persister levels when the mutant
was subjected to gentamicin compared with the parent strain
(Figure 3).

Both mutants and the wild-type strain showed higher
tolerance to the bacteriostatic agent trimethoprim. After
exposure to trimethoprim, the strains showed a lower decrease
in colony counts compared with the other three bactericidal
antibiotics. Interestingly, trimethoprim becomes bactericidal
to some mutants during prolonged incubation (see below).
The uvrA, relA, clpB, oxyR, and sucB deletion mutants had
significantly lower persister levels from day 3, when the wild-type
strain still had a high percentage of persisters at 68.8% (Figure 4).
At day 5, other genes, smpB, dnaK, ssrA, and mqsR mutants
entered into the dramatically decreasing phase. In contrast to the
clpB and relA mutants, where reduction was almost top ranked
through days 3–7, the decreasing trend of the uvrA mutant
slowed from the topmost position at day 3 and was replaced by
other mutants at the following time points (Figure 4). The data
again support the notion that the importance of persister genes
is relative, and varies with time (Li and Zhang, 2007; Ma et al.,
2010). Moreover, relA, clpB, dnaK, and sucB mutant strains were
more susceptible than the wild-type strain to the bacteriostatic
antibiotic trimethoprim such that no viable bacteria were left in
these mutants after 7 days exposure, while the wild-type strain
had about 3.3 × 105 CFU/ml remaining.

Ranking of Persister Genes According to
Pathways in Persister Formation
We were able to rank the 21 persister genes into 10 grades
or levels according to the ranking scores calculated based on
difference of the mutants from the parent strain in response to
different antibiotics over different time points (Table 1). The

FIGURE 3 | Deletion mutant ranking depends on cell survival over time
under conditions of gentamicin exposure. Stationary phase cultures of
W3110 and single-gene mutants were diluted 100-fold and exposed to
20 μg/ml gentamicin for 0.5, 1, and 2 h. The data for each mutant was
plotted and compared with that of W3110. Error bars indicate the standard
deviation (n = 3). The asterisk indicates statistical significance as determined
using Mann–Whitney U tests (∗P < 0.05).
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FIGURE 4 | Deletion mutant ranking depends on cell survival over time
under conditions of trimtheprim exposure. Stationary phase cultures of
W3110 and single-gene mutants were diluted 100-fold and exposed to
64 μg/ml trimethoprim for 3, 5, and 7 days. The data for each mutant was
plotted and compared with that of W3110. Error bars indicate the standard
deviation (n = 3). The asterisk indicates statistical significance as determined
using Mann–Whitney U tests (∗P < 0.05).

genes belonging to TA modules, global regulators, stringent
response, energy production, and signaling pathways showed
lower persistence levels and higher scores in multiple antibiotic
exposure assays (Table 1; Supplementary Tables S2–S4). Many
studies suggested that TA modules may be involved in persister
formation (Keren et al., 2004; Buts et al., 2005; Vazquez-Laslop
et al., 2006; Wang and Wood, 2011; Hong et al., 2012; Kaspy
et al., 2013; Wang et al., 2013). Persistence can be induced by
overexpression of various toxins: HipA, RelE, MqsR and MazF
(Falla and Chopra, 1998; Kim et al., 2010; Maisonneuve et al.,
2011; Tashiro et al., 2012). In this study, six TA module genes
(relE, hipA, mqsR, tisAB, lon, and dinJ) were used to determine
which genes are more important in this pathway. Among the six
selected TA gene mutants, mqsR and relE mutants demonstrated
the most obvious persistence defect in being susceptible to three
antibiotics tested (ampicillin, norfloxacin, and trimethoprim for
mqsR mutant, ampicillin, norfloxacin, and gentamicin for relE
mutant; Figures 1–4), while other four TA genes (hipA, tisAB,
lon, and dinJ) showed persistence defect with exposure to one
or two antibiotics (Figures 1–4), indicating the four genes
(hipA, tisAB, lon, and dinJ) are involved in narrower range of
antibiotic tolerance compared to mqsR and relE. It was worth
noting that, although lonmutant was only sensitive to ampicillin
and norfloxacin, it was still an important TA gene according
to its higher score compare with that of relE mutant. These
results suggest that different elements of the same pathway (or
similar molecular function/biological process) can display diverse
responses toward different antibiotic stress and the importance
of different genes in a specific persistence pathway can vary. Our
findings suggest mqsR, lon, and relE may be the more important
genes in persistence among the six TA modules tested.

We also observed varying importance of persister genes in
other pathways. SOS response is an inducible DNA repair system
that is initiated when RecA senses damaged DNA and promotes
cleavage of the global repressor LexA (Michel, 2005). In the
pathway of SOS response, recA mutant showed more obvious
defect than umuD and uvrA mutants in persister formation
under bactericidal antibiotic exposure (Table 1). The bacterial
stationary-phase signaling molecule indole may act through
antioxidant defense OxyR and phage-shock pathways to induce
persister formation in E. coli (Vega et al., 2012). Among the
genes of these different signaling pathways, the oxyR mutant
had persister defect during exposure to all four antibiotics from
early timepoints and was the top gene due to its highest score
(Table 1), whereas pspF and tnaA mutants showed defects only
when exposed to norfloxacin at 24 h (Figures 1–4).

In the group of global regulators (Hansen et al., 2008;
Matsuoka and Shimizu, 2011), three genes, dnaK, clpB, and
phoU were studied. DnaK and ClpB belong to a family of Heat
shock protein, which are molecular chaperones that cooperate
in the chaperone-mediated, ATP-dependent unfolding of protein
aggregates (Straus et al., 1990; Szabo et al., 1994), and also
act as regulators of a large series of genes induced by heat
shock and general stress response (Tilly et al., 1983; Squires
et al., 1991; Muffler et al., 1996). It has been suggested that
DnaK may be required for the maintenance of persistence, as
a dnaK deleted strain produced decreased number of persisters
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(Singh et al., 2007; Hansen et al., 2008). In this study, clpB and
dnaK mutants had defect in persister formation in exposure to
three and four antibiotics, respectively, indicating the importance
of global regulators for persister cells (Table 1). Our results
showed that dnaK not only was more important than clpB in
global regulators, but also played a crucial role, comparable in
degree to genes in other pathways, such as oxyR and relA in
persister formation, both of which demonstrated importance in
exposure to four antibiotics. PhoU, whose expression is regulated
by environmental changes like nutrient availability and age of
culture, is a global negative regulator beyond its role in phosphate
metabolism (Li and Zhang, 2007). In this study, phoU mutant
had a dramatic defect in persister phenotype with ampicillin
and gentamicin (Figures 1 and 3), consistent with our previous
findings (Li and Zhang, 2007).

sucB and glpD are involved in energy metabolism pathways,
and have been shown to play a role in persister formation
and tolerance to multiple antibiotics and stresses in E. coli
(Yeh et al., 2008; Ma et al., 2010). Both sucB and glpD
mutants were more susceptible to ampicillin during prolonged
exposures (24 h) but they did not have an obvious decrease in
persistence compared to that during a short exposure of 4 h
(Figure 1).

Deletion of rpoS Increased Persistence to
Ampicillin and Norflaxacin Treatment
In the present study, almost all mutants showed varying degrees
of defects in persistence to antibiotics, except for the rpoS
mutant. Sigma factor RpoS regulation is one of the major stress
resistance mechanisms in bacteria in the stationary phase since
RpoS regulates many stress-responsive genes (Hengge-Aronis,
1996; Gerard et al., 1999). Paradoxically, cells that lack rpoS
dramatically increased persister production compared with the
parent strain during ampicillin treatment (8 and 24 h) (Figure 1).
Furthermore, deletion of rpoS significantly increased persister
production (about 17-fold) compared with the parent strain
during exposure to norflorxacin (4 μg/ml) exposure, such that
0.01% of the cells were present in the rpoS mutant while the
parent strain had only 0.0006% viable persister cells remaining
after exposure to norflorxacin for 24 h (Figure 2). However, the
rpoS mutant was more susceptible to gentamicin exposure than
the parent strain (Figure 3).

Minimum Inhibitory Concentration and
Minimum Bactericidal Concentrations of the
Persister Gene Deletion Mutants
Although it is generally assumed that persister genes have
no effect on the MIC, some mutants defective in persister
genes, such as phoU, sucB, and smpB may exhibit a slightly
increased sensitivity to antibiotics (Li and Zhang, 2007; Ma
et al., 2010; Li et al., 2013). In order to assess if this is a more
general phenomenon among persister genes, we determined the
susceptibility of all the 21 persister gene mutants to a variety of
antibiotics in MIC and MBC tests. In general, there were 2- to 4-
fold changes between all mutants and the wild-type strain to three
bactericidal antibiotics ampicillin, gentamicin, and norfloxacin
(Table 2). An interesting observation is that many persister gene

mutants were found to be more susceptible to the sulfa drug
trimethoprim than wild-type W3110 in both MIC and MBC tests
(Table 2).

Discussion

Although a significant number of persister genes have been
identified (Kint et al., 2012; Amato et al., 2014), they were
identified in different studies under different conditions and
their relative importance in bacterial persistence in one single
study under the same conditions in the same genetic background
using varying timepoints have not been performed. Here, using
E. coli as a model, we newly constructed deletion mutants of 21
candidate persister genes and analyzed the relative importance
of these persiser genes or pathways with different antibiotics
over time. While E. coli KEIO library was used in a single
genetic background under a single condition, it was done only
with one antibiotic ofloxacin, and with only one time point
(6 h). In contrast, this study used four different antibiotics
(gentamicin, ampicillin, norflorxacin, and trimethoprim), and
each antibiotic at different time points, which has never been
done before. Interestingly, we found that different persister
genes are of varying importance in persistence depending on
the length of antibiotic exposure and the type of antibiotics
(Table 1, Figures 1–4). These findings suggest that the persistence
phenomenon is not a fixed feature but rather is hierarchical
and dynamic in nature, which is consistent with our previous
study on the persister gene phoU (Li and Zhang, 2007). Our
studies confirm and extend the current understanding of persister
mechanisms.

In our study, mutants showed a dramatic decrease in
persistence at different time points: the decrease in persistence
of some mutants occurred at an earlier time point (0.5 h for
gentamicin or 4 h for ampicillin and norflorxacin or 3 days
for trimethoprim), while some displayed defects at later time
points (2 h for gentamicin, 24 h for ampicillin and norflorxacin,
or 7 days for trimethoprim). For example, upon exposure to
ampicillin for 4 h, recA, lon, oxyR, phoU, dnaK, and mqsR
mutants showed the most significant defects, whereas the relA
mutant responded to this stress with significant defects only
after 8 h (Figure 1). Similarly, upon norfloxacin exposure,
the number of �dnaK mutant bacteria dropped sharply at
2 h. The number of �recA and �tisAB mutants decreased
dramatically at 4 h, another nine mutants exhibited a significant
decrease in persistence at 24 h (Figure 2). These findings may
imply different genes are preferentially important at different
times for maintaining persister survival. The results of this
study support the notion that persister genes are not created
equal and can be divided into those involved in shallow
persistence, intermediate-level persistence, and deep persistence
(Ma et al., 2010), as expressed in the Yin-Yang model (Zhang,
2014).

When the exposure time was extended to 24 h (2 h for
gentamicin and 7 days for trimethoprim), the number of
persisters of 14 single-deletion mutants (oxyR, dnaK, recA,
relE, relA, lon, glpD, mqsR, phoU, sucB, rpoS, smpB, tisAB,
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TABLE 2 | Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determination for 21 persister mutants and the parent
strain E. coli W3110 using different antibiotics∗.

MIC/MBC (mg/L)

Strains Ampicillin Gentamicin Norfloxacin Trimethoprim

�glpD 6.25/25 2.5/2.5 0.125/0.125 0.5/2

�relA 6.25/12.5 1.25/1.25 0.125/0.125 0.5/2

�uvrA 12.5/25 1.25/2.5 0.125/0.125 0.5/2

�umuD 6.25/12.5 2.5/5 0.25/0.5 0.25/1

�lon 6.25/12.5 2.5/2.5 0.25/0.25 0.5/4

�relE 6.25/12.5 2.5/2.5 0.125/0.125 0.125/0.5

�smpB 6.25/6.25 1.25/2.5 0.06/0.25 0.125/0.25

�ssrA 6.25/6.25 2.5/2.5 0.06/0.25 0.25/1

�dinJ 12.5/25 2.5/5 0.125/0.125 0.5/2

�rpoS 12.5/25 1.25/1.25 0.25/0.25 0.5/4

�tnaA 6.25/12.5 2.5/2.5 0.125/0.125 0.5/1

�pspF 12.5/25 2.5/2.5 0.125/0.125 0.5/2

�mqsR 6.25/12.5 2.5/2.5 0.25/0.25 0.5/2

�clpB 12.5/25 1.25/2.5 0.125/0.25 0.06/0.25

�phoU 3.13/6.25 1.25/1.25 0.06/0.125 0.25/1

�hipA 6.25/6.25 1.25/1.25 0.125/0.125 0.25/1

�recA 6.25/12.5 1.25/2.5 0.125/0.125 0.25/2

�tisAB 3.13/6.25 1.25/1.25 0.125/0.125 0.25/1

�sucB 6.25/12.5 1.25/2.5 0.06/0.125 0.25/2

�oxyR 12.5/25 2.5/2.5 0.25/0.25 0.25/1

�dnaK 6.25/12.5 1.25/1.25 0.25/0.5 0.125/0.5

W3110 6.25/12.5 2.5/2.5 0.125/0.125 0.5/2

∗The first value is MIC and the second value under ‘/’ refers to MBC.

and clpB) involved in multiple pathways all dropped below
the detection limit (Figures 1–4), indicating that genes and
pathways able to affect the persister formation and survival
constitute a network, in which components may interact with
each other. These results again confirm the redundancy in
persister genes or pathways, suggesting that bacterial persistence
requires coordination of multiple genes and pathways involved
in sensing, stress response/survival, energy production, and DNA
repair.

The bi-phasic killing pattern is commonly done on growing
culture to demonstrate the persister phenomenon. However,
persister assays can also be done with non-growing stationary
phase cultures, which can show more clearly persistence
phenotype of the persisters and may not show the bi-phasic
killing curve. We used stationary phase cultures with a range
of different antibiotic exposure time points including early time
points which are mostly used in persister studies as well as
later time points which are not often used but are important
to demonstrate deep persister genes. If we only used early time
points as done in most studies, we would miss the effect of a
given persister gene or be mistaken that there is no difference
in persister levels when a difference indeed exists if later time
points are used. Also, we chose the antibiotic exposure timepoints
according to the previous work of Tenson and colleagues
(Luidalepp et al., 2011) and our group (Li and Zhang, 2007).
In fact, when Bigger first gave the term “persister,” he used a
long antibiotic exposure time ranging from 1 day to 3 days

(Bigger, 1944). Thus, the use of prolonged time points with
stationary phase cultures is justified and is in fact important
in this study to rank the persister genes in a way that is not
previously done. An important difference between this study
and the previous studies (Hansen et al., 2008; Dorr et al., 2010)
is that we used a range of antibiotic exposure times including
an extended antibiotic exposure time of up to 24 h (2 h for
gentamicin and 7 days for trimethoprim) in order to examine
the ‘deep persisters’ (Ma et al., 2010). Compared to mutants
with a minor or “shallow” persistence phenotype (about 10-fold
drop in persisters compared with the wild-type strain) observed
in the previous study with a shorter time antibiotic exposure
time of 5–6 h (Hansen et al., 2008), the persister phenotype was
more distinguishable with larger differences in the number of
persisters between the mutants and the parent strain in our study
with extended exposure times. More importantly, it allows the
demonstration of the varying importance of different individual
persister genes at different times of drug exposure and the
dynamic nature of persisters.

It is interesting to note that significant persistence defects
in persister gene mutants was observed even with the
bacteriostatic sulfa drug trimethoprim. The uvrA, relA, clpB,
oxyR, and sucB mutants decreased about 3–1000 fold at
3 days, whereas smpB, dnaK, ssrA, and mqsR mutants could
be ranked at 5 days. A hierarchy of importance of persistence
genes is probably correlated with the adaptation mechanisms
of persisters to respond to changes in the environment.

Frontiers in Microbiology | www.frontiersin.org 8 September 2015 | Volume 6 | Article 1003

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Wu et al. Ranking of persister genes

These findings are consistent with and support the notion that
persisters may consist of different subpopulations of varying
hierarchy in continuum (Zhang, 2014). The late persister
genes may cooperate with the earlier persister genes to
facilitate transition from the shallow to deep persistence in a
subpopulation of persisters. It is also likely that they may work
in different subpopulations at different times. Moreover, given
that trimethoprim is known to inhibit folic acid synthesis, which
is essential for synthesis of thymidine triphosphate (dTTP) in
bacteria, defects in dTTP synthesis could cause thymine-less
death in bacteria (Itsko and Schaaper, 2014), and underlie the
increased susceptibility of the mutants to even bacteriostatic
sulfa drugs. The significant bactericidal activity of trimethoprim
against the above mutants suggests that sulfa drugs could be
critical for persister bacteria lacking certain functional pathways,
such as stringent response, SOS response, and signaling pathways.
The underlying mechanism needs further investigation.

Previous studies have mainly examined the persister genes
using a single antibiotic and often single time. Therefore, it is hard
to differentiate the most important genes (pathways) and ranked
them accurately. To avoid the arbitary ranking of the persister
genes, we used four different antibiotics and over different time
points. This will insure that the ranking is done in a more precise
manner. Our ranking under various antibiotic exposures over
time found that oxyR (oxidative stress pathway), dnaK, clpB, and
rpoS (global regulator), relA (stringent response), sucB (energy
production), mqsR (toxin–antitoxin modules), and recA (SOS
response) seem to be prominent genes in this study according to
the total scores used to more clearly rank the relative importance
of the persister genes (Table 1). The eight mutants showed more
significant reductions in persistence than other mutants at almost
all the time points in exposures to more than two different
antibiotics.

The results obtained using different classes of antibiotics
indicate that aminoglycoside antibiotic gentamicin can lead
to a very low persister level or sterilization of wild-type
bacterial cultures, whereas ampicillin, norfloxacin, and especially
trimethoprim, leave a detectable fraction of persisters after a 24-
h treatment (7 days for trimethoprim). One possibility is that,
gentamicin besides inducing misreading in protein synthesis also
targets trans-translation pathway (Konno et al., 2004) that has
been shown to be involved in persistence (Li et al., 2013) such
that gentamicin kills persister bacteria more effectively than other
aminoglycoside antibiotics such as streptomycin and hygromycin
B that do not inhibit trans-translation (Konno et al., 2004). In
contrast to other knockout mutants tested, the deletion mutant
of rpoS displayed a defect in persistence to gentamicin, but a
higher persistence phenotype than wild-type strain in exposure
to ampicillin or norfloxacin. Our data are compatible with the
previous observation (Hong et al., 2012; Wang et al., 2014) that
loss of RpoS renders stationary-phase E. coli more sensitive to
gentamicin by generating more ROS to enhance oxidative stress,
whereas compensatory mutations may have occurred in the RpoS
mutant induced by ampicillin and norfloxacin, which led to
a higher persistence phenotype. Future studies are needed to
address this possibility. Thus, a potential limitation of the study
on persister gene deletion is the possible compensation by other

genes thatmaymask the role and, therefore, compromise the study
of persister genes under different conditions. Future studies using
targeted point mutations in candidate persister genes to avoid
compensatory mutations or the polar effects of gene deletions
may help to address the limitation of the gene deletion approach.

It is worth noting that the persister levels vary according
to laboratory conditions, age of inoculum, specific environment
or models used in the study. Hence, the media, cultivation
conditions, E. coli strain of different genetic background, and
viability detection methods used in our study may not lead to
results directly comparable to previous studies. Furthermore,
data acquired from in vitro studies should be evaluated in animal
models that imitate human infections. Although persisters in
vitro are not the same as persisters in vivo due to differences in
the environments that the bacteria reside in and the presence or
absence of antibiotic exposure, the in vitro persisters may share
some common features of in vivo persisters and should have value
in persister studies as surrogates of in vivo persisters (Zhang,
2014). Future studies are needed to validate the findings of this
in vitro study in animal models.

Conclusion

The present study extends our concept of bacterial persisters by
demonstrating the varying hierarchy of importance of persister
genes or pathways. Our study indicates that different persister
genes play key roles at different times and according to different
antibiotics. Our data also provide evidence for the notion that
persister genes could be divided into shallow persistence and deep
persistence genes. The identified key persister genes may serve as
targets for development of new drugs against persisters for more
effective treatment of persistent bacterial infections.
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