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Abstract

Motivation: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the
diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light
microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually
needs initial classification, which is up to now often performed manually.

Results: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification
based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic
user interface.

Availability and implementation: nanoTRON is written in Python and freely available under the MIT license as a part
of the software collection Picasso on GitHub (http://www.github.com/jungmannlab/picasso). All raw data can be
obtained from the authors upon reasonable request.

Contact: jungmann@biochem.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Super-resolution fluorescence microscopy allows researchers to visu-
alize structures and dynamics below the classical diffraction limit of
light (Sahl et al., 2017). Stochastic super-resolution techniques use
switching of fluorescent molecules between so-called dark and
bright states in combination with single-molecule localization. The
switching creates an apparent blinking of target molecules, which
is recorded in a movie and fitted with sub-diffraction precision in
post-processing, and the resulting spatial coordinates of localized
fluorophores are combined into two-dimensional (2D) histograms
to render a super-resolution image (Sauer and Heilemann, 2017).
DNA-PAINT (Jungmann et al., 2010) uses the transient binding of
dye-labeled DNA oligonucleotides (called ‘imager’ strands, freely
diffusing in solution) to their target-bound complementary strands
(called ‘docking’ strands) to create the necessary target ‘blinking’ for
super-resolution (Fig. 1). DNA-PAINT is part of a large variety of
techniques, which are enabled by the use of programmable interac-
tions of DNA molecules: DNA Nanotechnology (Ramezani and
Dietz, 2019). One of the most prominent approaches in structural
DNA Nanotechnology is undoubtedly DNA origami (Rothemund,
2006). Here, a long single-stranded DNA molecule is ‘folded’ via
self-assembly into almost arbitrary shapes and patterns using hun-
dreds of short oligonucleotides. DNA origami enables the

manufacturing of millions of nanoscopic structures with nanometer
precision in a highly controlled and parallel fashion. These very
properties of DNA origami structures and their nanoscale dimen-
sions have led to a symbiotic relationship with super-resolution
approaches: DNA origami either serves as tested for assaying new
super-resolution approaches (Balzarotti et al., 2017; Jungmann
et al., 2016; Schueder et al., 2019; Steinhauer et al., 2009), or super-
resolution is used to characterize properties of DNA nanostructures
(Johnson-Buck et al., 2013; Strauss et al., 2018). Super-resolution
instrumentation, probe design and sample preparation methods are
progressing at a rapid pace, enabling cost-efficient, molecular-scale
resolution on a routine basis (Auer et al., 2018). Data analysis and
post-processing software, however, are currently somewhat lacking
behind, in most cases often still exclusively focusing on spot-
detection and subsequent binning of localizations to visualize super-
resolution data (Sage et al., 2019). Especially more advanced yet in-
creasingly essential post-processing tasks such as particle classifica-
tion in super-resolution data is often still performed manually. Only
recently, the super-resolution community turned their attention to
more automated as well as machine learning- and neuronal
network-based analysis approaches (Belthangady and Royer, 2019;
Danial and Garcia-Saez, 2019; Ouyang et al., 2018; von Chamier
et al., 2019). Advances in deep learning are promising for the auto-
mation of algorithmic workflows such as detecting specific shapes
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or pattern, e.g. recognizing handwritten digits (Lecun et al., 1998).
This is particularly exciting in the context of super-resolution mi-
croscopy applied to the ever-increasing complexity of DNA origami-
based assays (Blanchard and Salaita, 2019). By combining super-
resolution microscopy, DNA nanotechnology and deep learning, we
here present a new software module, termed nanoTRON.

2 Implementation

nanoTRON was implemented in Python (v3.7 and higher) as a com-
ponent of the Picasso software suite (Schnitzbauer et al., 2017). It
deploys the multi-layer perceptron (MLP) of the Python machine
learning framework sci-kit learn (Pedregosa et al., 2011). The soft-
ware combines two of the most important workflows for model-
based neural network-assisted data analysis: (i) user-friendly setup
and training of artificial neural networks, (ii) classification and ex-
port of predicted data for subsequent analysis in a plug-and-play
manner, see Supplementary Text S1 and S4. Super-resolution data
sets can be loaded into nanoTRON for immediate classification and
export, Supplementary Figure S2. The software allows the training
of models for classifying of arbitrary patterns via the module ‘Train
Model’ (Supplementary Fig. S2). Super-resolution data can be
loaded, annotated and converted to 2D super-resolution images —
gray-scale images — with a defined resolution (‘oversampling’, see
Supplementary Figs S3 and S9). By rotation of every image in mul-
tiple steps, the training set can be augmented (Supplementary Fig.
S3). nanoTRON supports MLPs up to three hidden layers. For the
evaluation of the trained network, nanoTRON uses a train-test data
split of 30% of the training set. The learning curve of the training
and the confusion matrix generated from the test set visualize the
performance of the trained neural network (Supplementary Fig. S2).
An exemplary application with DNA origami (Supplementary Figs
S1, S4–S7) is described in Supplementary Text S2. Additionally, we
included a biological application with DNA origami and the nuclear
pore complex (Schlichthaerle et al., 2019; Thevathasan et al., 2019)
described in Supplementary Text S3 and visualized with
Supplementary Figs S8 and S12.

3 Outlook

nanoTRON enables plug-and-play classification of super-resolution
data using deep learning of arbitrary nanoscopic pattern. We expect
nanoTRON to serve as important tool in the Picasso software col-
lection, which due to the user-friendly design brings deep learning
closer to biological researchers. We see nanoTRON as an instru-
ment, which boosts the analysis of highly multiplexed biophysical
assays, where e.g. automated detection and analysis of a plethora of
barcoded structures (Lin et al., 2012) for high-content and high-
throughput studies would become feasible.
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using DNA-PAINT. The individual patterns were grouped using Picasso’s pick function, highlighted with yellow circles. (c) Classified super-resolution image of the DNA-

PAINT data in (b) shows the correct prediction of the four different nanoscopic patterns. Scale bars: 200 nm (b and c)
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