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Abstract

Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube
with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying
packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial
and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube
using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can
obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is
displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive
the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have
selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed,
and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are
clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close
spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic
repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented
programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations
between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the
structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure
analysis.
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Introduction

Proteins attain their function through their folded 3D structure

and to date 1288 different folds have been identified [1,2]. The

protein fold is a cumulative result of numerous interactions

between amino acid residues interacting with each other through

space and/or chemical bonds. These include disulphide bridges

and non-bonding interactions, such as salt bridges, hydrogen

bonds and hydrophobic interactions [3,4]. The three dimensional

fold of a protein sequence is achieved through optimization of a

hierarchical set of rules, reflecting closest possible packing of the

polypeptide chain and simultaneously positioning of hydrophobic

and charged residues [5]. Several parameters influence the

contribution of the amino acid pair interaction to the folded

protein stability. The solvent accessibility of each amino acid plays

a major role in the pair’s interaction energy, and therefore on the

protein stability. The secondary structural element where each

amino acid is located as well as the pair’s spatial and sequence

distance will also influence the contribution of such pair to protein

stability. We interpret the interaction between two amino acid

residues in terms of 8 parameters: the type of each amino acid

residue interacting (AA1, AA2), their solvent accessibility, the

secondary structural element where they are located (SS1, SS2),

the protein size, the sequence and spatial distances between the

amino acid residues interacting. The 8 dimensional data cube

represents our perception of protein fold space.

Several relevant works addressed the rules of packing amino

acid residues in proteins [6–14]. Applying methodologies for

finding correlated pairs of residues has always been of interest to

protein science. Such correlations usually arise from direct close

spatial interactions between residues, although allosteric effects

may result in correlations between distant residues. The utility of

multiple sequence alignments based approaches for detecting

correlated amino acids has been known for almost two decades

[15–17], and improved methods are being developed [18].

However, their usage by the scientific community has been

limited due to lack of access to theoretical and computational

approaches as open source tools or through user friendly
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interfaces. Only a few programs have been implemented to date

on the web [19–21]. Some programs can be downloaded for local

usage, such as PlotCor [22], CorrMut [19] and CRASP [23].

CysView is a web-based application tool that displays cysteine

connectivity patterns in proteins [24]. ESBRI is a web tool which

analyses the salt bridges in a protein structure [25]. However, the

general absence of graphical analysis tools makes it difficult to

analyze amino acid pair interactions and examine them with

respect to structural data. Most amino acid pair interaction data

presented in literature appears as 1D or 2D plots, thus effectively

being projections of the total fold space onto a 1D or 2D subspace.

No currently available method allows the user to view statistical

information and visualize instantly the pdb structures that

underpin the statistical information.

In the present study we define each pair of amino acids in terms

of (number of bins used in brackets): amino acid type 62(20),

solvent accessibility (12), spatial distance (14), secondary structure

62(4), protein size (12) and sequence distance (6). We only

consider a pair if the two amino acids are located in the same

solvent accessibility bin and if the inter residue distance is less than

8.3 Å. The resulting 8 dimensional fold tensor contains ,77.4

million cells. In our analysis of 8706 protein high resolution 3D

chains (Fig. 1A), ,5.9 million amino acid pair observations were

found and loaded into ,1.9 million cells in the fold tensor. Each of

these cells contains the number of times a pair of two particular

amino acids has been found at a location in fold space. The

volume of a protein has been divided into eleven spherical layers of

solvent accessibility. This concept is illustrated in Figure 1B. The

presented programs ProExtract, ProPack and ProPair successfully

identify known structural motifs and show their potential for

finding novel packing preferences in proteins. In order to

demonstrate the capabilities of this general data cube as well as

the query programs we have studied the packing of disulphide

bridges as well as charged amino acid pairs. These choices

represent only a very small fraction of the types and number of

queries that ProPack and ProPair would allow. Previous studies

report the geometrical configuration and/or statistical character-

ization of amino acid residues participating in disulphide bridges

[26–43] and salt bridges [44–48]. The present paper presents a

bioinformatics approach that allows the user to carry out hyper

dimensional analyses of amino acid pair interactions and their

distribution in proteins with an incorporated graphical analysis

tool, making possible the visualization of any conceivable

combination of the 8 dimensions for each amino acid pair. Any

interacting amino acid pair of interest can be visualized in its

structural location within a particular structure. We aim at making

these programs available on the web.

Materials and Methods

According to a recent comprehensive review [49], to establish a

really useful statistical predictor (or model) for a protein system, we

need to consider the following procedures: (i) construct or select a

valid benchmark dataset to train and test the predictor; (ii)

formulate the statistical samples with an effective mathematical

expression that can truly reflect their intrinsic correlation with the

attribute to be predicted or analyzed; (iii) introduce or develop a

powerful algorithm (or engine) to operate the prediction or

analysis; (iv) properly perform cross-validation tests to objectively

evaluate the anticipated accuracy of the predictor; (v) establish a

user-friendly web-server for the predictor that is accessible to the

public. In this section we will describe how to deal with these steps.

In statistical prediction, the following three cross-validation

methods are often used to examine an analysis method or

predictor for its effectiveness in practical application: independent

dataset test, sub-sampling (5-fold or 10-fold cross-validation) test,

and jackknife test [50]. As elucidated in Ref [49], among the three

cross-validation methods, the jackknife test is deemed the least

Figure 1. Protein chains resolution and solvent accessible shell concept. A) Histogram of the resolution of the 8706 protein chains used in
this study. The average resolution is 1.93 Å as indicated by the dotted line. B) Spherical model of a globular protein displaying the solvent accessible
shell concept: the protein residues are binned in solvent shells ranging from completely buried (SA = 0%) to full solvent exposure (SA = 100%) in steps
of 10%, with 0% and .100% treated explicitly.
doi:10.1371/journal.pone.0025638.g001
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arbitrary that can always yield a unique result for a given

benchmark dataset, and hence has been increasingly used and

widely recognized by investigators to examine the accuracy of

various predictors [51–55]. In our case, we are not attempting

prediction. Instead we are extracting statistically significant data

from a large set of experimental observations.

Protein Dataset
In order to avoid homology bias and remove the redundant

sequences from the benchmark dataset, a cutoff threshold of 25%

should be used [49,56]. However, in this study we did not use such

a stringent criterion because the currently available data do not

allow us to do so. Otherwise, the numbers of proteins for some

cases would be too few to have statistical significance. A list of high

resolution protein chains (resolution #3.0 Å) with sequence

identity #35% was retrieved from the Pisces server [57]. All

structures had a minimum chain length of 40 and a maximum R

value – a measure of how well the experimental data can be

predicted from the refined model - of 1.00. Non-X-ray structures

and structures only with Ca atoms were excluded. The Pisces

culling method selected was ‘‘chain’’. The downloaded list

contained 9039 chains, present in 8598 different .ent files. The

.ent files were downloaded from the Research Collaboratory for

Structural Bioinformatics (RCSB) [58]. The corresponding .hssp

files were downloaded from the homology-derived secondary

structure of proteins (HSSP) database [59]. Entries in the Pisces list

for which the corresponding .hssp files were not available were

discarded, leaving 8272 .ent files with corresponding .hssp files.

These files contained 8706 of the non-redundant chains from the

Pisces list.

Software
Three software packages were developed: ProExtract, ProPack

and ProPair (Fig. 2). In addition specific programs were written to

define the solvent shells as well as amino acid solvent accessibility

distributions. All programs were developed using MATLAB v7

(2010a) [60]. The source code of the programs ProExtract (used to

create the 8D tensor), ProPack (the query program that allows the

user to access the 8 dimensional data tensor) and ProPair (the

query program that allows the user to select a particular set of cells

in the data tensor and which retrieves a list of proteins with specific

pairs) have been uploaded as supplementary information. The file

names are:

ProExtract files. ‘‘ProExtract_V2p4.m’’, ‘‘ProExtract_V2p4.fig’’

to be found in Figure S1.

ProPack files. ‘‘ProPack.m’’, ‘‘ProPack.fig’’ to be found in

Figure S1.

ProPair files. ‘‘PairFinder_v1p2.m’’, ‘‘PairFinder_v1p2.fig’’,

‘‘PairSearcher_v1p1.m’’ to be found in Figure S1.

The description on how to run the software ProExtract,

ProPack and Propair can be found in Figure S1: ‘‘ProExtract_

User instructions.doc’’, ‘‘Propack_User instructions.doc, ‘‘Pro-

Pair_user instructions.doc’’, respectively.

As mentioned in Figure 2, in order to run ProExtract, two input

files are needed: the protein.ent list and the list of correspondent

hssp files. A file named ‘‘pisces_35_id_files_with_hssp.txt’’ has

Figure 2. Flowchart depicting the main programs built in order to carry out the presented data as well as the input and output files
needed by each program. AA1 is amino type 1, AA2 amino type 2, SA is the solvent accessibility of the protein shell where the selected amino acid
pair is located, Dist is the spatial distance between the selected amino acids, SS1 is the secondary structure of AA1, SS2 is the secondary structure of
AA2, sequence distance is the primary sequence distance between the amino acid residues selected, chain length is the length of the chain being
analyzed.
doi:10.1371/journal.pone.0025638.g002
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been uploaded as supplementary information (please open

uploaded file Figure S1) where the name of all pdb files has been

listed. This file should be open with WordPad. The associated .ent

and .hssp files are publically available.

Solvent shell
Each protein was treated as being made of shells with different

solvent accessibilities. The coordinates of all atoms were extracted

from the corresponding .ent file and used to calculate the

geometric midpoint (M) of each residue:

Maa,s(j)~
XN

i

si

N

�����
s~x,y,z

where N is the number of atoms in residue number j, and s is the x,

y and z coordinates of atom number i in residue j. The geometric

midpoint of all residues was calculated by:

Ms~
XNR

j

Maa,s(j)

NR

�����
s~x,y,z

where NR is the number of amino acids in the protein. This

defined the geometric midpoint of the protein, which is the center

of the protein when assuming that the protein is globular. The

Euclidian distance from this center to the geometric midpoint of

each amino acid residue was then calculated.

The solvent accessible surface area of each residue was read

from the corresponding .hssp files and converted to a percentage

of solvent accessible area by dividing the value with the total

surface area of the residue side-chain (calculated from a Gly-X-Gly

tripeptide [61]). The secondary structure information of each

amino acid was also extracted. The protein residues were binned

in solvent shells ranging from totally buried to full solvent exposure

in steps of 10%, with 0% and .100% treated explicitly. The

average distance to the protein center was calculated for all

residues in every bin, thereby obtaining a ‘‘thickness’’ of each

solvent accessible shell (Fig. 1B). This can only be considered as an

approximation since many proteins differ significantly from

spherical structure.

Amino acid solvent accessibility distributions
Each type of amino acid in the dataset was binned according to

its solvent accessibility and secondary structure. This provided

information about the abundance of the different amino acids in

the different solvent shells and their secondary structure

preferences (Fig. 3). In order to retrieve the data displayed in

Figure 3 we have written the following files: Hssp caller.m,

HsspRead.m, rotateticklabel.m, SAplot.m, SolventAcc.mat. These

codes have been uploaded as supplementary information in Figure

S2 as ‘‘Hssp caller.m’’, ‘‘HsspRead.m’’, ‘‘rotateticklabel.m’’,

‘‘SAplot.m’’, and ‘‘SolventAcc.mat’’. Furthermore, a description

on how to install and run the software used to retrieve the solvent

accessibility data displayed in Figure 3 can be found in the

uploaded file ‘‘Figure S2 SAplots_User instructions.doc’’.

ProExtract
ProExtract combined the data from .ent and .hssp files into

MATLAB structures, which were saved in .mat format (a

MATLAB data file). For each .ent file, the atoms’ coordinates

and chain information were loaded into ProExtract, while

information on residue type, secondary structure and solvent

accessibility (SA) was loaded from the corresponding .hssp file.

Since many .ent and .hssp files were found to contain errors,

ProExtract included a validation routine, where residues as a

minimum were required to have information on the Ca and

functional atoms coordinates (vide infra), residue type, secondary

structure, solvent accessibility (SA) and chain length. Furthermore,

.hssp entries were required to have information about which

residue and chain they corresponded to in the .ent file, as

numbering in .hssp and .ent files might differ. Residues that did

not have all the required information were discarded, while the

rest of the chain information was retained. Those that were

accepted were added to the MATLAB structure file for that

protein. As a result, a file for each protein was created containing

combined information on atom coordinates and chains, residue

types, secondary structure and SA.

As output, ProExtract created a database in the form of an 8D

tensor from the .mat files. The tensor contained information about

pairs of amino acids present in the different SA protein shells. Two

amino acids were considered a pair if they belonged to the same

chain, were within the same SA-bin and had a distance less than

8.25 Å between their functional atoms (vide infra). Each of the eight

tensor directions was binned according to:

N Type of the first amino acid (AA1) (20 bins)

N Type of the second amino acid (AA2) (20 bins)

N Solvent accessibility of the amino acid pair (SA) (12 bins)

N Distance between atoms in functional groups (D) (14 bins)

N Secondary structure for the first amino acid (SS1) (4 bins)

N Secondary structure for the second amino acid (SS2) (4 bins)

N Chain length (CL) (12 bins)

N Sequence distance between AA1 and AA2 (SD) (6 bins)

A pair of amino acid residues is composed of two amino acid

residues. The first dimension tells us what is the type of the first

amino acid (AA1) out of 20 possible amino acid types and the

second dimension tells us what is the type of the second amino acid

(AA2) in a pair (once again out of 20 possible amino acid types).

So, the two first dimensions give us information about the nature

of each amino acid in an amino acid pair in the protein. The fifth

dimension is simply telling us in which secondary structural

element the first amino acid is located (a-helix, b-strand, turn or

coil). This information is retrieved from the downloaded .hssp file

associated to each .pdb file. The same is valid for the sixth

dimension: it tells us in which secondary structural element the

second amino acid in a pair is located (a-helix, b-strand, turn or

coil). This information is also retrieved from the .hssp file.

See bin definitions in section ‘‘Bin definitions and functional atoms’’.

8272 .mat files were processed successively. All possible combina-

tions of two residues were carried out to test if the two residues

would constitute a pair (vide supra). When a pair was identified, the

count in the data tensor cell with the coordinates (AA1, AA2, SA,

D, SS1, SS2, CL, SD) was increased by one. A total of 5.211.796

pairs were identified. These were distributed between 1.756.714

cells in the tensor.

In order to establish the significance of the coordinates of each

of the pairs in a protein, ProExtract shuffled the amino acids in

accordance to the amino acid distribution of the protein. This

process was repeated 10 times for each of the 8272 proteins, and

the resulting 8D tensors were averaged. The average 8D tensor

was used as a reference dataset. For a given pair, the ratio between

the actual count in a cell in the observed 8D tensor and the

average count in the reference dataset was a measure of the

significance of the cell. We compute the ratio between the actual

Amino Acid Pairs in Proteins
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findings and the randomized value – a value above 1 indicates

statistical significance. In the ratio plots all displayed data has been

normalized (values between 0 and 1).

As output, ProExtract created an index dataset which could be

used to identify the specific interactions that gave rise to the counts

in a tensor cell. The index set was an 8D MATLAB cell character

array. Whenever a pair was registered, a string was added to the

corresponding cell in the index array of the form ‘‘1AB-

C0102A1030B’’ for the imaginary pair of amino acids 102A and

1030B in Protein Data Bank (PDB) structure 1ABC. When more

than one pair was registered in the same cell, a new line was

created for each pair in the cell. In this way it was possible to

retrieve the protein(s) as well as the local fold context around an

amino acid pair that contributed to the count in a particular cell.

Completing both the 8D tensor for the observed pairs, the 10

times averaged reference dataset as well as the index array took

approximately one week of computational time on one processor

in a Lenovo Thinkpad T500 with an Intel Core 2 Duo P8600

CPU at 2.4 GHz and with 4 GB RAM, running 64-bit MATLAB.

Bin definitions and functional atoms
The first dimension of the dataset tensor had 20 amino acid

bins: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys,

Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val. The second dimension

had 20 amino acid bins, identical to the first dimension. The third

dimension had 12 solvent accessibility bins (SA in %): SA#0,

0,SA#10, 10,SA#20, 20,SA#30, 30,SA#40, 40,SA#

50, 50,SA#60, 60,SA#70, 70,SA#80, 80,SA#90, 90,

SA#100, SA.100. The fourth dimension had 14 distance bins (D

in Å): D#1.75, 1.75,D#2.25, 2.25,D#2.75, 2.75,D#3.25,

3.25,D#3.75, 3.75,D#4.25, 4.25,D#4.75, 4.75,D#5.25,

5.25,D#5.75, 5.75,D#6.25, 6.25,D#6.75, 6.75,D#7.25,

7.25,D#7.75, 7.75,D#8.25. The fifth dimension had four

secondary structure bins for AA1: a-helix, b-strand, turn and coil.

The sixth dimension had four secondary structure bins for AA2,

identical to the fifth dimension. The seventh dimension had 12

chain length bins: CL#0, 0,CL#100, 100,CL#200, 200,

CL#300, 300,CL#400, 400,CL#500, 500,CL#600, 600,

CL#700, 700,CL#800, 800,CL#900, 900,CL#1000, CL.

1000. The eighth dimension had 6 sequence distance bins: 0, 1, 2,

3, 4, .4.

The functional atoms were for Ala CB, Arg NH1 and NH2, Asn

ND2 and OD1, Asp OD1 and OD2, Cys SG, Gln NE2 and OE1,

Glu OE1 and OE2, Gly CA, His ND1, Ile CG1 and CG2, Leu

CG, Lys NZ, Met SD, Phe CZ, Pro CG, Ser OG, Thr OG1, Trp

CE2, Tyr OH, Val CG1 and CG2 (atom nomenclature as

described in the .ent files).

ProPack
ProPack is a query program that allows the user to access the 8

dimensional data tensor. After loading the tensors created by

ProExtract, two tensors were available for the program, one based

on the observed data and one from the randomized reference data.

The user could then request access to the observed data (‘absolute

mode’), the randomized data (‘reference mode’) or the ratio

between the observed and the randomized data (‘ratio mode’).

Finally, the user could select a so called ‘warp mode’, where the

absolute data was displayed as a 3D topographic map colored

according to the intensity of the ratio data. Red color codes for

highly significant data, while dark blue codes for less significant

data.

The 8D tensor could be queried with any set of parameters. All

dimensions that we are not querying are projected onto the

subspace that we are visualizing. Therefore, if we intend to

produce a 2D plot of the spatial distance (D) vs solvent accessibility

(SA) of a specific amino acid pair e.g. Lys-Asp, we project the 4

remaining dimensions (SS1, SS2, CL, SD) onto the D-SA

subspace.

ProPack contains a multi dimensional query language that

allows the user to pose more elaborate and specific questions: e.g.

we could ask for a 2D plot of cysteine residues specifically located

in coil segments. Our 2D plot could be distance vs. sequence distance

between the two cysteine residues. The user could also query the

structural preferences for sets of amino acids, such as Arg-Lys and

the Asp-Glu pairs.

ProPair
ProPair is a query program that allows the user to select a

particular set of cells in the data tensor. ProPair retrieved a list of

proteins identified by the index dataset (vide supra) with pairs that

corresponded to the given parameters. These pairs were presented

to the user, with the possibility of being visualized using the

Molviewer functionality in MATLAB. When interesting features

had been located in the ProPack plots, it was thus possible to use

ProPair to ‘‘go back to the source’’ and identify which amino acid

pairs in which proteins contributed to those features.

Results

The resolution of the protein structures used in this study is

displayed in Figure 1A. In Figure 1B is depicted a spherical model

of a globular protein displaying the solvent accessible (SA) shell

concept. The protein residues are binned in solvent shells ranging

from totally buried (0% SA) to full solvent exposure in steps of

10%, with 0% and .100% treated explicitly.

Amino acid residues distribution (Asp, Glu, Lys, Arg, Cys)
In Figure 3 is displayed the solvent accessibility distribution for

each amino acid residue together with the preference for being

located in a particular secondary structural element (a-helix, b-

strand, turn and coil). All amino acids will be mentioned using

their 3 letter code. The distribution plots of the remaining amino

acid residues can be found as supplementary information (Figure

S2). In Figure 3A it can be seen that Asp prefers to be located in

protein shells displaying solvent accessibility .0% up until ,60%.

Its distribution peaks in the solvent shells displaying solvent

accessibility .0% and #10% and with solvent accessibility .40

and #50%. Asp is rarely present in the completely buried core of

the protein (0% SA). In solvent shells with SA beyond 60%, the

propensity for Asp declines linearly with increasing SA. In

Figure 3B it can be seen that the SA distribution of Glu is similar

to the Asp distribution, although Glu is less frequent than Asp in

Figure 3. Histograms displaying the abundance of selected amino acid residues (Asp, Glu, Lys, Arg, Cys) in each protein shell
characterized by a specific solvent accessibility SA. For each SA bin is also displayed the relative abundance of each selected residue in a
particular secondary structural element (a-helix, b-strand, turn and coil). The first and last bins contain the fraction of residues in completely buried
protein shell (0% SA) and in a completely solvent accessible protein shell (100% SA), respectively. A) Distribution of 120553 Asp residues, B)
Distribution of 141961 Glu residues, C) Distribution of 118362 Lys residues, D) Distribution of 107556 Arg residues, E) Distribution of 26066 Cys
residues.
doi:10.1371/journal.pone.0025638.g003
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shells with SA#20%. Glu is most frequently observed in the

protein shell with SA between 50 and 60%. Interestingly, both Asp

and Glu do not like to be fully solvent accessible.

Figure 3C shows that the distribution of Lys displays a Gaussian

profile, peaking in the 40–50% SA shell, and falls off rapidly both

with increasing and decreasing SA. Interestingly, the distribution

of Arg is similar to the distribution of the oppositely charged Asp

residue, preferring to be located in protein shells displaying solvent

accessibility .0% and #60%. All four titratable residues avoid

being located in the totally buried core (0% SA) of the protein, as

well as in the highly solvent accessible shells. On the other hand,

Cys residues prefer to be buried in proteins. Its distribution peaks

in shells with SA#10%, decaying afterwards exponentially

towards increasing SA shells. Cys is almost completely absent in

shells with SA.80%.

The secondary structural preferences for Asp, Glu, Lys, Arg and

Cys are also displayed in Figure 3. Asp displays a preference for

being located in coil structures in all solvent shells. Glu prefers to

be located in a-helices whereas Lys and Arg display a preference

for both a-helix and coil structures with a slight preference for the

former. In general, for Glu, Lys and Arg the fractions of residues in

coil and turn increase with solvent accessibility. For all four

residues, the fraction of residues in b-strands decreases in an

exponential way in protein shells with SA.50–60%. Cys prefers to

be located both in a-helix or b-strands if completely buried (0%

SA shell). In the protein shell with SA between 0–10%, Cys prefers

to be located in coil structures, followed by a similar preference for

a-helix and b-strands. When presence in shell with SA.10%, Cys

prefers to be located in coil structures.

Cysteine residues’ interactions
Figure 4 displays the occurrence of Cys-Cys pairs as a function

of spatial distance between the two cysteine residues forming a

pair and the solvent accessibility of the protein shell where the

pair is found. In Figure 4A the sequence distance between the

Cys residues is equal to or less than 4 residues while in Figure 4B

the sequence distance is larger than 4. For sequence distances

#4, 926 pairs are found. The vast majority are found below 20%

SA. The highest occurrence of pairs is seen for spatial distances

between the two cysteines of 3.8–4.3 Å and 6.3–7.3 Å. Those

pairs are located in a protein shell with SA#10%. Furthermore,

Cys-Cys pairs are also observed at spatial distances of 1.8–2.3 Å,

though less frequently. When observing Figure 4B we can see that

4968 Cys-Cys pairs are found. These pairs are also located in

protein shells with SA#10% but the preferred spatial distance

between these cysteine pairs is 1.8–2.3 Å. Fewer pairs are

observed at spatial distances of 3.8–4.3 Å and 6.3–7.3 Å. Protein

structures containing Cys-Cys pairs representative of the two

major peaks displayed in Figure 4A (sequence distance less than

4) have been retrieved with the ProPair program and are

displayed in Figures 4C and 4D. Figure 4C shows that Cys-Cys

pairs with distances peaking between 3.8–4.3 Å are part of a

classical zinc finger motif in proteins. ProPair shows that the

majority of the hits are zinc fingers. The local structure around

the zinc finger in 2bx9.pdb, a protein involved in transcription

regulation, is displayed. This protein has 12 cysteine-rich zinc-

binding domains. Figure 4D shows that Cys-Cys pairs with

distances peaking between 6.3–7.3 Å, are part of yet another

classical cluster: the iron sulfur cluster. The ProPair program

shows that the majority of the Cys pairs with distances peaking

between 6.3–7.3 Å are found in iron sulfur clusters. ProPair also

finds that Cys residues with large sequence separation but

spatially close to each other (peak at 1.8–2.3 Å in Fig. 4B) are

involved in disulphide bridges.

In order to judge the uniqueness of the results displayed in

Figure 4B, data has been compared with the Cys-Cys pair

occurrences observed when using a dataset of randomized

structures. It can be observed in Figure 4E that nearly all Cys-

Cys pairs found in the randomized reference dataset are located in

protein shells with 0,SA#10%. The majority of the pairs have

inter-residue distances between 6.8 to 8.3 Å. Pair occurrence

decreases with decreasing distances. Almost no pairs are observed

below ,3.8 Å. The data displayed in Figure 4F was obtained by

dividing the absolute data for Cys-Cys pairs with a sequence

separation larger than 4 residues (Figure 4B) by the reference

dataset data (Fig. 4E). It can be seen that the Cys-Cys pairs cluster

in protein shells with 0–30% SA and that their distances lie

between 1.8–2.3 Å as displayed (Fig. 4F). These preferences are

absent in the randomized dataset (Fig. 4E).

In Figure 5A is displayed a warp plot which merges information

about the absolute number of pairs observed in Figure 4B with

information about the ratio information displayed in Figure 4F.

The significant red peak (1.8–2.3 Å) that was observed in Figure 4F

is seen to coincide with a high pair concentration at this location

(indicated by the topography). This provides a statistical

fundament of the observation. It can also be observed that the

number of pairs found at distances of 3.8–4.3 Å and 0–10% SA is

significant but that these pairs do not represent unique preferences

(dark blue color).

Interactions between acid and basic residues
In Figure 5B is displayed a warp plot showing the statistically

relevant pairwise interactions that Lys residues make with other

amino acids residues and at which spatial distances those

interactions occur. It can be observed that Glu and Asp residues

are the closest preferred neighbors seen at distances peaking

around 2.3–3.3 Å (red peaks). All other observed dark blue peaks

are less statistically relevant interactions.

Pairs between residues with opposite charge
In Figure 6 is displayed the occurrence of pairs between residues

with opposite charge as a function of the spatial distance between

them and the solvent accessibility of the shell where the pair is

found. The so called ‘‘Absolute’’ plots display the number of

contacts found and the ‘‘Ratio’’ plots are the ratio between the

data in the absolute plots and the corresponding data found in the

reference dataset of randomized structures. Ratio plots are color

coded: red codes for statistically relevant peak and dark blue for a

statistically non-relevant peak. Figures 6A and 6B report the

contacts found between 7784 Lys-Asp pairs. Figures 6C and 6D

report the contacts found between 9649 Arg-Asp pairs. 9186 Lys-

Glu pairs and 11944 Arg-Glu pairs were found (data present in

Figure S3). Both absolute and ratio plots show that pairs of

opposite charge are preferentially found at close distances between

2.3–3.3 Å allowing for salt bridge formation and in protein shells

with 0,SA#50%.

Pairs between residues with the same charge
In Figures 7 and 8 are displayed the occurrences of pairs

between same charge residues as a function of distance between

any two charged residues and the solvent accessibility of the shell

where the pair is found. As explained above, absolute and ratio

plots are displayed for each pair. A total of 7010 Asp-Asp pairs,

9230 Glu-Glu pairs, 7302 Asp-Glu pairs, 3412 Lys-Lys pairs, 7574

Arg-Arg pairs, 3747 Arg-Lys pairs were analyzed. The ratio plots

show that residues of the same charge prefer to be located further

away from each other (pairs rarely seen at distances below 4.3 Å)

and in solvent layers with higher SA (40,SA#80%) when
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compared to oppositely charged residues (Figs. 7B, 7D, 7F, 8B and

8F), except for Arg-Arg pairs which prefer to be located in protein

shells with 10,SA#30% at short spatial distances between 3.3–

3.8 Å (Fig. 8D, details below).

Asp-Asp, Glu-Glu and Asp-Glu preferences
The absolute and ratio plots do not necessarily provide the same

information. Figure 7A shows that the majority of Asp-Asp pairs

are found in 0,SA#10% shells peaking at the preferred distance

of 6.8–7.8 Å, with minor peaks at 4.3–4.8 Å and 3.3–3.8 Å.

Figure 7B on the other hand shows that the preferred spatial

distances between residues in the majority of the statistically

relevant pairs peak at 6.3–7.3 Å and 4.3–5.3 Å, and that these

pairs are preferentially seen at 40–60% SA. An interesting

unexpected peak is observed at 2.3–3.3 Å and 0,SA#10%.

Figure 7C shows that Glu-Glu pairs are found preferentially at

0,SA#10% and 40,SA#60%. However, Figure 7D shows that

only the pairs found at 40,SA#70% are different from the

reference set of randomized structures and therefore statistically

relevant. Figure 7D also shows that the preferred distances

between the Glu-Glu residues are 5.3–8.3 Å. Figure 7E shows that

the Asp-Glu pairs are preferentially found at 0,SA#10% with

preferred distances at 4.3–4.8 Å and 6.3–8.3 Å. However,

Figure 7F shows that only the pairs found at 40,SA#70% are

statistically relevant and that the preferred distances between the

Asp-Glu residues are observed between 4.3–8.3 Å. Distances

below 4.3 Å are allowed in those protein shells. Both for Glu-Glu

and Asp-Glu pairs an unexpected peak is observed at 2.3–2.8 Å

and 0,SA#10%, as observed for Asp-Asp contacts.

Lys-Lys, Arg-Arg and Arg-Lys preferences
The Lys-Lys pair preferences are quite different from the Arg-

Arg pair preferences, despite both residues being positively

charged. Figure 8A shows that Lys-Lys pairs are preferentially

observed at a spatial distance above 6.8 Å in protein shells with

30,SA#60%. Figure 8B shows that the statistically relevant

contacts appear at distances above 6.3 Å and 40,SA#80%.

Figure 8C shows that the Arg-Arg pairs are preferentially observed

at low SA shells (0,SA#10%) and the preferred distances are

3.3–3.8 Å and above 6.3 Å. Figure 8D shows that the only

statistically relevant peaks occur at 10,SA#30% with a distance

between residues of 3.3–3.8 Å.

Figure 8E shows that Arg-Lys pairs are seen in a wide range of

SA, preferentially from 0,SA#50% with preferred inter-residue

distances above 6.3 Å and between 4.3–4.8 Å. Figure 8F shows

that only the pairs found at 30,SA#70% are statistically relevant,

especially the pairs found at 60,SA#70%. In these preferred

protein shells, Arg-Lys pairs are observed at distances above 6.8 Å.

Secondary structural preferences of pairs of residues
As mentioned above, the ratio plot of Lys-Asp reveals that the

statistically relevant pairs are found between 2.3–3.3 Å and in

protein shells with 10,SA#50% (Fig. 6B). In Figure 9A is

displayed the secondary structural elements preferred by Lys and

Asp pairs with a sequence distance of 2 and with inter-residue

distances between 2.3–3.8 Å in protein shells with 20,SA#40%.

A total of 85 pairs met the criteria. It can be seen that those Lys

and Asp prefer to be located in b-sheets or in coil structures. In

Figure 9A is also displayed a typical local 3D structure around a

Lys-Asp pair with the characteristics depicted by the beta-beta

peak: it can be seen that the Lys-Asp pair (Lys203-Asp201

displayed in yellow and blue) forms a salt bridge (3.4 Å distance

between functional charged groups) and is part of a b-strand. This

salt bridged pair is involved in a larger salt bridge network

involving two additional residues (Glu 214 and Arg 221, displayed

in brown and purple, respectively) located in a nearby a-helix. The

distances between these residues allow for additional salt bridge

formation. The depicted protein (1SC3.pdb) is a human caspase

(interleukin-1 beta convertase), an enzyme that proteolytically

cleaves the precursor form of the inflammatory cytokine

interleukin 1-b into its active mature peptide.

In Figure 9B the corresponding plot is displayed for a sequence

distance of 4 between Lys and Asp. 342 pairs from the dataset met

the selection criteria and were analyzed. It can be seen that Lys

and Asp now prefer to be located exclusively in a-helices, forming

a salt bridge that stabilizes one turn of the helix. The functional

groups of Lys 115 and Asp 111 (displayed in yellow and blue,

numbered according to 3CLJ.pdb) are within 2.8 Å, suggesting a

strong salt bridge. Furthermore, these residues are involved in a

larger salt bridge network involving two additional residues (Asp

59 and Lys 62, displayed in brown and purple) located in a nearby

a-helix. The distances between these residues allow for additional

salt bridge formation (Fig. 9B). 3CLJ is an a-helical RNA

polymerase II.

In Figures 10A to 10C are displayed typical protein motifs

involving Arg-Arg pairs that are in close proximity (3.3–3.8 Å) in

protein shells with 10–30%SA. These were the characteristics of

the statistically most relevant and unexpected peak displayed in

Figure 8D. Further parameters were used when searching for

structures containing these pairs: Arg residues should be within a

sequence distance larger than 4 and could be located in coil

elements (Fig. 10A), in a-helices (Fig. 10B) or in b-strands

(Fig. 10C). Figure 10A shows that the Arg-Arg pair can bind a

phosphate group and at the same time be involved in a multiple

salt bridge network. The distances between functional groups are

displayed. The protein (2HNH.pdb) is the catalytic alpha subunit

of the E. coli replicative DNA polymerase III. Figure 10B shows

that nearby Arg-Arg pair (Arg936-Arg1244 displayed in yellow

and blue, respectively) present in helical elements can be involved

in a multiple salt bridge network involving 3 titratable residues

(Asp1042, Asp1043 and Asp1240 displayed in brown) The closest

distances between the functional groups of these residues (from

2.8 Å to 4.3 Å) allow for salt bridge formation. The depicted

protein is 202K.pdb. Figure 10C shows how nearby Arg-Arg pairs

Figure 4. Distribution of the observed spatial distance (Å) and solvent accessibility of the protein shell where 923 Cys-Cys pairs
located at a sequence distance #4 residues (4A) and at a sequence distance .4 residues (4B) are found. The intensity map is color
coded (blue to red) and next to the color bar is displayed the number of pairs corresponding to each color code. Protein structures containing Cys-
Cys pairs representative of the two major peaks displayed in 4A have been retrieved with the ProPair program and are displayed in 4C and 4D.
Figure 4C shows that Cys-Cys pairs with distances peaking between 3.8–4.3 Å are part of a classical zinc finger motif in proteins. The Cys-Cys pair is
displayed in dark blue and yellow. Two other Cys residues are displayed in cyan. Zn is displayed as a blue sphere. Figure 4D shows that Cys-Cys pairs
with distances peaking between 6.3–7.3 Å are part of yet another classical cluster, the iron sulfur cluster. The Cys-Cys pair is displayed in dark blue
and yellow. In the Fe4S4 cluster, Fe is displayed in orange and S in yellow. Figure 4E shows the distribution of the observed spatial distance (Å) and
solvent accessibility of the protein shell where 923 Cys-Cys pairs located at a sequence distance .4 residues are found in a randomized reference
database (see Methods section). Figure 4F was obtained by dividing the absolute data for Cys-Cys pairs with a sequence separation larger than 4
residues (Fig. 4B) by the reference dataset data (Fig. 4E), this way displaying the statistically relevant peaks.
doi:10.1371/journal.pone.0025638.g004
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present in beta strands can be involved in multiple salt bridge

network involving 7 titratable residues (Lys and Arg residues)

present in six adjacent b-strands and 6 phosphate groups. The pair

in question is Arg403-Arg436 (3.4 Å apart, colored yellow and

blue) present in 2P1M.pdb, an outer membrane protein involved

in lipid deacylation. The closest distances (2.9–4.1 Å) to the

functional groups of other Lys and Arg residues (displayed in

purple) are displayed.

In Figures 10D and 10E are displayed typical protein motifs

involving Asp-Asp pairs that are in close proximity (2.3–3.3 Å) in

protein shells with 0,SA#10%. These were the characteristics of

the unexpected peak displayed in Figure 7B. Such Asp-Asp pairs

(displayed in blue and yellow) are involved in Mg2+ and Ca2+

binding involving 2 additional Asp residues (displayed in brown).

The pair Asp28-Asp39 displayed in Figure 10D belongs to

1WDC.pdb, a myosin regulatory domain of a muscle protein. The

residues are located in two nearby a-helices while the two

additional Asp residues are located in loop regions. The distances

between the charged functional groups of each Asp residue to

Mg2+ are displayed in Figure 10D. The pair Asp16-Asp27

Figure 5. The relevance of warp plots. A) Warp plot merging information about the absolute number of pairs observed in Figure 4B with
information about the ratio information displayed in Figure 4F, showing the statistical relevance of each peak. B) Warp plot showing the statistically
relevant pairwise interactions that Lys residues make with other amino acids residues and at which spatial distances those interactions occur. The
intensity map is color coded, dark blue coding for low statistic relevance and red for the highest statistic relevance.
doi:10.1371/journal.pone.0025638.g005
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displayed in Figure 10E (displayed in yellow and blue. 3.6 Å apart)

belongs to 2SCP.pdb, a sarcoplasmic calcium-binding protein.

Asp16 is located in a loop region and Asp27 is located in an a-

helix. Two additional Asp residues are also involved in Ca2+

binding (Asp18 and Asp20, colored brown).

Discussion

In the introduction we have argued for a total of 8 dimensions

spanning the protein fold space. These 8 dimensions may be

orthogonal to one another, or each dimension may be linear

combinations of two or more of the other dimensions. For example

the sequence length will define the size of the protein and thereby

also influence the number of both solvent exposed and buried

residues. No matter of how many independent dimensions we can

define, only two dimensions are usually displayed simultaneously.

A third dimension can be added in terms of a color. The

bioinformatics approach presented in this paper allows the user to

carry out hyper dimensional analyses of amino acid pair

interactions and their distribution in proteins with an incorporated

graphical analysis tools, making possible the visualization of any

conceivable combination of the 8 dimensions for each amino acid

pair as projections in 1D, 2D and 3D plots. The data cube

obtained by ProExtract can be queried using the programs

Figure 6. Occurrence of pairs between opposite charge residues as a function of the spatial distance between them and the solvent
accessibility of the shell where the pair is found. The so called ‘‘Absolute’’ plots display the number of contacts found and the ‘‘Ratio’’ plots are
the ratio between the data in the absolute plots and the corresponding data found in the reference dataset of randomized structures. Figures 6A and
6B report the contacts found between 7784 Lys-Asp pairs. Figures 6C and 6D report the contacts found between 9649 Arg-Asp pairs. The intensity
map is color coded like described in Figure 4.
doi:10.1371/journal.pone.0025638.g006
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ProPack and ProPair. We have presented several arguments for

perceiving the protein fold as spanned by at least 8 dimensions. In

an upcoming paper we will show that the individual filled cells of

the 8 dimensional fold tensor form a nearly perfect scale free

organization. The hyper-dimensionality of our approach allows,

e.g., specifying the precise SA of amino acid pair, instead of simply

classifying the pair as buried or exposed. However, the present

approach only considers amino acid pairs if they share the same

solvent accessibility shell. Clearly one can consider amino acid

pairs that bridge neighboring solvent shells as well. In the present

context we imposed this restriction in order to limit the complexity

of our dataset.

Different motifs involving cysteine residues such as disulphide

bridges, zinc fingers and iron-sulfur clusters are clearly identifiable

and differentiated with ProPack and confirmed by ProPair when 5

out of 8 constraints are imposed: AA1, AA2, solvent accessibility,

spatial and sequence distances between the pair of cysteines

residues (Figs. 4A, 4B, 4C and 4D). Amino acid pairs present in

zinc fingers and sulfur iron clusters are seen in immediate

sequence vicinity (sequence distance #4). In the zinc fingers those

pairs have a preferred spatial distance between 3.8–4.3 Å (Figs. 4A

and 4C) while pairs present in sulfur iron clusters have a preferred

spatial distance between 6.3–7.3 Å (Figs. 4A and 4D). Disulphide

bridges are clearly seen as longer range interactions (sequence

distance .4) than zinc fingers and sulfur iron clusters. The

preferred distance between the sulfur atoms is found by ProPack to

be between 1.8–2.3 Å. Both observations are in agreement with

previously published studies [41]. The results illustrate the

potential of imposing constraints when querying the data cube.

The relevance of warp plots made by ProPack can be seen in

Figure 5: merging of information about the absolute number of

pairs with information about the ratio information leads to insight

into the statistic relevance of each peak. An intense peak in the

absolute mode plot is not necessarily statistically relevant, as shown

in Figure 5B where the statistical relevance of each peak is color

coded (red codes for the highest statistical relevance and dark blue

for the lowest statistical relevance).

In addition to motifs involving cysteine residues, salt bridges

were also investigated using ProPack and ProPair. Both absolute

and ratio plots made by ProPack when 4 out of 8 constraints are

imposed (AA1, AA1, solvent accessibility of the protein shell where

the pair is located and spatial distance between the amino acid

residues) show that pairs of oppositely charged amino acid residues

are preferentially found at close distances between 2.3–3.3 Å

allowing for salt bridge formation and in protein shells with

0,SA#50% (Fig. 6). Our criterion for the existence of a salt

bridge is the same as originally proposed by Barlow and Thornton

[44], which is that the distance between the heavy atoms of the

ionizable groups of the charged residues is ,4 Å. Sarakatsannis

and Duan [45] report that salt bridges display preferential

formation in an environment of about 30% solvent accessibility

surface area. Our data shows that Lys-Asp and Arg-Asp (Figs. 6B

and 6D) pairs are observed to preferentially form salt bridges in

protein shells with 20,SA#50% and 0,SA#50%, respectively.

For Lys-Asp a peak is observed at 30–40% SA and for Arg-Asp

two peaks are observed at 10–20% and 30–40% SA. Lys-Glu and

Arg-Glu pairs (data shown in supplementary information) are

observed to form salt bridges in protein shells with 20,SA#60%

and 10,SA#50%, respectively. For both Lys-Glu and Arg-Glu a

peak is observed at 30–40% SA. Furthermore, our programs also

report the spatial distance observed between the functional groups

of the residues involved in a salt bridge, as well its statistical

relevance. Our data shows that few salt bridges are observed at

protein shells with SA above 50–70%, depending on the particular

amino acids involved in the salt bridge. Our results agree with the

observation that no salt bridges were found in an environment

with solvent accessibility surface area above 70% [45]. In addition,

our data permits to specify the SA limit for each of the four salt

bridges.

Figure 7 clearly shows the importance of displaying ratio plots of

pair interactions (Figs. 7B, D and F) instead of absolute plots

(Figs. 7A, C and E). The ratio plots allow for the display of the

statistically relevant interactions between pairs of amino acid

residues as a function of the solvent accessibility of the protein

layer where the pair is located and as a function of spatial distance

between the amino acid residues forming a pair. ProPack

indentifies that the majority of amino acid pairs between

negatively charged residues (Asp-Asp, Glu-Glu and Asp-Glu)

avoid being in close spatial proximity (d.4.3 Å) and are

preferentially seen in protein shells with SA$40–50% (high

intensity peaks displayed in Figs.7 B, D and F). This is expected

since such larger spatial distances will prevent repulsion between

residues carrying the same charge. However, ProPack also

indentifies that Asp-Asp pairs in particular are seen in buried

protein shells (0,SA#10%) in unexpected close spatial proximity

of 2.3–3.3 Å (Fig. 7B). ProPair allows the user to visualize these

interactions in the structural location within a particular protein

structure, as displayed in Figures 10D and 10E. Such Asp-Asp

pairs are involved in Mg2+ and Ca2+ binding involving 2

additional Asp residues (displayed in brown). The pair Asp28-

Asp39 displayed in Figure 10D belongs to 1WDC.pdb, a myosin

regulatory domain of a muscle protein. This protein’s enzymatic

activity is switched on by direct Ca2+ binding. Mg2+ binds to the

regulatory light chain of myosin. Mg2+ binds to a classical Ca2+

binding site (DXDXDG) containing the canonical helix-loop-helix

structure, involving Asp28, Asp30, Asp32 and Asp 39. The Asp16-

Asp27 pair displayed in Figure 10E belongs to a sarcoplasmic

calcium-binding protein. Two additional Asp residues are also

involved in Ca2+ binding (Asp18 and Asp20, colored brown).

Together with Asp16 and Gly21 these residues are part of a

classical DXDXDG Ca2+ binding sequence [62]. The above

mentioned structural reasons justify the close spatial proximity

between Asp-Asp pairs and their presence in buried protein shells.

Both Ca2+ and Mg2+ binding are important for the activity of

those proteins.

ProPack indentifies that pairs between positively charged

residues (Lys-Lys and Arg-Lys) avoid being in close spatial

proximity and are preferentially seen in protein shells with

SA$40–50% (high intensity peaks displayed Figs. 8B and F).

This is expected since such larger spatial distances will prevent

repulsion between residues carrying the same charge. However,

ProPack also indentifies that Arg-Arg pairs are seen in buried

protein shells (10,SA#30%) in unexpected close spatial proxim-

ity of 3.3–3.8 Å (Fig. 8D). Our data opposes the pervasive belief

that an Arg-Lys mutation is perceived as a conservative mutation.

ProPair allows the user to visualize these interactions in the

Figure 7. Occurrence of pairs between negative charge residues as a function of distance between any two residues and the solvent
accessibility of the shell where the pair is found. As explained in Figure 6, absolute (panels A, C and E) and ratio (panels B, D and F) plots are
displayed for each pair. A total of 7010 Asp-Asp pair (panels A and B), 9230 Glu-Glu pairs (panels C and D), 7302 Asp-Glu pairs (panels E and F) were
analyzed. The intensity map is color coded like described in Figure 4.
doi:10.1371/journal.pone.0025638.g007
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structural location within a particular protein structure, as

displayed in Figures 10A, B and C. Further constraints were used

when searching for structures containing these pairs: Arg residues

should be within a sequence distance larger than 4 and could be

located in coil elements (Fig. 10A), in a-helix (Fig. 10B) or in b-

strands (Fig. 10C). Therefore the data displayed by ProPair in

Figure 10 is a result of querying the data cube using a combination

of 8 dimensions using the programs ProPack and ProPair. The 8

dimensions are: AA1- Arg, AA2- Arg, 10,SA#30%, D- 3.3–3.8 Å,

SS1- coil, SS2- coil, CL- all, SD.4. The displayed data shows the

structural reasons that justify the presence of unexpected buried

and spatially close Arg-Arg pairs: these positively charged pairs

can bind a phosphate group and at the same time be involved in a

complex salt bridge network with other titratable residues, this way

Figure 8. Occurrence of pairs between positive charge residues as a function of distance between any two residues and the solvent
accessibility of the shell where the pair is found. As explained in Figure 6, absolute (panels A, C and E) and ratio (panels B, D and F) plots are
displayed for each pair. A total of 3412 Lys-Lys pairs (panels A and B), 7574 Arg-Arg pairs (panels C and D), 3747 Arg-Lys pairs (panels E and F) were
analyzed. The intensity map is color coded like described in Figure 4.
doi:10.1371/journal.pone.0025638.g008

Figure 9. Pair preferences for particular secondary structural elements. A) Secondary structural elements preferred by Lys and Asp pairs
with a sequence distance of 2 and with inter-residue distances between 2.3–3.8 Å in protein shells with 20,SA#40%. Lys and Asp prefer to be
located in b-sheets or in coil structures. A typical local 3D structure around a Lys-Asp pair (displayed in yellow and blue, respectively) with the
characteristics depicted by the beta-beta peak is displayed. Distances between functional groups are displayed. B) Secondary structural elements
preferred by Lys and Asp pairs with a sequence distance of 4 and with inter-residue distances between 2.3–3.8 Å in protein shells with 20,SA#40%.
Lys and Asp (displayed in yellow and blue, respectively) prefers to be located exclusively in a-helices. A larger salt bridge network involving two
additional residues (Asp 59 and Lys 62, displayed in brown and purple, respectively) located in a nearby a-helix is displayed.
doi:10.1371/journal.pone.0025638.g009
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contributing to the stability of the protein. Some of the salt bridges

form so-called complex salt bridges, in which one charged residue

forms salt bridges with two or more residues simultaneously [45–

47], as displayed in Figures 10A and B. The energetic contribution

of complex salt bridges has been suggested to have importance for

protein stability. Gvritishvili et al. [48] showed that in two out of

three cases, complex salt bridge formation is cooperative, i.e., the

net strength of the complex salt bridge is more than the sum of the

energies of individual pairs.

ProPair and Propack successfully identifies salt pair interactions

in a-helices and in b-sheets when the data cube is queried using 5

constraints for a chosen amino acid pair. For example, in

Figure 9A the 5 dimensions are: secondary structural element

preferred by residue 1 (Lys), secondary structural element

preferred by residue 2 (Asp), sequence distance of 2, inter-residue

distances between 2.3–3.8 Å and protein shells with

20,SA#40%. When these 5 constrains are imposed, ProPair

allows the user to visualize these interactions in the structural

location within a particular protein structure (Fig. 9). The typical

local 3D structure around a Lys-Asp pair with the characteristics

depicted by the beta-beta peak is displayed in Figure 9A. As

known, two consecutive residues in a b-strand point in opposite

directions. Therefore, the closest distance at which a salt bridge

can be formed corresponds to residues with a sequence distance of

2. On the other hand, Figure 9B shows that if we impose that the

Lys-Asp pair should have a sequence distance of 4, than ProPack

identifies that this pair only seen as part of an a-helix. Indeed the

closest distance at which a salt bridge can be formed in an a-helix

corresponds to residues with a sequence distance of 4. These

examples demonstrate that ProExtract, ProPack and ProPair

correctly identify pair interactions between charged residues. Our

results agree with the data published by Sarakatsannis and Duan

[45], which shows that most a-helical salt bridges occurred with

residue separation of 4, and the most frequent residue separation

among b-sheets salt bridges is 2. We also observe that the most

frequent residue separation among coils salt bridges is also 2

(Fig. 9A). The hyper-dimensionality of our bioinformatics

approach allows imposing at the same time different constraints

as described above. Together with ProPair data such as shown in

Figure 9 can be retrieved. The approach by Sarakatsannis and

Duan [45] allowed them to report the number of salt bridges versus

secondary structure. Our approach allows us to specify at the same

time that preference as a function of amino acid pair type (AA1

and AA2), solvent accessibility of the protein shell, spatial distance

and residue sequence distance in a protein of a specified sequence

length.

Conclusions
The bioinformatics approach and results presented in this paper

were only possible because the user is allowed to carry on hyper

dimensional analyses of amino acid pair interactions in proteins.

Furthermore, the incorporated graphical analysis tools enable the

visualization of any conceivable combination of the 8 dimensions

for each amino acid pair. The tools presented in this paper are

likely to be of importance in the general field of protein

engineering. Before considering creating a mutant protein for

which the 3D structure is known, or can be predicted with

reasonable accuracy, the hyperdimensional database can be

queried if this substitution appears allowed or not. Considering

that the query is done in a matter of minutes, this will always be

faster than producing the mutant protein. The data cube

established in the context of the present paper, is a representation

of protein fold space. Thus all cells of the tensor with content

different from 0 represent a particular feature that is allowed in

protein folds. Pending on the tensor cell content, we may view this

feature as more or less common. Conversely if a tensor cell is

empty, it is likely to represent a particular feature that is disallowed

in the protein fold space. Therefore our protein fold data cube

could potentially be of value for efforts to predict or validate a

protein fold.

Since user-friendly and publicly accessible web-servers represent

the future direction for developing practically more useful models,

simulated methods, or predictors [63], we shall make efforts in our

future work to provide a web-server for the methods presented in

this paper.

Supporting Information

Figure S1 Source codes and description on how to run
the programs ProExtract, ProPack and ProPair. The

source code of the program ProExtract is ‘‘ProExtract_V2p4.m’’

with associated file ‘‘ProExtract_V2p4.fig’’ (located in the Figure

S1 file). The source code of program ProPack is ‘‘ProPack.m’’ with

associated file ‘‘ProPack.fig’’ (located in the Figure S1 file). The

source codes of program ProPair are ‘‘PairFinder_v1p2.m’’, with

associated file ‘‘PairFinder_v1p2.fig’’, and ‘‘PairSearch-

er_v1p1.m’’ (located in the Figure S1 file). A description on how

to run the software ProExtract, ProPack and Propair can be found

in files: ‘‘ProExtract_User instructions.doc’’, ‘‘Propack_User

instructions.doc, and ‘‘ProPair_user instructions.doc’’, respective-

ly. The two input files needed in order to run ProExtract are the

protein.ent list and the list of correspondent hssp files. A file named

‘‘pisces_35_id_files_with_hssp.txt’’ contains the name of all pdb

files that have been used. This file should be open with WordPad.

The associated .ent and .hssp files are publically available.

(BZ2)

Figure S2 SolventAccessibilityPlots - Histograms dis-
playing the abundance of selected amino acid residues
(Ala, Phe, Gly, His, Ile, Leu, Met, Asp, Pro, Glu, Ser,
Thr, Val, Trp, Tyr) in each protein shell characterized
by a specific solvent accessibility SA. For each SA bin is also

displayed the relative abundance of each selected residue in a

particular secondary structural element (a-helix, b-strand, turn

and coil). The first and last bins contain the fraction of residues in

completely buried protein shell (0% SA) and in a completely

solvent accessible protein shell (100% SA), respectively. The 3

letter amino acid residue is displayed in each distribution. The

distribution has been obtained for 169461 Ala residues, 85634 Phe

residues, 144453 Gly residues, 48403 His residues, 121232 Ile

residues, 198265 Leu residues, 34636 Met residues, 85757 Asn

Figure 10. Figures 10A to 10C display typical protein motifs involving Arg-Arg pairs that are in close proximity (3.3–3.8 Å) in
protein shells with 10–30%SA. Arg residues should be within a sequence distance larger than 4 and located in coil elements (Fig. 10A, PO4 is a
phosphate group, 2HNH.pdb), in a-helix (Fig. 10B, 202K.pdb, structural water molecules are displayed as red spheres) or in b-strands (Fig. 10C, 2P1M
.pdb, HP is a sugar molecular linked to six phosphate group). Figures 10D and 10E displayed typical protein motifs involving Asp-Asp pairs that are in
close proximity (2.3–3.3 Å) in protein shells with 0,SA#10% (1WDC.pdb and 2SCP.pdb, respectively). Such Asp-Asp pairs (displayed in blue and
yellow) are involved in Mg2+ and Ca2+ binding involving 2 additional Asp residues (displayed in brown). Distances between functional groups are
shown.
doi:10.1371/journal.pone.0025638.g010
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residues, 94118 Pro residues, 76629 Gln residues, 120194 Ser

residues, 110887 Thr residues, 147555 Val residues, 28894 Trp

residues, 73340 Tyr residues.

(BZ2)

Figure S3 ArgGlu Plots - Occurrence of ArgGlu pairs as
a function of the spatial distance between the residues in
each pair and the solvent accessibility of the shell where
the pair is found. The so called ‘‘Absolute’’ plots display the

number of contacts found. The so called ‘‘Ratio’’ plots are the

ratio between the data in the absolute plots and the corresponding

data found in the reference dataset of randomized structures. The

figures report the contacts found between 11944 ArgGlu pairs.

The intensity map is color coded like described in Figure 4.

LysGlu Plots - Occurrence of LysGlu pairs as a function of the

spatial distance between the residues in the pair and the solvent

accessibility of the shell where the pair is found. The so called

‘‘Absolute’’ plots display the number of contacts found. The so

called ‘‘Ratio’’ plots are the ratio between the data in the absolute

plots and the corresponding data found in the reference dataset of

randomized structures. The figures report the contacts found

between 9186 LysGlu pairs. The intensity map is color coded like

described in Figure 4.

(PDF)
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