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Summary

Agricultural intensification is known to alter the
assembly of soil microbial communities, which regu-
late several critical ecosystem processes. However,
the underlying ecological processes driving changes
in microbial community assembly, particularly at the
regional scale, remain poorly understood. Using 16S
rDNA sequencing, we characterized soil bacterial
community assembly in three land-use types with
increasing land-use intensity: open fields cultivated
with main crops (CF) or vegetables (VF), and green-
houses cultivated with vegetables (VG). Compared
with CF, VF and VG altered bacterial community com-
position and decreased spatial turnover rates of
edaphic variables and bacterial communities. Bacte-
rial community assembly was primarily governed by
deterministic processes; however, bacterial commu-
nities in VF and VG were phylogenetically less clus-
tered and more influenced by variable selection and
less by dispersal limitation. Soil pH was the most
important edaphic variable mediating the changes in
bacterial community assembly processes induced by
agricultural intensification. Specifically, decreasing
soil pH led to stochastic assembly of bacterial com-
munity. Soil pH was lower in more intensively
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managed lands, especially in case of VG (pH range:
5.86-7.42). Overall, agricultural intensification altered
soil bacterial community assembly processes, which
was associated with soil acidification. These findings
may have implications for improving soil quality and
agroecosystem sustainability.

Introduction

Soils harbour considerably diverse microbial communities
that are essential players in terrestrial ecosystem func-
tioning, such as organic material decomposition, nutrient
cycling and plant growth (Bardgett and van der
Putten, 2014). Therefore, maintaining the diversity of soil
microbial communities is critical for crop production and
agroecosystem sustainability (Geisen et al., 2019). The
activity and diversity of soil microbial communities are
sensitive to changes in soil characteristics, such as soil
pH, moisture, carbon content and nutrient availability
(Chen et al., 2017; Feng et al., 2017; Barnett
et al., 2020). Land-use change due to agricultural intensi-
fication is one of the most significant anthropogenic activ-
ities that greatly affect soil microbial communities by
altering edaphic variables (Geisen et al., 2019). Studies
have shown that agricultural intensification can be detri-
mental to the diversity and functioning of soil microbial
communities (Tsiafouli et al., 2015, de Graaff
et al., 2019). However, the ecological processes driving
these changes in microbial community assembly, espe-
cially at the regional scale, are largely unexplored.
Deterministic and stochastic processes are two funda-
mental types of processes affecting the assembly of spe-
cies into a local community (Chase, 2007; Zhou and
Ning, 2017). On the one hand, the niche theory empha-
sizes that deterministic processes, such as environmen-
tal filtering and biotic interactions (e.g. mutualisms,
facilitation, competition and predation) control the local
community composition. In contrast, the neutral theory
stresses that stochastic processes, such as pervasive
dispersal limitation and ecological drift (random changes
in the relative abundance of species), can explain a wide
variety of biodiversity patterns in nature (Chase, 2007;
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Zhou and Ning, 2017). Soil microbial communities are
reported to exhibit spatial biogeographic patterns, which
is a greater dissimilarity in soil microbial community com-
position with increasing geographic distance (referred to
as a distance-decay relationship) (Hanson et al., 2012;
Powell et al., 2015; Jiao and Lu, 2020). This microbial
biogeographic pattern can be driven by both stochastic
and deterministic processes (Hanson et al., 2012). For
example, selection and drift can accelerate the spatial
turnover rate while high dispersal rate can decelerate it
(Hanson et al., 2012). Anthropogenic activities, such as
deforestation, fertilization and agricultural management
regimes (organic versus conventional managements)
have been reported to alter the soil microbial biogeogra-
phy (Rodrigues et al., 2013). Possibly, agricultural inten-
sification may decrease the soil environmental
heterogeneity along the spatial gradient, thereby,
decreasing the spatial turnover rate of soil microbial
communities.

The balance between stochastic and deterministic
assembly processes is mediated by various environmen-
tal factors, such as soil pH (Tripathi et al., 2018; Jiao and
Lu, 2020), soil organic matter content (Zhou et al., 2014;
Feng et al.,, 2018) and soil nutrient content (Feng
et al., 2017). For example, resource supply can increase
the importance of stochastic processes (Zhou
et al., 2014; Feng et al., 2018). Recently, soil pH has
been shown to serve as a major mediator of the balance
between stochastic and deterministic assembly pro-
cesses of soil bacterial communities (Tripathi et al., 2018;
Jiao and Lu, 2020). However, contrasting results have
been reported in the literature. For example, Tripathi
et al. (2018) showed that stochastic assembly processes
are predominant in soils with pH close to neutral, and a
shift in pH towards relatively extreme conditions (acidic
or alkaline) leads to a more deterministic assembly. How-
ever, other studies have shown an increased role of
stochasticity in more acidic environments (Ren
et al., 2015; Bamnett et al., 2020; Jiao and Lu, 2020).
Intensified agroecosystems are usually subjected to high
levels of fertilizer application, and thus leading to soil
acidification (Guo et al., 2010; Hu et al., 2017). However,
it is unclear whether soil acidification caused by agricul-
tural intensification is linked to the changes in the bal-
ance between stochastic and deterministic assembly
processes.

Over the past half-century, large areas of open fields
for main crop production (such as legumes and cereals)
have been converted to greenhouses to meet the
demand for vegetables year-round. For example, in
China, there are 3.86 million hectares of greenhouses for
vegetable production, accounting for approximately
2.86% of the farmland area (Shen et al., 2021). Com-
pared with main crop cultivation, vegetable cultivation

usually receives higher quantities of manure and fertilizer
(Hu et al., 2017). Since more cropping of vegetables are
cultivated in the greenhouse per year, greenhouse pro-
duction is also characterized by more intensive agricul-
tural management practices, such as irrigation and tillage
operations (Boulard et al., 2011). Therefore, among the
three land-use types of open fields cultivated with main
crops (CF), open fields cultivated with vegetables
(VF) and greenhouses cultivated with vegetables (VG),
the land-use intensity is the highest for VG and lowest for
CF. Since highly intensified agricultural systems are con-
sidered to be unsustainable in the long term (Tsiafouli
et al., 2015; de Graaff et al., 2019; Shen et al., 2021),
identification of the factors that govern changes in the
microbial assembly processes induced by agricultural
intensification can help to enhance agroecosystem
sustainability.

In this study, we aimed to address the following ques-
tions: (i) Whether and how agricultural intensification
affect the spatial turnover rate and assembly processes
of soil bacterial communities? (ii) Is soil acidification an
important factor regulating the assembly processes of soil
bacterial communities in response to agricultural intensifi-
cation? To answer these questions, we evaluated the
abundance, composition, geographic pattern and assem-
bly processes of soil bacterial communities in agricultural
fields with three different land-use types. We analysed
288 soil samples collected from 32 sites across China.
Each site comprised adjacent triplets of three land-use
types (i.e. CF, VF and VG). We hypothesized that vege-
table production in greenhouses could (i) decrease the
level of spatially structured environmental gradients, and
therefore lead to a weaker distance-decay pattern of soil
bacterial communities, and (ii) alter the relative impor-
tance of stochastic and deterministic processes in driving
soil bacterial community assembly by altering edaphic
variables, especially soil pH.

Experimental procedures
Soil sampling and edaphic variable analysis

Soil samples were collected in July 2017 from 32 sites
located in 12 provinces of China (Fig. S1a). The maxi-
mum distance between the sampling sites was 3120 km.
Each site comprised agricultural fields with three different
land-use types (i.e. CF, VF and VG) (Fig. S1b—e). Within
each site, fields with different land-use types were adja-
cent to each other (<1 km apart). For CF and VF, the
fields had been cultivated with main crops or vegetables
respectively, for more than 20 years. For VG, open fields
had been converted to greenhouses and cultivated with
vegetables for more than 3 years (Table S1). Of note, all
greenhouses were used for soil-based vegetable
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production; in other words, vegetables were cultivated in
the soil, and not via soilless production. As different crops
were cultivated at our sampling sites (Table S1) and as
plant roots can strongly affect the soil microbial commu-
nity composition (Bardgett and van der Putten, 2014),
bulk soils were sampled in this study. For each land-use
type at each site, three plots, each with an area of
approximately 50 m?, were randomly selected, and 10 soil
cores per plot were taken from the upper soil layer (0—
15 cm) and pooled. Therefore, there were three compos-
ite samples for each land-use type at each site. In total,
288 soil samples were collected. Soils were sieved
(2 mm), and large stones and plant debris were removed.
A part of these sampled soils was used for edaphic vari-
able analyses (Supplementary Methods) and the other
part was stored at —80 °C for DNA extraction.

Soil DNA extraction

Soil DNA was extracted from 0.25 g of soil with the
Power Soil DNA Isolation Kit (MO BIO Laboratories,
Carlsbad, USA) according to the manufacturer’s instruc-
tions. The quality of extracted DNA was evaluated using
electrophoresis in a 1.2% (wt./vol.) agarose gel and a
NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-
entific, Wilmington, USA). Each composite soil sample
was extracted in triplicate, and the extracted DNA solu-
tions were pooled.

Quantitative PCR analysis

SYBR Green quantitative PCR assays were performed to
estimate soil bacterial abundance using the primer set
338F/518R, which targets the V3 region of the bacterial
16S rBNA gene (Muyzer et al., 1993). Quantitative PCR
assays were conducted using a qTOWER 3G touch real-
time PCR system (Analytik Jena, Jena, Germany) (the
detailed PCR conditions are provided in the Supplemen-
tary Methods). All amplifications were performed in
triplicate.

High-throughput amplicon sequencing and data
processing

High-throughput amplicon sequencing was performed to
profile the diversity and composition of soil bacterial com-
munities. Extracted soil DNA was amplified using the
primer set F338/R806, targeting the V3-V4 regions of
the bacterial 16S rRNA gene (Derakhshani et al., 2016).
Both forward and reverse primers were tagged with spe-
cific overhang lllumina adapters. The detailed PCR con-
ditions and library preparation protocols are provided in
the Supplementary Methods. The libraries were
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sequenced (2 x 300) on an lllumina MiSeq platform
(Illumina, San Diego, USA).

Raw sequencing data were analysed using the QIIME
pipeline (Caporaso et al., 2010). Briefly, adaptor
sequences, barcodes and 30 low-quality bases at the
end of each read were removed. Paired reads were
joined (minimum overlapping read length of 20 base
pairs) and quality filtered (Phred score of 20), and reads
with less than 200 base pairs were removed. Chimaeras
were screened and removed using USEARCH with the
UCHIME algorithm (Edgar, 2013). Sequences with =97%
similarity were assigned to the same operational taxo-
nomic unit (OTU) using UPARSE with an agglomerative
clustering algorithm (Edgar, 2013). Taxonomies were
assigned to the representative sequence of each OTU
using the SILVA database release 128 (Quast
et al., 2013). OTUs classified as chloroplasts and mito-
chondria, and singleton OTUs were eliminated. To avoid
potential bias caused by the sequencing depth, sequence
counts of all samples were normalized to the minimum
number of sequence (10 763) per sample. The
sequences data were deposited in the Sequence Read
Archive at NCBI under the accession numbers
PRJNA660593, PRJNA660598, PRJNA660802 and
PRJNA660808.

Statistical analyses

Bacterial community a- and p-diversity analyses. Unless
stated otherwise, all statistical analyses were conducted
using ‘R’ (v3.6.2, http://www.r-project.org/). Taxon accu-
mulation curves and Good’s coverage were used to eval-
uate the sampling effort of the sequencing data.
Rarefaction curves of the observed OTUs and Good’s
coverage indicated that a large proportion of the bacterial
diversity was covered by sequencing (Fig. S2a,b). Bacte-
rial community a-diversity indices, including Shannon
index and Faith’s phylogenetic diversity, were calculated
using the ‘vegan’ (Oksanen et al., 2019) and ‘picante’
(Kembel et al., 2010) packages.

For the analysis of bacterial community p-diversity,
taxonomy-based Bray—Curtis distance and phylogeny-
based B-mean nearest taxon distance (BMNTD) were cal-
culated using the vegdist function in the ‘vegan’
(Oksanen et al., 2019) and the comdistnt function in the
‘picante’ packages (Kembel et al., 2010) respectively.
Variation in bacterial community structure was visualized
using principal coordinates analysis (PCoA). The propor-
tion of variation in the community structure explained by
land-use type was quantified using constrained analysis
of principal coordinates (CAP), and statistical significance
was tested using the permutest function with 9999 per-
mutations in the ‘vegan’ package (Oksanen et al., 2019).
To test the effects of sampling sites and land-use types
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on community p-diversity, permutational analysis of vari-
ance (PERMANOVA) was performed using the adonis
function with 9999 permutations in the ‘vegan’ package
(Oksanen et al., 2019).

Identification of land-use type sensitive OTUs. Land-use
type sensitive OTUs were identified according to the
method described by Hartman et al. (2018). First, indica-
tor species analysis was performed to calculate the point-
biserial correlation coefficient of an OTU’s positive asso-
ciation with one or a combination of land-use types. This
analysis was performed using the multipatt function with
9999 permutations in the ‘indicspecies’ package
(De Caceres et al., 2010). Next, the likelihood ratio test
was performed to evaluate the differential OTU abun-
dance among land-use types with the ‘edgeR’ package
(Robinson et al., 2010) and the P-values were adjusted
with the Benjamini-Hochberg (BH) method. Lastly, sensi-
tive OTUs were defined as these validated by both indi-
cator species analysis and likelihood ratio test at
P <0.05. A maximum-likelihood tree was constructed
based on representative sequences for each sensitive
OTU and was visualized using the iTOL tool.

Correlation network and cohesion analyses. Correlation
networks were constructed for all samples and for each
land-use type based on the relative abundances of
OTUs. Spearman’s correlations between OTUs were cal-
culated using the rcorr function in the ‘Hmisc’ package
(Harrell Jr and Dupont, 2020). To reduce rare OTUs in
each dataset, OTUs with relative abundance less than
0.5% were removed. A correlation coefficient was consid-
ered statistically robust if the Spearman’s correlation
coefficient (p) was >0.6 and the BH-adjusted P-value was
<0.01. The Gephi software was used to visualize the net-
work graphs. The nodes in the networks represent bacte-
rial OTUs, and the edges represent strong and significant
correlations among the nodes. Some key topological fea-
tures of the networks (including average connectivity,
average path length, clustering coefficient, network den-
sity and modularity) and topological features of nodes
(including degree and betweenness centrality) were cal-
culated using the ‘igraph’ package (Csardi and
Nepusz, 2006). The possible keystone OTUs were those
that had low betweenness centrality and high degree
values (within the lowest 5% of betweenness centrality
and top 5% of node degree values) (Berry and
Widder, 2014; Hartman et al., 2018). To determine
whether the constructed networks were nonrandom,
1000 Erdés—Rényi random networks with the same num-
ber of nodes and edges as that in the observed networks
were constructed, and the topological features of the real
and random networks were compared. Differences in the
correlation network structure were determined using

PERMANOVA analysis of the Spearman’s correlation
distance matrix (Williams et al., 2014).

Community connectivity was measured using the cohe-
sion metric according to the protocol reported by Herren
and McMahon (2017). Briefly, pairwise correlations were
calculated between all OTUs in a community. Then, a
null model was used to verify the strength of these corre-
lations. Expected correlations generated using the null
model were subtracted from the observed correlations,
yielding positive and negative connectedness values for
each OTU. Finally, cohesion metrics were determined
for each community by calculating the sum of each
OTU’s connectedness value multiplied by its abundance
in the community, yielding a positive and negative cohe-
sion metric for each community.

Analyses of distance—decay relationship and factors
affecting p-diversity. Geographical distances among
sampling sites were calculated from the sampling coordi-
nates. The spatial turnover rates (i.e. the distance decay
of similarity) of bacterial community and edaphic variable
were determined by regressing the pairwise community
similarity (1-dissimilarity of the Bray—Curtis or pMNTD
metrics) or edaphic variable similarity respectively,
against the pairwise geographic distance using ordinary
least-squares linear regressions. Edaphic variable simi-
larity was calculated based on the edaphic variables
(Powell et al., 2015): Ed = (1 — Eucs/EuCmax), Where
Eucy is the Euclidean distance between two sites and
Eucmhax is the maximum Euclidean distance between
sites in the distance matrix. For edaphic variables (except
pH), the proportion data were arcsine(sqrt)-transformed,
and others were log-transformed. The differences of
slopes among land-use types were evaluated using the
diffslope function with 9999 permutations in the ‘simba’
package (Jurasinski and Jurasinski, 2012).

The relationship between bacterial community similar-
ity, geographic distance and environmental similarity was
evaluated with the partial Mantel test using the mantel
function in the ‘ecodist package (Goslee and
Urban, 2007). The environmental distance matrix was
created with non-redundant edaphic variables that best
explaining bacterial community dissimilarities, which were
identified using the bioenv function in the ‘vegan’ pack-
age (Oksanen et al., 2019). To tease apart the relative
impact of land-use type, crop type, and edaphic and geo-
graphic variables on bacterial community p-diversity, mul-
tiple regressions on matrices (MRM) was performed with
Spearman’s correlation and 9999 permutations using the
‘ecodist’ package (Goslee and Urban, 2007). Land-use
type and crop type were transformed into categorical vari-
ables. Before applying MRM, variable clustering was per-
formed to remove redundant environmental variables
with the Spearman’s correlation method (cutoff: p < 0.6)
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using the varclus function in the ‘Hmisc’ package (Harrell
Jr and Dupont, 2020). The partial regression coefficients
(b) of the MRM model provided a measure of the per-unit
effect of an independent variable on the dependent vari-
able (bacterial community p-diversity) while controlling for
the effects of the other independent variables. Moreover,
a distance-based redundancy analysis with forward
selection of edaphic variables was performed using the
capscale and ordiR2step functions in the ‘vegan’ pack-
age (Oksanen et al., 2019).

Ecological modelling. Phylogenetic Mantel correlograms
analysis was performed to evaluate the relationship
between OTUs’ niche differences and phylogenetic dis-
tances. The distances between the OTUs’ environmental
optima were calculated using the abundance-weighted
mean approach (Stegen et al., 2013). The phylogenetic
distance matrix was generated using the cophenetic.
phylo function in the ‘ape’ package (Paradis
et al., 2004). The correlation between phylogenetic dis-
tance and the difference in environmental optima was
estimated using the mantel.correlog function with 999 per-
mutations and BH correction in the ‘vegan’ package
(Oksanen et al., 2019). A phylogenetic signal was
detected when the OTUs’ niche differences were signifi-
cantly related to the between-OTU phylogenetic
distances.

The standardized effect size measure of the mean
nearest taxon distance (SES.MNTD) was calculated
using the ses.mntd function with the ‘taxa.labels’ null
model and 999 randomizations in the ‘picante’ package
(Kembel et al., 2010). SES.MNTD values greater or less
than zero indicate that communities are more distantly or
closely phylogenetic clustered respectively, than
expected by chance (Tripathi et al., 2018). To quantify
the potential ecological processes (variable selection,
homogeneous selection, dispersal limitation, homogeniz-
ing dispersal, or drift) that govern bacterial community
assembly, the null model method proposed by Stegen
et al. (2013) was used. The p-nearest taxon index (BNTI)
and Bray—Curtis-based Raup—Crick (RCbray) metrics,
which were based on the difference between the
observed BMNTD and Bray—Curtis dissimilarities and
their null distributions (999 community randomizations)
respectively, were calculated using R scripts written by
Stegen et al. (2013). For a given community, |BNTI| >2
and <2 indicated the dominance of deterministic and sto-
chastic processes respectively. Furthermore, the relative
influences of variable or homogeneous selection were
quantified as the fraction of pairwise comparisons with
BNTI >+2 or BNTI <—2 respectively. The relative influ-
ences of dispersal limitation or homogenizing dispersal
were quantified as the percentage of pairwise compari-
sons with —2 < BNTI <2 and RCbray >0.95 or <—0.95
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respectively. The undominated fraction was quantified as
the percentage of pairwise comparisons with
—2 < BNTI <2 and —0.95 < RCbray < 0.95.

To identify the primary factors that influenced the bac-
terial community assembly processes, the MRM test was
performed with the geographic distance and Euclidean
distance matrices of each of the edaphic variables as
independent variables and with the pNTI matrix among
samples as the dependent variable. Partial Mantel tests
were performed to evaluate the relationship between
BNTI and either of geographic distance, soil pH and
edaphic variables excluding soil pH. To further assess
the role of soil pH in driving the bacterial community
assembly processes, the BNTI values were regressed
against the Euclidean distance matrix of soil pH. The sta-
tistical significance of the resulting comparisons was
determined using Mantel tests with 999 permutations in
the ‘ecodist’ package (Goslee and Urban, 2007).

The Sloan neutral model, which assumes that commu-
nity assembly is driven solely by chance and dispersal
and ignores microbial community phylogenetic turnover,
was used to determine the potential importance of neutral
processes in community assembly based on the commu-
nity abundance data (Sloan et al., 2006). This model was
fitted to the frequency of detection of OTUs and their
abundances by the parameter m (migration rate), and the
fit of the model was assessed using a generalized R?.

Two-way ANOVA was conducted to analyse the
effects of sampling sites and land-use types on bacterial
abundance, o-diversity indices, soil physicochemical
properties, SES.MNTD and BNTI. In cases where the
data did not satisfy the normality and homogeneity of var-
iance, the values were arcsine(sqrt)-transformed or log-
transformed before analysis. Means were compared
between land-use types based on Tukey's HSD test.
Spearman’s correlations among bacterial abundance,
bacterial community o-diversity indices, relative abun-
dances of sensitive OTUs and soil physicochemical prop-
erties were tested using the rcorr function in the ‘Hmisc’
package (Harrell Jr and Dupont, 2020) and the P-values
were adjusted using the BH method.

Results
Edaphic properties and bacterial abundance

Across all samples, both sampling sites and land-use
types exerted significant effects on soil edaphic proper-
ties (two-way ANOVA, P < 0.05) (Table S2). Soil pH was
lower in VF and VG than in CF, with VG having the low-
est value (Tukey’s HSD test, P < 0.05) (Fig. S3a). A con-
trasting pattern was observed for soil electric
conductivity, organic matter, dissolved organic carbon,
ammonium-nitrogen, nitrate-nitrogen, Olsen phosphorus,
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available potassium, total nitrogen and total phosphorus
(Tukey’s HSD test, P < 0.05).

Both sampling sites and land-use types affected soil
bacterial abundance (Two-way ANOVA, P <0.05)
(Table S2). VG had higher soil bacterial abundance than
CF and VF (Tukey’s HSD test, P < 0.05) (Fig. 1A). Soil
bacterial abundance was negatively correlated with
soil pH but positively correlated with soil electric conduc-
tivity, organic matter, dissolved organic carbon and soil
nutrient contents (Spearman’s correlation, BH-corrected
P < 0.05) (Fig. S3b).

Bacterial community a- and p-diversities

High-throughput ~ amplicon  sequencing  generated
9 417 461 quality sequences from 288 soil samples. The
dataset was composed of 20488 bacterial OTUs
grouped at 97% similarity. Both sampling sites and land-
use types altered soil bacterial community o-diversity
(two-way ANOVA, P < 0.05) (Table S2). The number of
OTUs, Shannon index and Faith’s phylogenetic diversity
were lower in the VG than in CF and VF (Tukey’s HSD,

P < 0.05) (Fig. 1A). Soil pH was positively correlated with
the number of OTUs and Shannon index, whereas soil
electric conductivity, Olsen phosphorus, nitrate- and
ammonium-nitrogen were negatively correlated with the
a-diversity indices (Spearman’s correlation, BH-corrected
P < 0.05) (Fig. S3b).

Bacterial community taxonomic and phylogenetic
B-diversities varied widely across the sampling sites
(Fig. 1B). In addition, CAP analysis, which was con-
strained by the land-use type, revealed a distinct bacterial
community p-diversity across different land-use types
(Fig. 1C). Land-use type explained a small but significant
fraction of the total variation in p-diversity as measured
using Bray-Curtis (5.4%; 95% CI 3.9%, 7.5%;
P <0.001) and BMNTD distance dissimilarities (9.8%;
95% Cl = 5.0%, 17.3%; P < 0.001). Furthermore, PER-
MANOVA analysis showed that land-use type exerted a
significant effect on bacterial community taxonomic and
phylogenetic p-diversities (P < 0.05) (Table S3). Pairwise
PERMANOVA comparisons indicated significant differ-
ences among the taxonomic p-diversities of the three
land-use types and between the phylogenetic p diversi-
ties of CF or VF and VG (P < 0.05) (Table S3). Moreover,
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Fig. 1. Abundance, a- and p-diversities of soil bacterial communities.

A. Box plots showing differences in bacterial abundance (estimated using quantitative PCR assays) and a-diversity among land-use types. ns
indicates no significant effect (P > 0.05); Triple asterisk indicates significant differences at P < 0.001 (Tukey’s HSD test).

B. PCoA and (C) CAP analysis of bacterial community p-diversities based on the Bray—Curtis and pMNTD distance dissimilarities. HLJ, Heilong-
jiang; JL, Jilin; LN, Liaoning; IN, Inner Mongolia; GS, Gansu; SX, Shanxi; SD, Shandong; HN, Henan; JS, Jiangsu; HB, Hubei; YN, Yunnan; GD,
Guangdong. CF, open field cultivated with main crops; VF, open field cultivated with vegetables; VG, greenhouse cultivated with vegetables.

[Color figure can be viewed at wileyonlinelibrary.com]
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the taxonomic and phylogenetic similarities were lower in
VG than in other treatments (Fig. S2c).

Factors that contribute to variation in soil bacterial
community p-diversity

Overall, both soil bacterial community taxonomic and
phylogenetic similarities decreased significantly with
increasing geographic distance for all samples (Fig. S4)
and the samples in each treatment (Fig. 2A; Fig. S5a).
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Fig. 2. Drivers of soil bacterial community phylogenetic p-diversity.
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Partial Mantel test revealed that geographic distance was
significantly related to bacterial community similarities
(P <0.01) (Table S4). Moreover, bacterial community
similarities in VG had a weaker correlation with geo-
graphic distance than those in CF and VF. The slopes of
the distance—decay curves of VF and VG were shallower
than that of CF, with VG having the lowest value
(P <0.001). The edaphic variable similarity decreased
with the increasing of the geographic distance (P < 0.05),
with VF and VG having shallower slopes of distance—

100-
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VG: Slope = -0.457, R? = 0.061***
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A. Distance—decay curves of bacterial community (based on the BMNTD distance) and (B) edaphic variable similarities. Solid lines represent the
linear regression models. Triple asterisk indicates significant correlation at P < 0.001.

C. CAP analysis revealing edaphic variables influencing bacterial community phylogenetic p-diversity. Samples are coloured according to the soil
pH. SOM, soil organic matter; TN, total nitrogen; EC, Soil electric conductivity; P, Olsen phosphorus; NH,, ammonium-nitrogen; NOg, nitrate-nitro-

gen; TP, total phosphorus.

D. Relationships between the PMNTD distance similarities and differences in soil pH. CF, open field cultivated with main crops; VF, open field cul-
tivated with vegetables; VG, greenhouse cultivated with vegetables. [Color figure can be viewed at wileyonlinelibrary.com]
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decay curves than CF (P < 0.001) (Fig. 2B). Moreover,
the average between sample similarity of edaphic vari-
ables for VG was higher than that for CF and VF
(P < 0.01) (Fig. S3c).

The MRM models, testing the combined effects of
geographic distance, edaphic variables and land-use
types, explained the majority of the variability in the
similarities of the bacterial communities of all samples
and each land-use type (P < 0.001) (Table S5). Land-
use type had a weak yet significant influence on bacte-
rial community taxonomic and phylogenetic p-diversities
(P <0.05). Geographic distance had smaller partial
regression coefficients for VG than for CF and VF.

Edaphic variables contributed a larger proportion of
variation than geographic distance to bacterial commu-
nity p-diversity for all samples and each treatment
(Table S5). Among all edaphic variables tested, soil pH
had the greatest partial regression coefficient. The CAP
analysis also revealed that soil pH was the most impor-
tant edaphic factor influencing bacterial community tax-
onomic and phylogenetic p-diversities (Fig. 2C;
Fig. S5b). Moreover, bacterial community taxonomic
and phylogenetic similarities were negatively correlated
with differences in soil pH (P <0.001) (Fig. 2D;
Fig. S5c).

Land-use type sensitive-OTUs

In total, 46 bacterial phyla were observed across all
samples with Proteobacteria (32.78%), Actinobacteria
(17.88%), Chloroflexi  (12.80%),  Acidobacteria
(11.99%) and Bacteroidetes (7.36%) as the dominant
phyla (relative abundance higher than 5%) (Fig. S6).
Based on indicator species analysis and likelihood ratio
test, 274 OTUs were identified to be sensitive to land-
use type, with the relative abundances of these sensi-
tive OTUs accounting for 6.48% of the total sequences
(Fig. 3; Fig. S7). The taxonomic patterns of these sensi-
tive OTUs are described in the Supplemental Material.
The relationship patterns between edaphic variables
and the relative abundances of land-use sensitive
OTUs varied among different types of sensitive OTUs
(Fig. 3C). For example, soil pH was negatively corre-
lated with most OTUs enriched solely in the VG (VG-
sensitive OTUs) but positively correlated with most
OTUs enriched in both CF and VF (CF_VF-sensitive
OTUs) (Spearman’s correlation, BH-corrected P <
0.05). However, the soil nitrate—nitrogen content was
negatively correlated with most CF- and CF_VF-
sensitive OTUs but positively correlated with most VG-
and VF_VG-sensitive OTUs (Spearman’s correlation,
BH-corrected P < 0.05).

Bacterial association patterns

We constructed a meta correlation network for the bacte-
rial communities of all samples and separate correlation
networks for each treatment (Fig. 4A; Fig. S8a). The bac-
terial association patterns differed among treatments
(PERMANOVA, Pseudo-F = 275.25, P < 0.001). The VG
network contained a larger proportion of negative correla-
tions but fewer number of edges, lower average connec-
tivity, clustering coefficient and modularity than CF and
VF networks (Table S6). Moreover, VG had lower posi-
tive cohesion and higher negative cohesion values than
CF and VF (Fig. 4B). The meta correlation network com-
prised 195 land-use type sensitive OTUs (71% of the
total number of sensitive OTUs) (Table S7). CF_VF-
sensitive OTUs had a higher average degree, whereas
VG-sensitive OTUs had a higher proportion of negative
edges than other types of sensitive OTUs in the meta
correlation network. Land-use type sensitive OTUs had
low to medium node degrees and betweenness centrali-
ties (Fig. 4C; Fig. S8b). Moreover, only a few land-use
type sensitive OTUs were identified as keystone OTUs in
the correlation network (Table S7). CF_VF-sensitive
OTUs tended to correlate more frequently among them-
selves than with other sensitive OTUs (Fig. 4D; Fig. S8c).
Meanwhile, VG- and VF_VG-sensitive OTUs formed
more connections among themselves than with other
sensitive OTUs.

Ecological processes governing bacterial community
assembly

The Mantel correlograms analysis revealed significant
phylogenetic signals at relatively short phylogenetic dis-
tances (Fig. S9a). Therefore, SES.MNTD and pNTI were
used to analyse the bacterial community assembly pro-
cesses because these two metrics emphasize phyloge-
netic relationships across short phylogenetic distances
(Stegen et al., 2013). The SES.MNTD values were less
than zero (Fig. 5A), suggesting that bacterial communi-
ties were more closely phylogenetic clustered than
expected by chance (Stegen et al., 2013). The PNTI
values were less than —2 (Fig. 5A; Fig. S9b), indicating
that the deterministic process played a major role in
governing bacterial community assembly (Stegen
et al., 2013). Both SES.MNTD and pNTI values were sig-
nificantly higher for bacterial communities of VG than for
those of the other two treatments (Tukey’'s HSD
test, P < 0.05).

By combining BNTI and RCbray metrics, we found that
homogeneous selection was the most important process
governing bacterial community assembly (Fig. 5B). The
proportion of variable selection was lower, whereas
the proportion of dispersal limitation was higher in VF
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Fig. 3. Occurrence of land-use type sensitive OTUs and their relationship with edaphic variables.

A. Ternary plot showing relative abundances of land-use type sensitive OTUs. Each circle represents an OTU. Its position represents its relative
abundance with respect to each land-use type, and its size is proportional to its mean relative abundance across all samples. Coloured circles
represent sensitive OTUs and grey ones represent non-sensitive OTUs.

B. Relative abundances of sensitive OTUs summarized at the phylum/Proteobacteria class level. Numbers in the brackets indicate the number of
sensitive OTUs.

C. Spearman’s correlation between relative abundances of sensitive OTUs and edaphic variables. Only significant correlations (BH-corrected
P < 0.05) are shown. DOC, dissolved organic carbon; SOM, soil organic matter; EC, soil electric conductivity; K, available potassium; NH,
ammonium-nitrogen; NOg, nitrate-nitrogen; P, Olsen phosphorus; TN, total nitrogen; TP, total phosphorus. CF, open field cultivated with main

crops; VF, open field cultivated with vegetables; VG, greenhouse cultivated with vegetables.

wileyonlinelibrary.com]

and VG than in CF. The Sloan neutral model performed
well and explained a large proportion of the variation in
the metacommunity of all samples and the communities
of each land-use type (Fig. S10). Moreover, the esti-
mated migration rate (m) was relatively low in VF and VG
than in CF, with VG having the lowest value.

Partial Mantel and MRM tests showed that among all
measured edaphic variables and geographic distance,
pH had the strongest association with BNTI (P < 0.001)
(Table S4, S5). Moreover, SES.MNTD values were nega-
tively correlated with soil pH (P <0.001) (Fig. 6A;
Fig. S11a). When soil samples were divided into different
soil pH categories, the relative importance of homoge-
neous selection tended to increase with soil pH (Fig. 6B).
Significant positive correlations were observed in the
pairwise comparisons of BNTI values and differences in
soil pH across all samples and within each treatment

[Color figure can be viewed at

(P <0.001) (Fig. 6C; Fig. S11b). When comparing
between land-use types, differences in soil pH were also
positively related to differences in BNTI (P < 0.001)
(Fig. 6D).

Discussion

Agricultural intensification altered the spatial turnover
rate and assembly processes of soil bacterial
communities

Agricultural intensification is considered to pose a major
threat to the global biodiversity (Tsiafouli et al., 2015;
Geisen et al., 2019). We examined soil bacterial commu-
nity assembly at a regional scale with respect to different
land-use types and found that agricultural intensification
altered the composition and decreased the spatial
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turnover rate of soil bacterial communities. These results
indicated that the bacterial community composition was
more similar under more intensively managed conditions
across spaces. A low spatial turnover rate of microbial
communities can result from high dispersal rates and low
environmental gradients (Hanson et al., 2012). In this

study, the spatial turnover rate of edaphic variable simi-
larity was lower in VF and VG than in CF, which con-
firmed our first hypothesis. A low spatial turnover rate of
edaphic variable similarity can decrease the habitat pref-
erence and homogenize soil bacterial communities
across spaces (Bahram et al., 2016; Fodelianakis
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Fig. 5. Ecological processes governing bacterial community assem-
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A. Boxplots showing differences in SES.MNTD and BNTI values
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significant differences at P < 0.05 and P < 0.001 (Tukey’s HSD test)
respectively.

B. Relative contributions of ecological processes governing bacterial
community assembly within each land-use type. CF, open field culti-
vated with main crops; VF, open field cultivated with vegetables; VG,
greenhouse cultivated with vegetables. [Color figure can be viewed
at wileyonlinelibrary.com]

et al., 2019). However, the bacterial communities of CF
and VG exhibited a lower migration rate as revealed by
the Sloan neutral model (Sloan et al., 2006). Possibly,
the effect of low spatial heterogeneity of edaphic vari-
ables overwhelmed that of low dispersal on the bacterial
community distance-decay pattern for VF and VG.

The null model showed that soil bacterial community
assembly was governed by both deterministic and sto-
chastic processes, with deterministic processes exerting
a stronger influence than stochastic processes. However,
the relative importance of deterministic processes versus
stochastic processes in bacterial community assembly
varied among land-use types, which supported our sec-
ond hypothesis. Specifically, agricultural intensification
decreased the relative importance of variable selection
and increased that of dispersal limitation on bacterial
community assembly. These results support the proposi-
tion that, in systems with low habitat heterogeneity, which
generally have lower habitat preference, the importance
of stochastic processes may increase (Bahram
et al., 2016). The SES.MNTD value was higher in VF and
VG than in CF, indicating that soil bacterial community
was less closely phylogenetic clustered in VF and
VG. The weak phylogenetic clustering for VF and VG in a
more homogeneous environment might be associated
with the decreased importance of deterministic

Land-use change and bacterial community assembly 4751

processes, since environmental filtering can generate
phylogenetic clustering (Goberna et al., 2014).

Although the soil bacterial community composition was
more similar across spaces under greenhouse condi-
tions, greenhouse production increased the variance of
soil bacterial community p-diversity, that is, it decreased
the soil bacterial community similarity, in contrast to the
other two treatments. The increased f-diversity may be
attributed to the increased stochasticity in VG under high
land-use intensity, since stochastic processes and envi-
ronmental perturbations (e.g. disturbance and fertiliza-
tion) could promote variations in the community
composition (Vellend, 2010; Zaneveld et al., 2017; Wang
et al., 2020).

Soil acidification as an important mediator of changes in
bacterial community assembly processes induced by
agricultural intensification

In this study, edaphic variables, particularly soil pH,
rather than geographical distance, better explained the
patterns of bacterial community p-diversities. Most VG-
sensitive OTUs were negatively correlated with soil pH,
whereas most CF_VF-sensitive OTUs were positively
correlated, which also indicated that soil pH was a main
factor affecting the soil bacterial community composition
(Fierer and Jackson, 2006; Tripathi et al., 2018; Jiao and
Lu, 2020). Most soil microorganisms prefer a neutral pH
environment and soil bacterial communities generally
exhibit lower diversity in both strongly alkaline and acidic
soils (Fierer and Jackson, 2006). Greenhouse vegetable
production systems usually receive high inorganic fertil-
izer inputs, which can cause significant soil acidification
(Hu et al., 2017). We observed that soil pH was positively
correlated with soil bacterial taxonomic a-diversity. There-
fore, the decrease in soil bacterial taxonomic a-diversity
in VG may be associated with the decrease in soil pH
caused by the high rate of inorganic fertilizer application.
In this study, edaphic variables were strongly associ-
ated with the BNTI value, with soil pH as the most influen-
tial factor. In particular, BNTI values were negatively
correlated with the changes in soil pH, indicating that var-
iations in edaphic variables, especially soil pH, exerted
substantial effects on the bacterial community assembly
process. Greenhouse vegetable production acidified the
soil and promoted stochastic processes. Moreover, soil
bacterial communities were less phylogenetically clus-
tered and subjected to more stochastic assembly pro-
cesses in acidic soils. The endocellular pH of most
microorganisms is near neutral; therefore; it is generally
assumed that soil pH deviant far from neutral would exert
deterministic selective effects on soil microbial communi-
ties and cause phylogenetic clustering (Fierer and
Jackson, 2006; Tripathi et al., 2018). However, empirical
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Fig. 6. Relationships between SES.MNTD or BNTI of soil bacterial communities and soil pH.

A. Relationships between SES.MNTD and soil pH across all samples.

B. Boxplots showing BNTI distributions across different categories of soil pH. Horizontal dashed grey lines indicate lower and upper significance
thresholds at pNTI = —2 and +2 respectively.

C. Relationships between pNTI and differences in soil pH across all samples.

D. Relationships between BNTI and differences in soil pH between treatments. The solid red line represents the linear regression model. Shaded
areas represent the estimated 95% confidence intervals. CF, open field cultivated with main crops; VF, open field cultivated with vegetables; VG,
greenhouse cultivated with vegetables. [Color figure can be viewed at wileyonlinelibrary.com]

studies have reported contrasting results. For example, from differences in the attributes of these ecosystems. In
the study of bacterial communities in non-agricultural addition to its direct effects, soil pH can indirectly affect
soils (e.g. glacier, tundra, forest and desert) supported the soil bacterial communities by altering the solubility of
this assumption and showed that homogeneous selection elements (e.g. phosphorus, aluminium and iron) and
dominated in more acidic and alkaline soils, whereas sto- plant growth (Lammel et al., 2018). Some bacterial taxa
chastic assembly processes dominated in soils with may respond differently to the direct and indirect effects
close-to-neutral pH (Tripathi et al., 2018). However, stud- of soil pH. As such, it is possible that these indirect
ies of bacterioplankton in freshwater lakes (Ren effects can alter the direct effect of pH on the assembly
et al., 2015) and bacterial communities in agricultural of bacterial communities. Moreover, agroecosystems are
soils have shown an increased role of stochasticity in generally subjected to high levels of disturbance, which
acidic environments (Barnett et al., 2020; Jiao and can function in conjunction with environmental factors to
Lu, 2020). This inconsistency among studies may arise influence the diversity and composition of ecological
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communities (Houseman et al., 2008). For example,
Barnett et al. (2020) found that the land-use type and soil
pH exerted interactive effects on bacterial community
assembly and this interaction varied across pH classes
(i.e. acidic and neutral soils).

In addition to soil acidification, changes in other
edaphic variables were also associated with changes in
the bacterial community assembly processes. Increasing
soil fertility could increase the relative importance of sto-
chastic processes, as increasing soil nutrients could
weaken niche selection by reducing the competition for
resources and enhancing stochastic processes by pro-
moting the growth of soil microbial communities (Zhou
et al., 2014; Chen et al., 2017; Feng et al., 2018). Our
quantitative PCR analysis revealed an increase in bacte-
rial abundance in VG, indicating that an increase in soil
nutrients owing to the high application rates of fertilizers
may promote stochasticity in VG. Disturbance, which
imposes various stresses on soil microbial communities,
is an important ecological factor affecting microbial com-
munity assembly (Stegen et al., 2013; Zhou and
Ning, 2017). For example, disturbances induced by
drought can promote deterministic  processes
(Chase, 2007; Valverde et al, 2014; Lupatini
et al., 2019). Vegetables cultivated in greenhouses are
frequently irrigated, and therefore, soils in greenhouses
are exposed to minor variation in soil moisture, which
might be associated with the decreased importance of
deterministic processes in VG.

Soil bacterial communities were less closely associated
under greenhouse conditions

The correlation network of VG had lower average con-
nectivity and clustering coefficient than that of CF and
VF, indicating that the bacterial taxa were less closely
associated in VG (Newman, 2006). The lower complexity
observed in VG may be related to the high-level nutrient
contents, as the complexity of the bacterial community
network could decrease in soils with higher nutrient levels
(Dini-Andreote et al., 2014; Feng et al., 2017). The obser-
vation of a less closely association pattern and high con-
tribution of stochastic processes in VG is consistent with
the assumption that stochastic processes play a more
important role in structuring an ecological community with
more random species associations (Veech, 2013;
Danczak et al., 2018).

In this study, different types of land-use type sensitive
OTUs exhibited different association patterns. For exam-
ple, CF_VF-sensitive OTUs tended to correlate more
among themselves than with other types of sensitive
OTUs. A similar trend was observed for the VG- and
VF_VG-sensitive OTUs. Moreover, different types of sen-
sitive OTUs responded differently to the changes in

Land-use change and bacterial community assembly 4753

edaphic variables. For example, most VG-sensitive OTUs
were negatively and positively correlated with soil pH and
nitrate content respectively. However, a contrasting
relationship was observed for CF_VF-sensitive OTUs.
Correlated species pairs may share similar ecological
characteristics (Williams et al., 2014). Therefore, these
different types of sensitive OTUs may share different eco-
logical niches and play different roles in agroecosystems.

Implications and limitations of this study

As essential functional components of soil microbial com-
munities, soil bacteria are key determinants of plant
health and productivity in agricultural ecosystems
(Bardgett and van der Putten, 2014). Previous studies
have demonstrated that agricultural intensification can
negatively affect the functioning of soil microbial commu-
nities (Tsiafouli et al., 2015; de Graaff et al., 2019; Jin
et al., 2019). Although soil function was not measured in
this study, the decreases in the a-diversity in VG indi-
cated that this production system may not be sustainable
(Wagg et al., 2019). The finding that soil acidification act
as an important mediator of the changes in bacterial com-
munity assembly processes induced by agricultural inten-
sification suggests that agricultural practices that avoid
soil acidification, such as reducing the application rate of
inorganic fertilizers, may help maintain the functioning
of soil microbial communities. A shortcoming of this
experiment is that we measured certain edaphic vari-
ables, but not other environmental factors, such as air
temperature and precipitation regimes, which are
reported to be important driving factors of soil microbial
assembly (Lupatini et al., 2019; Jiao and Lu, 2020). Soil
microorganisms can disperse passively via air and water
flow (Hanson et al., 2012; Fodelianakis et al., 2019). As
greenhouses are covered by glasses or plastic films, the
passive dispersal of soil microorganisms across spaces
caused by wind and rainfall events would be minimal for
VG, resulting in a lower migration rate. Therefore, in addi-
tion to high land-use intensity, the semi-closed environ-
ment in greenhouses also contributed to the increased
importance of dispersal limitation in VG. Further experi-
ments are warranted to assess the role of other environ-
mental factors in mediating the observed changes in soil
microbial assembly.

Conclusions

This study provides evidence that agricultural intensifica-
tion alters the diversity and assembly processes of the
soil bacterial community. Specifically, agricultural intensi-
fication led to the homogenization of the soil environment
across spaces, particularly decreased soil pH, which
reduced the importance of variable selection and
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increased the importance of dispersal limitation. More-
over, increasing land-use intensity altered the potential
interspecies associations of soil bacterial communities
and reshaped the soil bacterial community composition
by favouring some taxa over others. These findings may
help improve our understanding of soil bacterial commu-
nity ecology in agroecosystems and provide references
for forecasting how soil bacterial communities respond to
anthropogenically induced environmental changes.
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