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Summary
Background Individuals with long standing diabetes duration can experience damage to small microvascular blood
vessels leading to diabetes complications (DCs) and increased mortality. Precision diagnostic tailors a diagnosis to
an individual by using biomedical information. Blood small molecule profiling coupled with machine learning (ML)
can facilitate the goals of precision diagnostics, including earlier diagnosis and individualized risk scoring.

Methods Using data in a cohort of 537 adults with type 1 diabetes (T1D) we predicted five-year progression to DCs.
Prediction models were computed first with clinical risk factors at baseline and then with clinical risk factors and
blood-derived molecular data at baseline. Progression of diabetic kidney disease and diabetic retinopathy were pre-
dicted in two complication-specific models.

Findings The model predicts the progression to diabetic kidney disease with accuracy: 0.96§ 0.25 and 0.96§ 0.06
area under curve, AUC, with clinical measurements and with small molecule predictors respectively and highlighted
main predictors to be albuminuria, glomerular filtration rate, retinopathy status at baseline, sugar derivatives and
ketones. For diabetic retinopathy, AUC 0.75 § 0.14 and 0.79 § 0.16 with clinical measurements and with small
molecule predictors respectively and highlighted key predictors, albuminuria, glomerular filtration rate and retinop-
athy status at baseline. Individual risk scores were built to visualize results.

Interpretation With further validation ML tools could facilitate the implementation of precision diagnosis in the
clinic. It is envisaged that patients could be screened for complications, before these occur, thus preserving healthy
life-years for persons with diabetes.
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Introduction
Devastating microvascular diabetes complications
(DCs), such as diabetic nephropathy (DN) and diabetic
retinopathy (DR), lead to increased mortality, blindness,
kidney failure and overall decreased quality of life in
individuals with diabetes.1,2 Systemic high glucose
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levels result in damage in the cells of the capillary endo-
thelium of the retina and in the cells of the mesangial
in the glomerulus. Thus, hyperglycemia is the most
important known predictor of the pathogenesis of these
two complications in type 1 diabetes.3 Glomerular filtra-
tion rate (GFR) and the urinary albumin excretion rate,
which themselves are measures of DN, are also major
predictors of further progression of DN.4 Although clin-
ical risk factors and glycemic control can be good predic-
tors of the development of microvascular complications,
they are not necessarily informative at the early stages
of disease. Hence, there is a need for technology that
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Research in context

Evidence before this study

Microvascular diabetes complications (DCs), such as dia-
betic kidney disease (DKD) and diabetic retinopathy
(DR), lead to increased mortality, blindness, kidney fail-
ure and overall decreased quality of life in individuals
with diabetes.

Added value of this study

We have developed four algorithms based on tradi-
tional risk factors alone and risk factors with metabolo-
mic and lipidomic data. Two accurately predicted the
future progression in individuals with type 1 diabetes.
The top predictors chosen by the algorithm were hemo-
globin A1c, albuminuria and retinopathy status at base-
line for diabetic retinopathy. The most promising
models predicted future diabetic kidney disease in
which albuminuria, eGFR, retinopathy status at baseline
were complemented with a number of ketones and
sugar derivatives.

Implications of all evidence available

With further validation in several cohorts, the prediction
models presented here have the potential for early
diagnosis of CKD in persons with diabetes, thus
enabling appropriate decisions on the available thera-
pies. It is envisaged that these algorithms will be trialed
and support clinicians with precision diagnosis and
treatments.
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can exploit hidden risk patterns and molecular dynam-
ics, thus achieving accurate prediction of DCs.

Metabolomics and lipidomics are snap-shots of
metabolism and can be applied to the study of diabetes
to obtain a comprehensive molecular profile.5 Over the
past decade, omics technologies have shown the poten-
tial to personalize patient care in a way that was previ-
ously unthinkable.6�8 Thus, by combining already well-
known clinical risks factors together with a broad omics
panel, we aim to study the biological dynamics during
progression to DR and DN.

Machine learning (ML) algorithms learn descriptive
patterns from large amounts of data. Hence, the appli-
cation of this technology can support clinical decisions
and is one of the areas where artificial intelligence has
had the most impact in the recent years.9,10 ML can
empower healthcare professionals, and to date it has
been applied effectively to predict the risk of heart fail-
ure and retinopathy in diabetes.11,12 Significant strides
are being made towards using ML algorithms to predict
other conditions. In the case of diabetic kidney disease
(DKD), extensive research has been carried out to find
predictive biomarkers for future end-stage kidney dis-
ease. However, to the knowledge of the authors, no sin-
gle study exists, which employs ML to predict
progression of estimated Glomerular Filtration Rate
(eGFR) decline in type 1 diabetes.13 In the case of DR
complications, on the other hand, hundreds of publica-
tions and patents with highly predictive approaches
have recently been reported and filed, including deep
learning-based image analysis of retinal images.12

In a large and well-characterized type 1 diabetes
cohort from Steno Diabetes Center Copenhagen
(SDCC), we sought to develop easily interpretable and
accurate prognostic risk prediction models for DCs. To
this end, we apply ML with clinical data combined with
two sets of omics data to predict DC progression in fol-
low-up data. In this study, we hypothesize that1 ML can
be used for prediction of future complications in type 1
diabetes using standard clinical risk factors; and2 com-
bining blood-based metabolic phenotyping and clinical
data will improve the prediction by modeling the
dynamics between risk factors and molecular metabo-
lism. The ultimate aim of this study is to design a per-
sonalized risk prediction tool for DCs that can be
applied in clinical practice.
Methods

Study design and participants
This study is based on a cohort of 648 adults with type 1
diabetes followed at SDCC and previously described by
Theilade et al.14 As the present study focuses on predic-
tion of progression, any participants with missing fol-
low-up data on DCs were excluded from the analysis.
Thus, metabolomics and lipidomics data along with fol-
low-up information on DKD and retinopathy status
were available for 537 participants. Advanced DCs at
baseline such as macroalbuminuria, and severe retinop-
athy (proliferative or blind) were excluded, leaving 383
participants with mild or no DCs at the baseline assess-
ment. Anova test was used for continues variables, and
x2 test was used for categorical variables for statistical
comparisons of the baseline characteristics of the
groups compared.

The study was performed in compliance with the
Declaration of Helsinki and was approved (2009-056)
by the ethics committee for the Capital Region of Den-
mark (Hillerød, Denmark). All participants have given a
written consent.
Baseline clinical measurements
A detailed description of clinical measurements has pre-
viously been reported.15�17 HbA1c, serum creatinine,
plasma cholesterol, and triglycerides were measured
using standardized methods from venous samples.
Albuminuria was subdivided by stages (normo-, micro-,
and macroalbuminuria, using 30 and 300 mg/g creati-
nine or mg/24 h as cut offs). Decline in eGFR was
defined as the first occurrence of �30% decrease from
www.thelancet.com Vol 80 Month June, 2022
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baseline, as proposed by Coresh et al.18 Retinopathy sta-
tus was assessed at SDCC as no retinopathy, mild non-
proliferative retinopathy, moderate non-proliferative ret-
inopathy, proliferative retinopathy, proliferative retinop-
athy with fibrosis, and blind. Previous cardiovascular
disease (CVD) was defined as any previous event of
ischemic heart disease, ischemic stroke, heart failure,
and peripheral artery disease. Information on medica-
tion was collected from electronic medical records. Fol-
lowing categories were applied: use of lipid-lowering
treatment (yes/no), antihypertensive treatment (yes/no)
and current smoking (yes/no).
Metabolic phenotyping and preprocessing
Metabolite and lipid concentrations were measured in
plasma samples using untargeted ultra-high-perfor-
mance liquid chromatography coupled to mass spec-
trometry (UHPLC-MS) and two-dimensional gas
chromatography coupled to time-of-flight mass spec-
trometry (GC £ GC-TOFMS) as previously
described.16,17,19�22 Metabolomics and lipidomics analy-
ses were performed following our protocols (see detailed
information in21,22). All reported metabolite annotations
are from our in-house library and have been validated
using pure spiked reference standards. Global metabo-
lomics based on GC £ GC-TOF-MS, covers small mole-
cules such as sugars, free fatty acids and amino acids.
Global lipidomics based on UHPLC-MS covers molecu-
lar lipid species, such as neutral lipids, sphingolipids
and phospholipids. Raw GC £ GC-TOF-MS and
UHPLC-MS data were processed with ChromaTOF
(LECO; Saint Joseph; USA) and MZmine 2, respec-
tively. Finally, data from each platforms were post-proc-
essed in R by batch-correction, truncation of outliers,
and imputation of missing values, as described previ-
ously. The final data sets of metabolite and lipid species
consisted of the measured levels of identified and
unidentified compounds. Inclusion of the complete
data from the platforms was used to acquire an unbi-
ased global metabolic phenotype. Finally, features with
a very high mutual correlation (Pearson correlation coef-
ficient larger than 0.85) were removed, thus leaving one
feature from each tight feature group as a nonredun-
dant predictor.
Machine learning method
Data and model design. Random Forest (RF) models
were applied to predict future risk of progression of
DCs.23 We evaluated three scenarios with participants
divided into two groups: first, non-progressors (persons
with mild complication not advancing to another stage
of the complication; n = 195), and progressors (n = 190),
including both the DR and DKD progressors; second,
only progression to DR (mild, moderate or severe)
www.thelancet.com Vol 80 Month June, 2022
predicted for 193 non-progressors and 111 progressors;
and third, only progression to DKD (�30% decline in
eGFR) predicted for 193 non-progressors and 79 pro-
gressors.

The RF classifier was employed to predict whether
the participant will during the follow-up progress to at
least one of the complications. For each of the models,
two sets of features were evaluated: (1) clinical variables
only (17 measures), and (2) blood small molecule data
(965 molecular features) along with the clinical varia-
bles.

Clinical variables with no predictive power were
excluded for improved performance. Unidentified com-
pounds that were picked by the ML algorithm (as
described next) were further investigated to acquire
putative identities by manually comparing the retention
time (RT), mass-to-charge ratio (m/z) and fragmenta-
tion pattern with spectral libraries. All prediction mod-
els were developed using SciKit-learn24 in Python
(v3.7.1). RF scalable visualizations (decision trees) for
interpretation are created with ‘pybaobabdt’ library.25
Model validation. The models were trained by splitting
the data into training and testing datasets through k-
fold cross validation (k = 5). The number of Decision
Trees in the ensemble was set to 500, all features were
included in each split without a priori feature selection
and a panel of features was then selected by the model.
Non-progressors and progressors were divided ran-
domly into a training set (80%) used to build the RF
models and an unseen validation data set (20%) used to
validate the model performance. The main predictors
and features of importance were selected using the max-
imal mean absolute SHapley Additive exPlanation
(SHAP) algorithm. This method selects features while
ensuring the top performance model is obtained.26 For
each panel of predictors, the performance was calcu-
lated for each round on mean AUROC values from
which the optimal number of features was selected. The
models were further tested for performance stability
using Monte Carlo (MC) simulation consisting of 100
iterations.27,28 Model performance was evaluated with
the following metrics: AUROC, prediction accuracy,
precision, recall (sensitivity), and F-score. Prediction
performance was assessed at the class decision thresh-
old of 0.50. T-test on normally distributed AUC values
were calculated to compare the models (with and with-
out blood small-molecules) using 100 randomly created
training and test data sets and compared the AUC val-
ues obtained in MC.

To illustrate the applicability of the algorithm for
personalized medicine, the results from two individuals
using clinical risk factors were portrayed (Figure 2g).
Univariate regression analyses for all important metabo-
lites and lipids are provided in Supplementary Tables
(S1�S3).
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Role of the funding source
The funder had no role in the study design, data collec-
tion, data analyses, interpretation or writing of the
report.
Results
A graphical representation of the study design and ML
specifications is shown in Figure 1. Participants’ base-
line characteristics are given in Table 1.
Baseline characteristics of the cohort
The baseline characteristics of the included individuals
were as follows: mean § SD: age of 54.8 § 13.7 years, a
median diabetes duration of 30.4 § 16.9 years and 171
(45%) women (Table 1). Overall, 215 (56%) had normo-
albuminuria at baseline, 104 (27%) and 64 (17%) had
microalbuminuria and macroalbuminuria, respectively.
At baseline eGFR was 88.8 § 27.1 ml min�1 1.73 m�2.
During follow-up, 79 participants experienced a � 30%
decline in eGFR, and 111 individuals progressed in the
DR stage. The majority (62%) were on antihypertensive
treatment (AHT) and statin (52%) treatment. Median
follow-up time was 5.4 years.
Metabolic phenotyping
Using the two untargeted analytical platforms for
metabolites, a total of 702 lipid species and 263 metabo-
lites were measured, respectively, from 385 plasma sam-
ples. All 965 non-redundant omics features were
included in the development of the ML algorithms (see
methods, ‘Modeling design’).

Out of the omics features included, 14 omics features
appeared as predictors of importance in the models with
clinical and omics (described in the next subsection). Six
of the selected omics features were known metabolites:
ketone bodies (2,4- and 3,4-dihydroxybutanoic acids)
and four sugar derivates (ribitol, ribonic acid, myo-inosi-
tol, and meso-erythrinitol).

Further two features were known lipid species: a sat-
urated ceramide Cer(d42:0) and a monounsaturated
sphingomyelin SM(d30:1). The last six features were
putatively identified. Based on RT and Golm Metabo-
lome Database,29 ‘M_68’ is a small metabolite with
more than one hydroxyl group, thus likely a sugar.
‘M_76’ is indicatively a large carboxylic acid. Based on
m/z values from the unknown lipid species and accord-
ing to the LIPID MAPS database,30 ‘L_195’ and ‘L_168’
are putative ceramides. L_103’ is a phosphatidylserine
or a phosphatidylinositol. ‘L_439’ could not be identi-
fied.
Risk prediction models
Overall, the predictive performance of all models using
traditional risk factors showed excellent and robust
predictive performance for future progression to DCs
(Figure 2). Moreover, combining metabolic phenotyp-
ing and clinical variables improved the prediction per-
formance (Figure 3). The importances and
contributions of the top-features in the models are
shown in the SHAP summary plots. Next, we will
describe the models in detail.
Clinical-based biomarkers in the prediction of diabetes
complications. Overall, 190 participants (49%) experi-
enced any progression of retinopathy and/or � 30%
decline in eGFR from baseline to follow-up. The final
model for combined DCs selected through the SHAP
method included 14 out of the initial 17 clinical baseline
variables: albuminuria, mild degree of retinopathy,
HbA1c, eGFR, systolic BP, HDL-cholesterol, BMI, LDL-
cholesterol, diabetes duration, total cholesterol, age,
total triglycerides, antihypertensive therapy (AHT) and
previous cardiovascular disease (CVD) (Figure 2a).
Smoking, gender and statin remained unincluded.
Using five-fold cross-validation for discrimination on
SHAP selected features, the mean AUROC was 0.81
(95% CI 0.687;0.893) in the validation set with an accu-
racy of 0.81, precision of 0.79, F1-score of 0.80, and
recall of 0.81 (Figure 2b). The 100 AUROC values
obtained in MC had a mean of 0.68, and a standard
deviation of 0.11.

A total of 79 participants (21%) experienced a pro-
gressive decline of �30% in eGFR. The optimal DKD
model included 15 clinical baseline variables: albumin-
uria, eGFR, mild degree of retinopathy, AHT, systolic
blood pressure, HbA1c, age, previous CVD, diabetes
duration, total triglycerides, HDL-cholesterol, BMI,
LDL-cholesterol, total cholesterol, and statin, excluding
smoking and gender (Figure 2b). Smoking and gender
were not included in the optimal model. AUROC for
the DKD model was 0.92 (95% CI 0.857;0.995) with an
accuracy of 0.95, precision of 1.00, F1-score of 0.89,
and recall of 0.80 (Figure 2e). The 100 AUROC values
obtained in MC had a mean of 0.95, and a standard
deviation of 0.11. An individual decision tree for classify-
ing the � 30% eGFR decline model based clinical data-
set is shown in Figure 4a.

A total of 111 participants (28.83%) experienced any
progression of retinopathy. The best model derived
from RF algorithm for retinopathy included 12 clinical
baseline variables: HbA1c, albuminuria, mild degree of
retinopathy, HDL-cholesterol, eGFR, diabetes duration,
LDL-cholesterol, systolic BP, BMI, age, total cholesterol,
total triglycerides, and total cholesterol (Figure 2c).
Smoking, gender, statin, AHT, and previous CVD were
not included in the optimal model. The mean AUROC
for the retinopathy model was 0.81 (95% CI
0.754;0.958) with an accuracy of 0.75, precision of 0.73,
F1-score of 0.59, and recall of 0.50 (Figure 2f). The 100
AUROC values obtained in MC had a mean of 0.79,
www.thelancet.com Vol 80 Month June, 2022



Figure 1. Graphical representation of study design and machine learning implication. Baseline clinical data and plasma samples (for metabolomics and lipidomics analysis) were col-
lected from 537 individuals with type 1 diabetes (I). Participants were classified into two groups: type 1 diabetes stable (n = 195) or type 1 diabetes with progression to diabetes complica-
tions (n = 190). Progression of combined diabetes complications, diabetic kidney disease (�30% decline in eGFR; n = 79), and diabetic retinopathy (mild, moderate or severe; n = 111) were
predicted (II). Median follow-up was 5.4 years.

A
rticles

w
w
w
.th

elan
cet.com

V
ol80

M
on

th
Jun

e,2022
5



All participants
(n = 383)

Non-
progressors
(n = 193)

Retinopathy
and Kidney
disease (n = 190)

Retinopathy
(n = 111)

�30% decline in
eGFR(n = 79)

p-values

Female, n (%) 171 (44.6) 86 (44.6) 85 (44.7) 48 (43.2) 35 (44.3) 0.99

Age, years 54.77 § 13.7 52.84 § 13.6 54.98 § 13.6 52.76 § 13.6 56.12 § 13.3 0.48

Diabetes duration, years 30.38 § 16.9 28.29 § 16.5 32.10 § 16.5 27.85 § 15.9 35.47 § 14.94 0.41

HbA1c, % (mmol/mol) 8.00 § 1.2 7.60 § 1.0 8.45 § 1.3 8.44 § 1.2 8.68 § 1.3 0.27

BMI, kg/m2 24.65 § 3.8 23.99 § 3.5 25.64 § 3.9 25.55 § 3.9 25.97 § 4.3 0.62

Systolic BP, mmHg 130 § 19.4 125.00 § 17.11 136.04 § 20.64 131.48 § 15.7 141.59 § 19.8 0.61

eGFR, ml min-1 1,73 m2 88.68 § 27.1 95.55 § 22.0 78.55 § 28.9 86.24 § 26.9 66.33 § 29.1 0.88

Triglycerides, mmol/L 0.96 § 0.7 0.89 § 0.5 1.24 § 0.8 1.13 § 0.6 1.39 § 0.9 0.88

Total cholesterol, mmol/L 4.7 § 0.9 4.70 § 0.8 4.82 § 1.0 4.72 § 0.9 4.87 § 1.1 0.65

LDL-cholesterol, mmol/L 2.4 § 27.1 2.30 § 0.7 2.59 § 0.8 2.59 § 0.8 2.55 § 0.9 0.94

HDL-cholesterol, mmol/L 1.62 § 0.5 1.68 § 0.6 1.64 § 0.5 1.61 § 0.5 1.67 § 0.6 0.56

Smokers, n(%) 75 (19.6) 39 (20.2) 36 (18.9) 16 (14.4) 19 (24.1) 0.29

Statin treatment, n (%) 200 (52.2) 84 (43.5) 117 (61.6) 61 (54.9) 61 (77.2) 0.002

AHT treatment, n (%) 238 (62.1) 96 (49.7) 142 (74.7) 73 (65.8) 73 (92.4) 9.69 £ 10�12

Previous CVD, n (%) 67 (17.5) 20 (10.4) 47 (24.7) 16 (14.4) 26 (32.9) 1.66 £ 10�05

Albuminuria, n (%)

Normal

Micro

Macro

215 (56.1)

104 (27.2)

64 (16.7)

148 (76.7)

45 (23.3)

-

67 (35.3)

59 (31.0)

64 (33.7)

51 (45.9)

37 (33.3)

23 (20.7)

9 (11.4)

18 (22.8)

52 (65.8)

2.20 £ 10�16

Retinopathy status, n (%)

None apparent

Mild non-proliferative

Moderate non-proliferative

Proliferative

Proliferative with fibrosis

Blind

126 (32.9)

68 (17.6)

125 (32.6)

32 (8.3)

26 (6.8)

6 (1.6)

75 (38.9)

35 (18.1)

83 (43.0)

-

-

-

51 (26.8)

33 (17.4)

42 (22.1)

32 (16.8)

26 (13.7)

6

-

44 (39.6)

31 (27.9)

17 (15.3)

19 (17.1)

-

14 (17.7)

4 (5.1)

20 (25.3)

15 (18.9)

26 (32.9)

-

2.20 £ 10�16

Table 1: Comparison of baseline clinical characteristics of combined diabetes complications, diabetic retinopathy, and diabetic kidney
disease groups.
Data are expressed as Mean §SD or n (%). eGFR, estimated Glomerular Filtration Rate; LDL, low-density lipoprotein; HDL, high-density lipoprotein; AHT,

antihypertensive treatment; CVD, cardiovascular disease. Statistics: Anova test was used for continues variables, and x2 test was used for categorical variables.
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and a standard deviation of 0.17. An individual decision
tree for classifying the retinopathy model based clinical
dataset is shown in Figure 4b.

Feature importance and personalized individual risk
predictions of DKD, progressors versus non-progres-
sors, were examined further (Figure 2g). The first force
plot shows a stable individual without progression to
DCs and correctly predicted as a non-progressor by the
model: the predicted probability of progression was 2%.
The second force plot shows an individual correctly pre-
dicted as progressor with the probability of 84%. In
more detail, the SHAP values of individual participants
emphasize variables that most strongly contribute to the
prediction, with red and blue colors, respectively, indi-
cating risk factors and protective factors. For instance,
with the second individual predicted as DKD progres-
sor, albuminuria, mild degree of retinopathy, and eGFR
played an important role in the prediction: albuminuria
was the most important risk factor as determined by the
color (red) and the length of the respective bar. In con-
trast, the first individual was predicted to remain free of
DKD based on young age, normo-albuminuria, no reti-
nopathy, and a relatively high eGFR, all contributing to
the very low probability, 2%, of DKD progression.
Omics and clinical profile-based biomarkers in the pre-
diction of diabetes complications. The optimal model
for any progression in DCs was obtained by combining
three clinical baseline variables �albuminuria, mild
degree of retinopathy and HbA1c � with seven metabo-
lites � 3,4-Dihydroxybutanoic acid, SM(d30:1), meso-
Erythritol, Cer(d42:0), one unidentified metabolite and
two unidentified lipid species (Figure 3a). This final
model with SHAP-selected clinical variables and omics
features had a mean AUROC of 0.89 (95% CI
0.818;0.966), accuracy of 0.83, precision of 0.90, F1-
score of 0.81, and recall of 0.73 in the validation set
(Figure 3d). The 100 AUROC values obtained in MC
had a mean of 0.84, and a standard deviation of 0.11.

The best model for DKD was obtained by combining
four clinical baseline variables: albuminuria, mild
www.thelancet.com Vol 80 Month June, 2022



Figure 2. Models based clinical features. (a�c) Subset of a dot plot showing the directional mean absolute SHAP values of fea-
tures (x axis) computed from five-fold cross-validation models that predict metabolite levels (y axis) using clinical data. Positive and
negative SHAP values represent positive and negative impact on the predicted risk of progression to combined DCs (A), �30%
decline in eGFR (b), and retinopathy (c), respectively in the validation sets. Positive (negative) SHAP values indicate that higher
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degree of retinopathy, eGFR and HbA1c, and two
ketones and three sugar derivatives: 3,4-dihydroxybuta-
noic acid, 2,4-dihydroxybutanoic acid, ribitol, ribonic
acid, myo-inositol, and one unidentified metabolite
(Figure 3b). The model demonstrated an excellent per-
formance, with mean AUROC=0.99 (95% CI
0.876;0.997), accuracy of 0.98, precision of 1.00, F1-
score of 0.96, and recall of 0.92 (Figure 3e). The 100
AUROC values obtained in MC had a mean of 0.97,
and a standard deviation of 0.05.

The best performing model for DR was based on
seven metabolites: Cer(d42:0), 3,4-Dihydroxybutanoic
acid, the same unidentified metabolite as in the model
above, and four unidentified lipid species together with
HbA1c, albuminuria, and mild degree of retinopathy
(Figure 3c). The mean AUROC was 0.87 (95% CI
0.781;0.996) with an accuracy of 0.80, precision of
0.68, F1-score of 0.71, and recall of 0.75 (Figure 2f). The
100 AUROC values obtained in MC had a mean of
0.87, and a standard deviation of 0.10. Two additional
decision trees for the omics and clinical- based models
were created and added as Supplementary Figure (S1).

Both models with and without adding blood small-
molecules provided a good discrimination to predict
DCs. The recall of the models with clinical variables
indicates that 80% and 50%, respectively, were correctly
identified as progressors to �30% decline in eGFR and
any retinopathy. In models with, both, clinical variables
and small molecules, 92% and 80% were correctly iden-
tified as progressors to �30% decline in eGFR and any
retinopathy, respectively.

The t-test for model comparisons (with and without
adding small-molecules) for DCs, DKD, and DR were
3.004 £ 10�15, 0.393, and 1.258 £ 10�04, respectively.

The sensitivity analysis was done by evaluating the
performance of the models with metabolites and lipids
by excluding one metabolites or lipids at a time (see sup-
plementary Tables (S4 and S5) for performance meas-
urements).
Discussion
In the present study, we developed high-performing
prediction models with random forest ML algorithms
(lower) feature values lead to higher predicted probability of progre
tion dataset with a higher value being red and a lower value being b
on the main predictors. The 100 AUROC values for combined diabet
thy obtained in MC had a mean and SD of 0.68 § 0.11, 0.95 § 0.11,
ing effect of SHAP values at the individual level performance of r
diabetes with progression to �30% eGFR decline). Features in red re
overall probability while blue represent the lower values and are p
None apparent, 2= Mild non-proliferative, 3= Moderate non-prolife
buminuria, 3=macroalbuminuria); Previus_CVD (1=yes); AHT (1=ye
utilizing clinical risk factors and omics profiles from
plasma samples of persons with type 1 diabetes. Our
objective was to predict progression of (1) combined dia-
betes complications, (2) diabetic kidney disease, defined
as �30% decline in eGFR, and (3) retinopathy defined
as progression in retinopathy severity over 5 years. DR
and DKD are two types of microvascular complications
and have a relatively high co-occurrence in T1D, which
on the other hand could point to a basis that is partly
shared. Our hypothesis was that the biomarkers selected
in the joint DKD and DR model could represent this
partly shared basis.

Using only clinical risk factors for training the mod-
els, AUROC of 0.81, 0.92, and 0.81 were obtained for
combined DCs, DKD, and DR respectively
(Figure 2d�f). The models based on the clinical risk
profile accurately predicted the future progression of
DCs in individuals with type 1 diabetes. Moreover, pre-
diction improved by the inclusion of blood biomarkers
from the omics data (Figure 3d�f). Including a molecu-
lar profile to the predictive panel may be useful for the
implementation of detailed personalized medicine tools
in the clinic. However, molecular panels need further
investigation, including the testing of clinical utility
with clinical trials.13

The models with clinical risk factors were obtained
with routinely collected data (such as HbA1c, albumin-
uria and eGFR) all known risk factors of microvascular
complications in diabetes.4,31 Albuminuria, eGFR and
retinopathy status at baseline were the main predictors
for �30% decline in eGFR progression. Similarly,
HbA1c, albuminuria, and retinopathy status were main
predictors for progression to DR.

In our models, baseline DR was one of the top three
variables of importance for predicting future DKD. The
association of diabetes nephropathy and DR has been
addressed in several previous studies,32�35 confirming
the plausibility of the three main predictors over other
clinical factors.

Overall, we identified eight small biomolecules from
the models with clinical risk factors and blood-derived
molecular data that were strongly predictive of DCs.
The metabolite signature to predict �30% decline in
eGFR included two short chain ketones (3,4-dihydroxy-
butanoic acid and 2,4-dihydroxybutanoic acid) and three
ssion. Each plot is made up of individual points from the valida-
lue. (d�f) AUROC, mean and SD of the result from model based
es complications, diabetic kidney disease, and diabetic retinopa-
and 0.79 § 0.17, respectively (not shown). (g) Force plots show-
andomly predicted outputs (type 1 diabetes stable and type 1
present the higher values and show risk factors pushing up the
rotective factors. Feature labels are: Retinopathy_baseline (1=
rative); Albuminuri_baseline (1=normoalbuminuria, 2=microal-
s); Statin (1=yes).
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Figure 3. Models based clinical and omics features. (a�c) Subset of a dot plot showing the directional mean absolute SHAP val-
ues of various features (x axis) computed from five-fold cross-validation models that predict metabolite levels (y axis) using clinical
data. Positive and negative SHAP values represent positive and negative impact on the predicted risk of progression to combined
diabetes complications (a), �30% decline in eGFR (b), and retinopathy (c), respectively in the validation sets. Positive (negative)
SHAP values indicate that higher (lower) feature values lead, on average, to higher predicted values. Each plot is made up of individ-
ual points from the validation dataset with a higher value being red and a lower value being blue. Shown are the top features by
maximum mean absolute SHAP values across all clinical data. (d-f) AUROC, mean and SD result from model based on the main pre-
dictors. The 100 AUROC values for combined diabetes complications, diabetic kidney disease, and diabetic retinopathy obtained in
MC had a mean and SD of 0.84 § 0.11, 0.97 § 0.05, and 0.87 § 0.10, respectively (not shown). Feature labels are: Retinopathy_ba-
seline (1= Noneapparent, 2= Mild non-proliferative, 3= Moderate non-proliferative); Albuminuri_baseline (1=normoalbuminuria,
2=microalbuminuria, 3=macroalbuminuria).
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Figure 4. Visualization of random forest models based clinical features. a, Graph showing an example of a tree computed using random forest. It is one example out of the 500 com-
puted decision trees for classifying the clinic dataset for predicting �30% decline in eGFR. b, an example of one out of the 500 decision trees for classifying the clinic dataset for predicting
retinopathy. Each class is represented by a color (brown and blue in a, and purple and green in (b), the width of the link represents the number items flowing from one node to the other.
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sugar derivatives (myo-inositol, ribitol, and ribonic acid).
Ribitol and ribonic acid were the main metabolite pre-
dictors (Figure 3c). Ribonic acid and ribitol are sugar
acid derivatives from ribose and are involved in the pen-
tose phosphate pathway. In accordance with the present
results, elevated levels of ribitol are associated with reti-
nal cell apoptosis in DR.36 Moreover, elevated levels of
ribitol and myo-inositol in chronic kidney disease stages
3-5 have been reported.37

Myo-inositol is involved in inositol metabolism and
is primarily synthesized in the kidneys at a rate of a few
grams per day in humans. The overexpression of myo-
inositol oxygenase has been suggested to drive the pro-
gression of renal tubulointerstitial injury in a mouse
model of diabetes.38 Previous results in type 2 diabetes
also showed that higher levels of myo-inositol were asso-
ciated with a higher risk of end stage renal disease.38,39

In the present study, we show that higher levels of myo-
inositol were predictive of �30% decline in eGFR
(Figure 3b).

The metabolite signature to predict retinopathy pro-
gression included 3,4-dihydroxybutanoic acid and a sat-
urated ceramide (Cer(d42:0)). An earlier metabolomics
study by Chen et al. identified 3,4-dihydroxybutanoic
acid as a novel biomarker for DR.40 Ceramides are
sphingolipids, which are active in cell-signaling pro-
cesses, also associated with the pathogenesis of diabe-
tes, insulin resistance and heart disease.41,42 In the
present study, DR progressors showed increased levels
of Cer(d42:0) and 3,4-dihydroxybutanoic acid at base-
line when compared with non-progressors with diabetes
(Figure 3b).

Evidence from the present study shows that predic-
tion models based on variables routinely collected in the
clinic can be excellent predictors of individual progno-
sis. The results suggest that the measurement of rele-
vant biomolecules from the circulation can further
improve the accuracy of these predictions. When signifi-
cance was calculated between the clinical only and the
models including metabolites, the model for CKD pre-
diction was not significant (P = 0.393). In this case the
clinical metadata collected routinely is also highly pre-
dictive with RF, paving the path for a simplified model
that can readily with further validation be trialed in the
clinic. Furthermore, we argue that biomolecules may be
necessary for a more fine-grained understanding and
prediction of complications, which will be necessary for
personalized medicine in practice.

In previous studies from other cohorts we have seen
other omics-based markers associated to progression of
kidney disease using urinary proteomics.43�45 The pro-
teomics panel used in these studies is enriched with col-
lagen proteins, which reflect changes in the
extracellular matrix, including the proliferation of fibro-
sis. The metabolomic fingerprint reported in the pres-
ent study, is heavy with sugar derivatives, indicating a
stronger link to glucose control. On the other hand, the
www.thelancet.com Vol 80 Month June, 2022
lipids from the sphingolipid pathway could be a link to
macrovascular complications.45 In the future, it will be
interesting to investigate whether the combination of
complementary omics panels from two biofluids could
improve prediction.
Strengths and limitations
Our study benefits from a large and comprehensive
dataset with a good representation of individuals who
progressed to two different DCs. This allowed us to test,
both, routinely collected clinical data as well as mole-
cules that are measured with advanced mass-spectrome-
try.

The ML models with and without omics were robust
with stable performance across the cross-validation. Yet,

a limitation is that the study was based on a single

cohort, although this was attenuated in part by the

model being validated on unseen data representing

twenty percent of the cohort. Therefore, replication in a

clinical trial will be of substantial interest and necessary

for implementing this tool for clinical decision mak-

ing.9 While the models were acquired in a relatively

large and well-characterised cohort of persons with T1D,

further validation in independent longitudinal cohorts

is warranted. Except for the outcomes of DCs, the pre-

dictor data were restricted to a snapshot baseline profile.

Therefore, longitudinal tracking of molecular data could

contribute to more accurate and robust prediction. The

metabolites reported here were annotated from the in-

house database at Steno Diabetes Center Copenhagen,

which is curated with spiked internal standards. How-

ever, in this non-targeted metabolomics approach of

several hundred compounds, there may be false positive

annotations since every detected compound was not

accompanied with identical labeled standard.
According to a newly-published report from the

American Diabetes Association (ADA) and European
Association for the Study of Diabetes (EASD),1 advanced
data and algorithms are expected to contribute to better
clinical decision making. Predicting DCs before their
onset is very challenging in real-world clinical practice,
and early detection can have major implications on the
quality and length of life. Our aim is to further increase
the understanding of how individuals with diabetes
progress towards harmful complications. We believe
that ML-based high-performing predictive models will
support clinicians in these challenging decisions.

In conclusion, we have demonstrated that ML algo-
rithms using traditional risk factors can successfully
predict future progression of DCs in type 1 diabetes.
The inclusion of omics data further improved the pre-
dictions. We believe that with further development and
validation, the prediction models presented here have
the potential for early detection of complications, thus
enabling appropriate interventions to be taken to pre-
vent further progression of these complications.
11
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