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Neuroscientists can leverage technological advances to image neural tissue across a

range of different scales, potentially forming the basis for the next generation of brain

atlases and circuit reconstructions at submicron resolution, using Electron Microscopy

and X-ray Microtomography modalities. However, there is variability in data collection,

annotation, and storage approaches, which limits effective comparative and secondary

analysis. There has been great progress in standardizing interfaces for large-scale spatial

image data, but more work is needed to standardize annotations, especially metadata

associated with neuroanatomical entities. Standardization will enable validation, sharing,

and replication, greatly amplifying investment throughout the connectomics community.

We share key design considerations and a usecase developed for metadata for a recent

large-scale dataset.
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1. INTRODUCTION

In an effort to better understand structural organization and anatomy of nervous systems
at nanoscale spatial resolution, increasingly large, even petascale, connectomics datasets have
been collected using Electron Microscopy (EM) and X-Ray Microtomography (XRM) (Kasthuri
et al., 2015; Schneider-Mizell et al., 2020; Xu et al., 2020; Consortium et al., 2021; Shapson-
Coe et al., 2021; Witvliet et al., 2021). Currently, researchers and automated algorithms can
label cells, subcellular components, and connections between cells to generate brain networks.
Formats of such annotations, however, can vary greatly between datasets and institutions. As
such, the computational expertise required to explore large, unfamiliar datasets and understand
heterogeneous raw annotations remains a serious barrier to their widespread reuse, such as
for downstream analysis of previously-collected and potentially unfamiliar data. Consequently,
there is demand for simple community-adopted standards for storing key information about
neuroanatomical entities represented in EM, XRM, and correlated light microscopy (LM) datasets
as well as software tools built upon these standards to allow any researcher to quickly and easily
extract information on annotated bodies without grappling with raw annotation downloads and
lab-specific post-processing pipelines. This work focuses on filling a key need for the community
by addressing a central aspect of annotation variability. It calls for standardized storage of
metadata associated with key neuroanatomical entities, such as neurons, synapses, and organelles
to supplement raw annotations. It also suggests an approach to metadata standardization through
the use of community-adopted definitions, and demonstrates an example of how such standards
can facilitate the development of simple data exploration interfaces.
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Raw annotations may have any or all of the following formats:
segmentations, anatomical skeletons and meshes, synaptic
connectivity networks, and information in the form of tables
or network attributes. From dataset to dataset, each of these
primary data formats and associated documentation can vary in
terms of structure, meaning, and transparency, making it difficult
to use them to accurately extract relevant information about
commonly-studied entities and test simple hypotheses that may
not rely on spatial representations of the data. This motivates the
use of standardized formats for storing annotated objects along
with key attributes, separate from a lab’s chosen raw annotation
format, which may store such information indirectly. (i.e., The
number of synapses on a neurite can be extracted through
segmentation post-processing).

In this period of growth in EM, XRM, and correlated
LM imaging, and their increased adoption and utilization
in neuroscience, it would be advantageous to implement
standards that ensure interoperability and sustainability, beyond
just availability of these datasets through public release.
This will promote rapid analysis, true openness, sharing
between laboratories, and reproducible results in connectomics
research. Existing annotation formats serve their purposes
within labs, but extraction of neuroanatomical entities and
properties in a standardized format can facilitate cross-
institutional collaboration and exploration that existing formats
do not always permit. Further, such standardization will enable
the development of existing, as well as additional shared
computational tools with user-friendly interfaces for querying
these unique data for scientific discovery regardless of a user’s
computational expertise.

Because these datasets are large and complex, it is
especially important to promote data exploration and discovery.
Visualization and querying tools exist already, but are often
lab- or dataset-specific (Clements et al., 2020). Furthermore,
developers of new software must choose a data representation
to support, which limits each new tool’s broad applicability. One
benefit of annotation standards is the potential for mitigation
of this challenge through design and modification of software
tools to build upon annotation standards. Visualization and
querying software such as Neuroglancer (Maitin-Shepard, 2020),
Neuromorpho (Ascoli et al., 2007), DotMotif (Matelsky et al.,
2021), Webknossos (Boergens et al., 2017), NeuPrint (Clements
et al., 2020), and others (Yatsenko et al., 2015) can be modified
to support community-developed annotation standards and even
integrated into a standards-supported, centralized discovery
portal geared toward users without extensive computational
backgrounds. Such a centralized connectomics discovery
platform that allows exploration of datasets across imaging
modalities, organisms, and institutions, is an exciting prospect,
and is most feasible once metadata standardization is adopted.

This work will discuss the need for annotation metadata
standards, propose a framework for such standardization, and
demonstrate an application of such standards. To demonstrate
potential impacts of standards on analysis software, we provide
a case study in which we build tools to store and query a large
emerging human connectome dataset, H01 (Shapson-Coe et al.,
2021).

2. ANNOTATION STANDARDS

An acknowledged challenge in the field of connectomics is
mitigating the impact of highly varied annotation representation
on software and institution-level interoperability (Plaza et al.,
2014). As the field grows and data volumes increase, the
necessity for sharing data through remote and programmatic
interfaces increases, and, in turn, the need for community-
developed algorithms and software to extract and process that
data also grows. Answering this challenge requires creating
and popularizing annotation representation standards which
enable parsing and understanding the scenes present in these
nanoscale neuroimaging volumes, without alienating researchers
with existing analysis pipelines.

Because the fields of EM and XRM data are still emerging,
defining standards for these communities is timely. In order
to enable community-oriented connectomics frameworks and
collaboration, new annotation standards and software tools
built to support those standards must strike a balance
between organization and flexibility which is why we focus on
standardized, expandable neuroanatomical entity definitions to
store metadata as opposed to restricting raw annotation formats.

2.1. Support Common Raw Annotation
Formats
The call for metadata standardization does not necessitate
abandonment of existing raw annotation representation formats.
Abandoning these formats could lead to obsolescence of existing,
useful annotation, and analysis software (Ascoli et al., 2007;
Saalfeld et al., 2009; Boergens et al., 2017; Berger et al., 2018) and
ultimately alienation of institutions with incompatible formats,
and is not the focus of this article. Instead, we hope to provide a
blueprint for a new export format and urge institutions to build
import/export tools. New standards, therefore, can continue to
support a variety of common data representations.

Though not the focus of this article, the authors recognize
that raw annotation formats could benefit from improvements as
well, specifically in terms of documentation. Further work could
better connect metadata to raw annotations and convey how
neuroanatomical entities are represented in raw annotation data.

2.2. Facilitate Connections Between
Datasets
Additionally, community-adopted annotation standards can
enable linkage between data modalities and datasets. This
facilitates comparison, meta-analysis, and registration with
other datasets and imaging modalities. Links to different data
modalities such as those between structural and functional LM
data for the same subject, can encourage exciting research
relating structure to function at the synaptic level (Consortium
et al., 2021), and links between datasets can facilitate analysis
across brain regions, individuals, and species, paving the way for
understanding what is conserved and what differs across datasets
and enabling large-scale discovery.
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2.3. Metadata Standardization
Storage of metadata associated with neuroanatomical entities
needs to be standardized to promote reproducibility,
extensibility, and queryability of connectomics metadata.
As such, new metadata standards must be built around the core
knowledge products extracted from neurons, synapses, and their
relationships (e.g., connectivity). Further, because user needs
for data processing are diverse, standards must be conducive
to common nanoscale connectomics research questions, such
as those pertaining to location, topology, morphology, and
cell types (LaGrow et al., 2018) as well as those surrounding
connectivity at a local or circuit level (Matelsky et al., 2021)
and even at higher-levels pertaining to brain regions and
white matter tracts (Sporns et al., 2004; Bassett and Bullmore,
2006).

To satisfy diverse user needs as well as the need for
standardization, we propose that the community agree upon
definitions and minimum required attributes for key entities
extracted from connectomics data, which are relevant to a
variety of research areas. In Table 1, we define several areas
and examples for annotation metadata standardization. For
each neuroanatomical entity in the dataset (e.g., neuron,
synapse, neurite, etc.) data owners should provide the URI,
data representation, type, and, when applicable, links to other
entities. Additionally, entities can be either user-defined or
community-defined. Though data owners have the option
to define new entities (e.g., user-defined), there are several
entities which should have community-adopted definitions
and properties. This combination of entities appropriately
balances structure and flexibility in a way that allows software
built upon standards to extract information uniformly across
datasets while also allowing researchers to store additional non-
standardized entities and metadata as desired. It also allows
researchers to choose the level of granularity at which to
store a dataset. Though community definitions will exist for
multiple levels (e.g., from vesicles and mitochondria to neurons
and layers), not every dataset needs to include all of these
entities. Larger datasets, for example, may only include higher-
level entities, while smaller datasets might contain lower-level
entities. The only stipulation is that if a dataset chooses to
include a particular entity, that entity’s minimum properties
must be satisfied.

Our approach to annotation representation and
metadata follows a neuroscience schema, previously
used internally, called Reusable Annotation Markup
for Open Neuroscience (RAMON) (Gray Roncal et al.,
2015). RAMON defines a minimum set of annotation
types and associated metadata that capture important
biological information as well as relationships between
annotations that are critical for connectome generation
and neuroscientific exploration.

In particular, the H01 synapse annotation type includes
metadata such as synapse id, type, and associated neurons.
Currently, RAMON defines metadata standards for biological
entities which are used commonly across connectomics datasets,
such as neurons, synapses, and organelles, although this can be
extended to additional entity types as needed.

3. ANNOTATION QUERIES

As mentioned previously, one benefit of metadata
standardization is that it enables the development of tools
to query data, regardless of its origin. Through queries,
researchers can characterize networks, extract patterns, and
relate these patterns to function. Currently, however, asking even
basic, fundamental questions (e.g., how many, how much) about
a new dataset can be challenging from both a standardization
and computational complexity perspective. Though previous
work has presented information extraction tools for specific
datasets and institutions (Clements et al., 2020), metadata
standardization has the potential to expand the use of existing
tools cross-institutionally, foster the development of new ones,
and facilitate integration of numerous tools into a single location.
The community would benefit from a shared discovery portal
built upon community archives and standards (Ascoli et al.,
2007; Sunkin et al., 2012; Vogelstein et al., 2018; Rübel et al.,
2019), which provides broad accessibility to EM and XRM
data and annotations through query submission tools to enable
deeper understanding of these data. In this work, we demonstrate
this particular benefit of metadata standardization through the
development of a simple querying tool built upon RAMON.

Ideally, researchers should be able to easily query counts,
distributions, properties, and connectivity of neuroanatomical
entities as well as image and graph metrics for any connectomics
dataset, regardless of source institution. Queries such as number
of synapses in a given region, or the distribution of synapses
on a particular neuron type could help answer a variety of
research questions, but the broad community interested in brain
atlases and neuroanatomy has traditionally had little access to
and experience with large-scale EM and XRM datasets. Tools
for executing standardized queries could, therefore, enable a new
wave of discoveries.

4. CASE STUDY: H01 HUMAN DATA

Here, we present a case study, in which we store annotations
from a petascale human cortex dataset, theH01 dataset (Shapson-
Coe et al., 2021) and build tools to that allow users to access
and query that data through a web application. The H01 dataset
consists of a cubic millimeter volume with annotations for 50,000
cells, hundreds of millions of neurites, and 150 million synapses,
taken from a human surgical sample from the temporal lobe
of the cerebral cortex. This dataset was chosen because of its
size, breadth of annotation types, and significance as the first
large, nanoscale human connectomics dataset. To demonstrate
the robustness and generalizability of our approach, we also
include a second dataset (Kasthuri et al., 2015) in our database
and query engine.

4.1. Software Architecture
As a demonstration of the power of metadata standardization,
and to shed light on neuroanatomy in the human cortex,
we developed a connectomics query engine which supports
the analysis of the H01 dataset. Our application, called the
H01 Community Discovery Portal, is currently deployed in the
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TABLE 1 | Key annotation metadata definitions.

Uniform resource identifier (URI) A link to specify where source data is located

Links URIs to parent, child, sibling relationships

Data representation The format used to represent a neuroanatomical entity (e.g., skeletons, meshes, or pixels)

Entity An object with neuroscience significance (e.g., RAMON types: neurons, synapses, organelles); has properties

Property An attribute and value such as weight, cell type, or layer

Community-defined entity An entity with a community-adopted definition and a minimum set of required properties; can be extended

Community-defined property A property with a community-adopted definition

User-defined entity An entity without a community-adopted definition or minimum set of required properties; an entity defined by the user

User-defined property A property without a community-adopted definition; a property defined by the user

Amazon Web Services cloud and follows the Representational
State Transfer (REST) software architecture to ensure flexibility
for storage of neuroanatomical metadata. The discovery portal
consists of a Flask-based (Grinberg, 2018) web application, which
serves as a user-friendly interface for researchers to explore and
query the H01 dataset, a standards-supported H01 database,
and a Flask-based Application Programming Interface (API) to
enable easy access to the H01 dataset.We note that this is a simple
example demonstrating the concepts outlined in this article and
additional systems (e.g., neuPrint, CATMAID) might be used as
robust alternatives with an appropriate schema.

The API is a web service consisting of eight RESTful web
endpoints which retrieve and return H01 synapse, neuron, and
layer data when a specific URL is accessed over Hypertext
Transfer Protocol. The H01 Community Discovery Portal
stores annotation metadata in a document-oriented, MongoDB
(Chodorow, 2013) database.

4.2. Storing and Accessing the H01 Data
In the H01 database, we store nearly 27 GB of synapse, neuron,
and layer properties along with their properties as MongoDB
collections as described below:

• Neuron Object: Neuron ID (Integer), Volume
(NumberLong), No. Outgoing Synapses (Integer), No.
Incoming Synapses (Integer), No. Incoming Excitatory
Synapses (Integer), No. Incoming Inhibitory Synapses
(Integer), No. Dendrite Skeleton Nodes (Integer), No.
Axon Skeleton Nodes (Integer), No. Dendritic Spines Skeleton
Nodes (Integer), No. Cilia Skeleton Nodes (Integer), No. Axon
Initial Segment Skeleton Nodes (Integer), No. Myelinated
Axon Skeleton Nodes (Integer), Spinyness (Double), Layer
(Integer), Neuron Type (Integer), Excitatory/Inhibitory
Synapse Balance (Double)

• Layer Object: Layer Width (Integer)
• Synapse Object: Synapse ID (ObjectID), Synapse Type

(Integer), Pre-synaptic site (Object), Post-synaptic partner
(Object), Location (Integer), Bounding Box (Integer), Layer
(Integer)

Each H01 synapse, neuron, and layer entity has an arbitrary
amount of key-value properties which represent the object’s
metadata and attributes. Currently, each layer object has one
attribute, each neuron object has 19 attributes, and each synapse
object has seven attributes. Additionally, some attributes link

to other entities with their own properties. For example, the
synapse object has attributes, pre-synaptic site and post-synaptic
partner, which contain sub-attributes, such as the associated
neuron’s id and class type. The document-oriented storage
approach allows for H01 annotation attributes to be stored as
arbitrary key-value pairs in which attributes can be easily added,
queried, and indexed.This method served its primary purpose of
demonstrating metadata standardization benefits, and we did not
explore other database types.

4.3. Querying Data
We demonstrate a querying tool which performs standard
queries relevant to a variety of connectomics research areas from
the H01 dataset using the RAMON API. It is in the form of
a web application with a user-friendly interface and provides a
centralized location where users can easily explore the dataset
individually through a personal query page (Figure 1), only
accessible after the user is authenticated, as well as collaboratively
through a “Popular Queries” page, accessible to all users.

The web application, located at metadata.bossdb.org, is also a
Flask app which uses SQLite to store query and user information.
It provides users with the ability to extract data via dropdown
menus, enables visualization of cells and their synapses via
Neuroglancer, supports reporting of potentially problematic
annotations, compiles questions and answers from all users to
generate a “Popular Queries” page, and even allows users to
suggest new queries for integration into the app. At the moment,
users can ask seven types of questions about the H01 dataset for
a total of 119 questions shown below:

1. How many [Synapse Type] synapses are made in [Location]?
2. Which layer has the [Most/Fewest] [Synapse Type] synapses?
3. How wide is [Layer]?
4. What is the [Average/Total] length of neurons in [Location]?
5. Show me the neuron with the greatest number of [Synapse

Type] synapses in [Location].
6. Show me a neuron with an E

E+I value of [Value between 0 and
1] in [Location].

7. List all neurons with an E
E+I value of [Greater/Less] than

[Value between 0 and 1] in [Location].

where synapse types include all synapses, excitatory and
inhibitory synapses, and those onto axon initial segments or
dendrites, locations include the entire volume or any of the seven
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FIGURE 1 | H01 personal query page. Users can ask questions about the H01 dataset using dropdown menus and text boxes. Some answers are well-suited for

visualization. The app uses Neuroglancer to display neurons related to such answers.

layers, and E and I are the number of incoming excitatory and
inhibitory synapses, respectively.

This list of question types will continue to expand as
functionality is added. We hope to continue to incorporate query
types, especially those discussed in Section 3.

5. DISCUSSION

Nanoscale connectomics is an exciting field that has the potential

to answer a wide range of questions in neuroscience and the

potential to impact exciting and diverse application areas. The
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number and size of EM and XRM datasets are growing, and
with that growth comes an increased need for standardization
of both imaging data and annotations. Work to standardize
imaging data is underway, while standards to address annotation
format and content variability are still emerging. As the field
exists today, extracting relevant information about labeled
entities requires both a significant computational background
and a deep understanding of how that particular data is
stored. Consequently, data access tools built upon annotation
standards will increase accessibility and ease of access to these
exciting datasets.

Standardization of metadata, while maintaining the flexible
spirit embodied by an emerging field lays the groundwork
for community-adopted standards which enable reproducible
analysis as well as natural standards evolution over time.
RAMON, RAMON API, and the H01 Community Discovery
Portal demonstrate one example of how annotation standards
and software tools can interact to support both collaborative
and individual scientific discovery, but the possibilities are
endless. The H01 Discovery Portal demonstrates how metadata
standardization can push the field of connectomics toward
solving potential applications by reducing redundant data
processing code and encouraging data exploration and
collaboration. All three of these tools have the potential
to evolve to include additional queries, data sources, and
annotation types.

Although it would be convenient to develop fully-automated
pipelines to convert from lab-specific implementations to a
common schema, due to the diversity in storage formats
currently implemented, this will require future work. However,
the process of understanding and translating important datasets
has relatively low-resource requirements and can be simplified
by focusing on the final, published data, which tends to be
more standardized and common than intermediate products.
The authors extended the portal to include a query page for
Kasthuri et al. (2015) in addition to the H01 dataset. Though
this data contained different entities, it existed in a tabular format
similar to RAMON, which allowed for quick integration into the
software stack.

The authors note, however, that the implementations of
these tools may not be optimal as they were built primarily
for standards demonstration purposes and thus serve as a
proof of concept. For example, only MongoDB was considered
for storing H01. In order to determine the best type of
database to use for metadata storage, additional options such
as DynamoDB, Google Cloud Firestore, Cassandra, and Azure
Cosmos DB must be explored. Additionally, the web interface
went through a small number of internal design cycles with
particular emphasis on simple, clear, and intuitive querying. A
more polished portal would necessitate an extensive design and
feedback process. The authors hope to develop similar tools once
standards are developed that allow for intuitive exploration of
numerous datasets in a centralized location through expansion
and integration of existing tools as well as development of
new ones.

Further, we note that a top-down, universal specification
of metadata standardsis unlikely to satisfy all stakeholders.
For future work, we will ,therefore, seek a data-driven
approach leveraging existing published data (Hider et al.,
2019) and explicit community input. Standardization is
often a balance between flexibility and usability, and we
believe a fruitful path forward is to concentrate initially on
published products.

Given the current limited accessibility of connectomics
data, the patterns in brain networks may remain hidden
behind these complex data, and scientific discovery
could be limited. We look forward to building on these
initial tools and formats through community engagement
and feedback.
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