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Abstract: To develop new potent and highly selective MAO-B inhibitors from chalcone-thioethers,
eleven chalcones-thioethers were synthesized and their monoamine oxidase (MAO) inhibition, ki-
netics, reversibility, and cytotoxicity of lead compounds were analyzed. Molecular dynamics were
carried out to investigate the interactions. Compound TM8 showed potent inhibitory activity against
MAO-B, with an IC50 value of 0.010 µM, followed by TM1, TM2, TM7, and TM10 (IC50 = 0.017, 0.021,
0.023, and 0.026 µM, respectively). Interestingly, TM8 had an extremely high selectivity index (SI;
4860) for MAO-B. Reversibility and kinetic experiments showed that TM8 and TM1 were reversible
and competitive inhibitors of MAO-B with Ki values of 0.0031 ± 0.0013 and 0.011± 0.001 µM, respec-
tively. Both TM1 and TM8 were non-toxic to Vero cells with IC50 values of 241.8 and 116.3 µg/mL
(i.e., 947.7 and 402.4 µM), respectively, and at these IC50 values, both significantly reduced reactive
oxygen species (ROS) levels. TM1 and TM8 showed high blood-brain barrier permeabilities in the
parallel artificial membrane permeability assay. Molecular dynamics studies were conducted to
investigate interactions between TM1 and TM8 and the active site of MAO-B. Conclusively, TM8
and TM1 are potent and highly selective MAO-B inhibitors with little toxicity and good ROS scav-
enging abilities and it is suggested that both are attractive prospective candidates for the treatment of
neurological disorders.

Keywords: chalcone; MAO-B; selectivity; reversibility; cytotoxicity; ROS; molecular dynamics

1. Introduction

Parkinson’s disease (PD) is considered the second most common progressive neu-
rodegenerative disorder in the elderly and is characterized by motor system disruption [1].
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Over ten million people worldwide suffer from PD, which places an onerous responsi-
bility on the medical community to develop an effective therapy [2]. This motor system
disruption is caused by the extensive degeneration of the dopaminergic neurons, which
leads dopamine (DA) depletion [3]. Current treatment strategies center on enhancing
dopamine-like activities using monoamine oxidase (MAO)-B inhibitors, dopamine ago-
nists, and catechol-O-methyltransferase (COMT) inhibitors, whereas developmental efforts
appear to be focused on the identification of non-dopaminergic candidates like glutamate
antagonists and anticholinergic drugs [4].

MAO is found in two isoforms, that is, MAO-A and MAO-B, and contains flavin
adenine dinucleotide (FAD) as a cofactor. These isoforms share 70% amino acid sequence
similarity and differ functionally in terms of their substrate specificities and inhibitor
affinities [5]. Selective MAO-A and MAO-B inhibitors are considered important for the
treatment of various neuropsychiatric and neurodegenerative disorders, respectively [6].
For example, the level of endogenous dopamine enhances the blockade of dopamine
metabolism by selective MAO-B inhibition [7]. Numerous studies have documented that
the formation of the 1-methyl-4-phenylpyridinium ion (MPP+; a bioactive metabolite of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) is catalyzed by MAO-B, and that
MPP+ induces the neurotoxic effects associated with the pathophysiology of PD [8]. MPP+

interacts with mitochondrial complex 1 to induce neural toxicity in PD [9]. In view of the
important roles played by MAO-B in neurodegenerative disorders, novel highly selective
MAO-B inhibitors are of considerable interest [10].

A recent strategy used to produce highly selective MAO-B inhibitors included the in-
stallation of two aryl or heteroaryl rings on either end of the two to four carbons or nitrogen-
containing spacer units, which include α-β-unsaturated ketones, pyrazolines, enamides,
and hydrazones [11–15]. The presence of a π-conjugated system with rotatable bonds in
the linker can provide different orientations and facilitate interactions between designed
scaffolds and the active site of MAO-B [16]. Chalcones are considered versatile scaffolds
for selective MAO-B inhibitors. Recently, Guglielmi et al. predicted that chalcone deriva-
tives are likely to exhibit selective human MAO-B (hMAO-B) inhibition based on results
obtained using the free online tool SwissTargetPrediction (www.swisstargetprediction.ch
(accessed on 10 October 2021)), which supports our previous experimental results [17,18].

Chalcones are α-β unsaturated ketones with three rotatable bonds and are endowed
with a number of central nervous system (CNS) related activities, which include adenosine
receptor antagonist and neuroprotective activities, ability to cross the blood-brain barrier
(BBB), and inhibitions of MAO-B, acetylcholine esterase (AChE), transglutaminase, and β-
amyloid plaques formation [19–22]. Numerous studies have demonstrated that substituent
selection and the orientations of substituents on the chalcone A and/or B rings provide
a promising means of producing reversible and selective inhibitors of hMAO-A and -B.
Notably, the presence of lipophilic electron-donating groups (i.e., ethyl, methoxy, methyl,
and dimethylamino, or halogens) at the same position on the B ring results in hMAO-
B inhibition in the nanomolar range [23–26], whereas the introduction of methoxy at
para-position of the A ring is associated with hMAO-B inhibitory activity [27–30]. The
design strategy used in the present study involved the isosteric replacement of the A ring
methoxy with a thiomethyl group and the introduction of different substituents on the
B ring (Scheme 1).
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To the best of our knowledge, the influence of isosteric replacement of the A-ring
methoxy with a thiomethoxy group has not been previously reported to enhance hMAO-B
inhibition (Figure 1).
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We report a series of chalcone-thioether derivatives, which were prepared and evalu-
ated for their MAO-A and MAO-B inhibitory activities, cytotoxicities, and effect on reactive
oxygen species (ROS). Lead molecules were subjected to detailed molecular dynamics
(MD) study to access their molecular mechanisms.

2. Results
2.1. MAO Inhibition

All eleven chalcone derivatives potently inhibited MAO-B at 10 µM; residual activities
were <15% (Table 1). Compound TM8 showed the highest inhibitory activity against
MAO-B with an IC50 value of 0.010 µM, and TM1, TM2, TM7, and TM10 also exhibited
potent inhibitory effects (IC50 = 0.017, 0.021, 0.023 and 0.026 µM, respectively). The other
six compounds had IC50 values < 0.15 µM. Interestingly, TM1, TM2, TM4, TM7, TM8,
and TM10 were 3.7, 3.0, 1.1, 2.7, 6.3 and 2.4 times, respectively, more potent than the
reference drug lazabemide. Similarly, TM1, TM2, and TM8 were 1.6, 1.3 and 2.8 times,
respectively, more potent than pargyline. Compounds TM7 and TM10 were almost as
potent as pargyline. Regarding the effects of substituents, the inhibitory potencies of these
compounds followed the order –Cl > –H > –OH > –NO2> –F.
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Table 1. Cont.

Compound
Residual Activity at 10 µM (%) IC50 (µM) SI b

MAO-A MAO-B MAO-A MAO-B
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Compounds TM5, TM6, TM2, and TM3 at 10 µM inhibited MAO-A with IC50 values
of 5.91, 6.71, 7.45, and 8.82 µM, respectively, whereas the other seven compounds had
lesser effects (residual activities > 50%) (Table 1). Interestingly, TM8 had a much higher
selectivity index (SI; 4,860) for MAO-B than the other compounds. The next highest were
compounds TM7 and TM1 with SI values of 1304 and 812, respectively.
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2.2. Kinetics

Kinetic studies on MAO-B inhibitions were performed on TM1 and TM8. Lineweaver-
Burk plots and secondary plots showed that the lines intersected y-axes, thus indicating,
TM1 and TM8 competitively inhibited MAO-B (Figure 2A,C). Ki values were 0.011 ± 0.001
and 0.0031 ± 0.0013 µM, respectively (Figure 2B,D). These results suggest that compounds
TM1 and TM8 compete with the substrate at the active site of MAO-B.
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Figure 2. Lineweaver-Burk plots for MAO-B inhibition by TM1 and TM8 (A,C), and their respective
secondary plots (B,D) of slopes vs. inhibitor concentrations.

2.3. Reversibility

MAO-B inhibition reversibility studies were conducted on compounds TM1 and TM8
using a dialysis-based method. MAO-B inhibition by TM1 was recovered by dialysis
from 24.9% (AU) to 68.1% (AD), and inhibition by TM8 was recovered from 33.1% to 69.3%.
These recoveries were similar to that observed for the reference reversible lazabemide (from
16.6% to 74.9%). Inhibition of MAO-B by pargyline (the reference irreversible inhibitor)
was not recovered (from 24.7% to 31.4%) (Figure 3). These results showed that compounds
TM1 and TM8 were reversible MAO-B inhibitors.

2.4. Cytotoxicity Evaluation

African Green Monkey kidney cells (VERO cells) were used to evaluate the cyto-
toxic effects of TM1 and TM8. Cells were incubated with different doses (1 µg/mL to
500 µg/mL) of the two compounds for 48 h, and relative cell viabilities were determined
by MTT assay. Compound TM1 and TM8 reduced viabilities concentration-dependently
(Figures 4a and 5a); TM1 and TM8 treatments resulted in high viability (>90%) at concen-
trations <250 and <100 µg/mL (i.e., 983.1 and 346.3 µM), respectively, and the IC50 values
were 241.6 and 116.2 µg/mL (i.e., 947.7 and 402.4 µM), respectively (Figures 4b and 5b).
Phase contrast microscopy showed that treatments above IC50 values resulted in membrane
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damage and reduced cell numbers. These results suggest that TM1 and TM8 are safe at low
concentrations (Figures 4c and 5c), and that at concentrations > their IC50 values induced
oxidative stress.
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Figure 4. Effect of TM1 on Vero cell viability. (a) cell viability treated with TM1; (b) dose-response
curve; (c) phase contrast microscope images of Vero cells treated with different concentrations of TM1.
Cells were treated with TM1 for 48 h and cell viabilities were assessed by MTT assay as described in
Section 4.

2.5. ROS Assay

ROS increase vulnerability to neuronal damage by causing oxidative damage in the
brain during neurodegenerative diseases. When Vero cells were exposed to exogenous
H2O2, intracellular ROS levels were elevated, but treatments with TM1 or TM8 at their
IC50 values resulted in appreciably lower ROS levels (Figure 6a,b).
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Figure 6. Effects of TM1 (a) and TM8 (b) on H2O2-induced ROS levels. Vero cells (1 × 106 cells/mL)
were pre-incubated with 100 µg/mL of 30% H2O2 and ROS production was evaluated immediately
as described in Section 4.

2.6. Blood-Brain Barrier (BBB) Permeation Study by Parallel Artificial Membrane Permeability
Assay (PAMPA)

A highly effective permeability and high CNS bioavailability of thiomethane-containing
chalcones were demonstrated with Pe ranges between 16.26 and 13.28 × 10−6 cm/s (Table 2)
in the parallel artificial membrane permeability assay (PAMPA).

Table 2. BBB assay of lead molecules of chalcone-thioethers by PAMPA method.

Compounds Bibliography [31]
Pe (×10−6 cm·s−1)

Experimental
Pe (×10−6 cm·s−1) Prediction

TM1 15.54 ± 0.33 CNS+
TM2 13.28 ± 0.80 CNS+
TM7 15.53 ± 0.71 CNS+
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Table 2. Cont.

Compounds Bibliography [31]
Pe (×10−6 cm·s−1)

Experimental
Pe (×10−6 cm·s−1) Prediction

TM8 16.26 ± 0.26 CNS+
TM10 15.17 ± 0.44 CNS+

Progesterone 9.3 9.32 ± 0.33 CNS+
Verapamil 16.0 15.62 ± 0.42 CNS+
Piroxicam 2.5 2.44 ± 0.26 CNS±

Lomefloxacin 1.1 1.22 ± 0.02 CNS−
Dopamine 0.2 0.22 ± 0.01 CNS−

CNS+ (high BBB permeation predicted): Pe (10−6 cm·s−1) > 4.00; CNS− (low BBB permeation predicted):
Pe (10−6 cm·s−1) < 2.00; CNS± (BBB permeation uncertain): Pe (10−6 cm·s−1) from 2.00 to 4.00.

2.7. Inhibitor-Induced Binding Pocket Dynamics

Binding pocket residues of MAO-B exhibited average root mean square deviations
(RMSDs), of 1.77, 1.81, 1.29, 1.64 and 1.81 Å for TM1, TM2, TM7, TM8 and TM10, respec-
tively (Figure 7), suggesting relatively stable conformations since average values were
below 2 Å. An average RMSD of 2.59 Å was estimated for unbound MAO-B, which sug-
gested a relatively unstable conformation. According to Luque and Freire in 2000 [19], a
stable binding pocket conformation provides optimum binding affinity for small ligands.
We assessed the rigidity or compactness of the binding pocket residues by estimating
their conformational changes within the binding pocket of MAO-B mediated by TM1,
TM2, TM7, TM8 and TM10, which altered the overall structure and function of MAO-B
radii of gyration over a 250 ns MD simulation period. Relatively stable conformations
were observed, and binding pocket residues in inhibitor-bound MAO-B complexes were
more compact/rigid with average radii of gyration (ROGs) of 12.39, 12.56, 12.55, 12.57
and 12.33 Å for TM1, TM2, TM7, TM8 and TM10, respectively. Unbound MAO-B binding
pocket residues exhibited a relatively higher average ROG of 12.65 Å, which suggest that
bindings of TM1, TM2, TM7, TM8 and TM10 enhanced binding pocket stability. An as-
sessment of the solvent surface exposure of binding pocking residues also provided insights
into the conformational dynamics of the binding pocket after inhibitor binding [14,20,21].
As shown in Figure 8, binding pocket residues in inhibitor-MAO-B complexes exhibited
lower average solvent accessible surface area (SASA) values of 235.63, 391.84, 249.47,
330.29 and 184.76 Å2 for TM1, TM2, TM7, TM8 and TM10, respectively, while the un-
bound conformation had an SASA of 491.38 Å2. This observation was in line with ROG
results and indicated MAO-B/TM series binding resulted in greater structural compactness
and inward folding of the binding pocket, which also suggests enhanced ligand binding
and stability.
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3. Discussion

Chalcones provide a simple framework with broad-spectrum biological activities and
are accessible by Claisen-Schmidt condensation. The aldehyde used becomes the B ring of
the chalcone, whereas the acetophenone used becomes the A ring. The α,β-unsaturated
ketone moiety of chalcones is considered a Michael acceptor and may be involved in the
signaling of many biochemical pathways. The presence of olefinic linkage introduces the
possibility of cis- and trans-isomers, but the more thermodynamically stable trans-form
is invariably produced. The presence of electron-donating and -withdrawing groups on
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the phenyl ring of chalcones greatly influences the electron density on the enone moiety
and the orientations of the three rotatable bonds of the chalcone framework. These unique
features enable this simple framework to interact with enzyme targets, preferably those
with hydrophobic pockets.

Our structure-activity relationship (SAR) investigation of the designed chalcone-
thioethers showed reasonable relations with observed inhibitory effects. In the 11 chalcone
derivatives, the thioether (-SMe) group was located on the A ring and other alterations
were made by placing various substituents at the para-position on the ring B. Compound
TM1 (the parent compound) had no substituent at the para-position but had excellent
MAO-B inhibitory effect with an IC50 value of 0.017 ± 0.0026 µM and an SI of 811.8. The
Ki value of TM1 for MAO-B (0.011 ± 0.001 µM) is much potent than the unsubstituted
methoxylated chalcone (C1) previously reported by our group (0.70 ± 0.05 µM) [30]. This
crucial observation clearly showed that bio-isosteric replacement with thioether group on
the para position of phenyl ring A in the chalcone framework resulted in pronounced MAO-
B inhibitory activities. The introduction of chlorine atom on the para position of ring B with
thioether group on the A ring resulted highly potent MAO-B inhibition (Ki = 0.0031 µM)
(Figure 9).
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When –NMe2 (a strong election-releasing group (ERG)) was introduced, resulting
TM5 showed a 7-fold fall in inhibitory activity and a 10-fold reduction in selectivity
(0.12 ± 0.01 µM and 49.3, respectively). Similar results were observed when -CH2CH3 (a
weak ERG) was introduced to produce TM6 (Table 1), which was ascribed to its bulki-
ness. The results were ascertained by introduction of small but strong and relatively week
electron-releasing groups such as –OH, –OMe, and –Me. The –OMe (a strong ERG) in-
creased inhibition and selectivity with respect to TM5 and TM6 (IC50 = 0.088 ± 0.011 µM
and 100.2). Of the ERG introduced, those with a weak ERG (e.g., –Me), except -OH, in-
creased inhibition and selectivity (IC50 = 0.058 ± 0.001 µM and 206.9, respectively). The
strong ERG –OH, TM2, had an inhibitory effect (IC50 = 0.021 ± 0.003 µM) similar to the
parent compound TM1, but considerably less selectivity, which may have been due to hy-
drogen bonding. Generally, ERGs had marked MAO-B inhibitory effects as compared with
the parent compound TM1. The effects of electron-withdrawing groups (EWG) on chalcone-
thioethers on MAO-B inhibitory activity were also investigated. The introduction of –NO2
(the strongest EWG) in TM7 resulted in inhibitory activity (IC50 = 0.023 ± 0.001 µM) sim-
ilar to the parent compound TM1 but improved selectivity (1,304.3), whereas the intro-
duction of -CF3 (a weak EWG) in TM11 caused a considerable drop in inhibitory activity
and selectivity (IC50 = 0.081 ± 0.032 µM and 311.1, respectively). Other halogens (also
EWGs) such as –F, –Cl, and –Br had effects similar to TM10 (IC50 = 0.026 ± 0.004 µM) and
a drop (0.088 ± 0.006 µM) in MAO-B inhibition effect with respect to the parent compound,
except –Cl (TM8). In addition, a considerable drop in selectivity was also observed for
these groups. The –Cl was a more effective pharmacophore than other halogens and EWGs.
TM8 containing-Cl had the highest MAO-B inhibitory activity (IC50 = 0.010 ± 0.005 µM)
and selectivity (4860.0) and had 6.3 and 2.8 times more inhibitory activity than the ref-
erence drugs lazabemide and pargyline, respectively. In contrast, strong EWGs such as
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–OH, –OMe, –NMe2, and –Et exhibited better MAO-A inhibitory effects than the parent
compound and other EWGs but had far lower inhibitory effects than the reference drugs
(Table 1). SAR in this study can be summarized as shown in Figure 10.
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Previously, our group developed some methoxylated chalcones as selective MAO-B in-
hibitors and the lead molecule showed effective inhibitory activity (IC50 = 0.29 ± 0.01 µM) [30].
In current study, the bioisosteric replacement of methoxy group into thiomethyl group showed
significantly increased MAO-B inhibition. In another recent study of Shalaby et al., compound
(E)-3-(3-bromophenyl)-1-(4-(methylthio)phenyl)prop-2-en-1-one exhibited efficient MAO-B
inhibition with IC50 = 0.19 ± 0.01 µM [25]. It is noteworthy that the replacement of methoxy
chalcones to thiomethyl resulted in enhancement of overall MAO-B inhibitory profiles with
high SI values. Interestingly, the analogues tested resulted in potent inhibitory activities in
nanomolar ranges towards MAO-B inhibition.

Toxicity assessment were conducted using Vero cells, which are commonly used to
assess viability and lethality at a cellular level. We found that more than 90% of cells treated
with TM1 or TM8 at effective concentrations remained viable. However, extensive blebbing
and membrane damage were observed when cells were treated at high concentrations. Our
cell viability and phase contrast microscopy studies showed that TM1 is a safer proposition
than TM8. Furthermore, our investigation of the inhibitory effects of TM1 and TM8 on
ROS, which are known to play significant roles in the pathogeneses of neurodegenerative
diseases and to cause cell death or oxidative stress (OS) when present in excess, showed
TM1 and TM8 at their IC50 levels mitigated H2O2-induced increases in ROS levels.

MD simulation provides a means of exploring the structural changes and functions
caused by the binding of small molecules and has been used to investigate associations
between protein activities and structural dynamics. By comparing protein conformations in
binding pockets before and after ligand binding, we were able to identify inhibitor-induced
conformational changes associated with inhibition of MAO-B. To observe these conforma-
tional changes, we employed MD simulation metrics, that is, RMSD, ROG, and SASA.

Having established that compound bindings induced conformational changes that
might favor binding affinity, we estimated the binding free energy for compound/MAO-B
complexes using experimentally determined IC50 values. Using the MM/PBSA approach,
we calculated the binding energies of the compounds (Table 1). As shown by the table,
the compounds exhibited favorable total binding energies, which was in line with our
experimental data. Total binding energies for TM1, TM2, TM7, TM8, and TM10 were
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−40.83 ± 2.63, −34.40 ± 2.63, −47.02 ± 2.65, −37.02 ± 3.05, and −35.14 ± 2.81 kcal/mol,
respectively, which suggested that these chalcone derivatives engage in favorable interac-
tions with the active site residues of MAO-B. Though all the compounds exhibited binding
in accord with their free total binding energies, TM7/MAO-B complex had the highest
free total binding energy (−47.02 ± 2.65 kcal/mol), which was attributed to greater Van
der Waals (VDW) forces and electrostatic (ELE) interactions. Overall, it was noticed that
VDW interactions (∆EvdW) were important for ligand binding, whereas the favorable ELE
interactions (∆Eele) compensated for unfavorable polar solvation energies.

Intermolecular interactions between compounds and binding site residues influence
the stabilities of the complexes formed. The total binding free energies of the compounds
TM1 and TM8 were decomposed into individual residue-based contributions using the
MM/PBSA method. The VDW and ELE energy contributions were expressed as percent-
ages of total binding free energies to determine which residues and energy constituents
had the greatest effects on total energy. As shown in Figure 8, the top three residues that
contributed the most to the binding of TM1 against MAO-B were TYR60 (−2.55 kcal/mol),
LEU171 (−1.85 kcal/mol), and TYR435 (−1.71 kcal/mol); that to the binding of TM2
were ILE199 (−1.95 kcal/mol), LEU171 (−1.71 kcal/mol), and GLN206 (−1.46 kcal/mol);
that to the binding of TM7 were TYR398 (−2.44 kcal/mol), TYR435 (−2.12 kcal/mol),
and ILE199 (−2.0 kcal/mol); that to the binding of TM8 were LEU171 (−1.73 kcal/mol),
TYR398 (−1.71 kcal/mol) and ILE199 (−1.60 kcal/mol); and that to the binding of TM10
were ILE199 (−2.27 kcal/mol), TYR326 (−1.69 kcal/mol), and ILE316 (−1.61 kcal/mol).
Although unfavorable ELE interactions were observed in interaction profiles, as shown
by the plots in Figure 8, these would have had little effects on total binding due to the
cumulative effects of ELE and VDW energy contributions. Particular focus on the SCH3
group, as highlighted in Figure 8, showed the formation of high-affinity interactions with
MAO-B, relative to other moieties thus indicating its cruciality to the binding mechanism
of synthesized compounds. Specific interactions of the SCH3 group in each compound
included; TM1 (π-sigma and π-alkyl with TYR435, π-alkyl with TYR398), TM2 (π-alkyl
with ILE199, LEU164 and PRO104), TM7 (π-sigma with TRP117 and π-alkyl with TRP117
and TRP316), TM8 (π-sigma with TRP119 and π-alkyl with LEU164, LEU171, LEU167)
and TM10 (π-alkyl with PRO104). These SCH3-mediated high-affinity interactions could
contribute to stability and the overall total binding affinity of each compound.

Study of the residues involved in binding revealed that the comparatively high bind-
ing affinity of TM7 could be attributed to relatively high binding energy contributions.
Furthermore, these cumulative per-residue energy contributions might explain the MAO-B
inhibitory effects of TM1, TM2, TM7, TM8, and TM10. Also, these estimations support
predictions based on binding free energies.

4. Materials and Methods
4.1. Synthesis

Chalcone-thioethers (TM1-11) were synthesized using base-catalyzed Claisen-Schmidt
condensation between various para-substituted aromatic aldehydes and 4-thiomethyl
acetophenone. Target compounds were produced by stirring ethanol solutions of 0.01 M of
4-thiomethylacetophenone with appropriate aromatic aldehydes containing 40% NaOH
solution for 8–10 h [32]. The resulting reaction mixtures were poured into ice-cold water,
and the products were collected, washed thoroughly with water, and recrystallized from
ethanol. Spectral data were provided in Supplementary Materials.

4.2. Biological Evaluations
4.2.1. MAO Enzyme Inhibition

MAO-A activity was estimated continuously for 20 min at 316 nm using 0.06 mM
kynuramine as substrate, whereas MAO-B activity was measured for 30 min at 250 nm
using 0.3 mM benzylamine as substrate, as described previously [33]. MAO activity assays
were performed using recombinant human MAO-A or MAO-B.
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4.2.2. Kinetics Study

MAO-A activities were estimated after exposing it to inhibitors at 10.0 µM, whereas
MAO-B activities were estimated at an inhibitor concentration of 1.0 µM. IC50 values were
determined by measuring residual enzyme activities. Toloxatone and lazabemide were
used as reference reversible inhibitors for MAO-A and MAO-B, respectively, and clorgyline
and pargyline as reference irreversible inhibitors. Ki values and inhibitor types were
determined by kinetic testing, as previously described [34]. Kinetic tests were performed
at 5 different substrate concentrations and inhibitor concentrations of 0, ~1/2 × IC50, IC50,
and 2 × IC50 values. Lineweaver-Burk plots (LB) and their secondary plots were used to
determine Ki values and inhibitor types.

4.2.3. Reversibility Studies

The reversibilities of MAO-B inhibitions by TM1 and TM8 were assessed by dialysis.
Test compounds were preincubated with MAO-B at 0.15 µM for 30 min, as described previ-
ously [35]. MAO-B was also preincubated with the positive controls for the experiment;
lazabemide (a reference reversible MAO-B inhibitor) or pargyline (a reference irreversible
MAO-B inhibitor) at 0.20 and 0.30 µM, respectively. Reversibility patterns were determined
by comparing the activities of dialyzed (AD) and undialyzed (AU) samples.

4.2.4. Cytotoxicity and ROS Assays

The cytotoxicities and ROS quenching abilities of the two lead compounds (TM1 and
TM8) were evaluated as previously described [36,37].

4.2.5. BBB Study by PAMPA Method

The CNS bioavailability of the lead candidates was further ascertained by PAMPA
method [31].

4.3. Computational Studies
4.3.1. System Preparation

Initial coordinates of MAO-B (PDB ID: 6RKB) were selected [38]. The structure of
MAO-B consists of two identical chains, A and B, which forms a MAO-B homodimer. Each
chain contains a cofactor FAD, an inhibitor, water, and non-standard residues. Chain B was
removed together with the water and non-standard residues using UCSF Chimera [39], and
the ‘cleaned’ chain A was then saved in pdb format. The 2D structures of the compounds
TM1, TM2, TM7, TM8 and TM10 were drawn using Marvin Sketch and optimized with
Avogadro to generate 3D structures. Using UCSF Chimera, hydrogen atoms and Gasteiger
charges were added and results were saved in mol2 format for molecular docking at the
active site of ‘cleaned’ MAO-B.

4.3.2. Molecular Docking

Docking was performed using the AutoDock Vina module incorporated into UCSF
Chimera [40]. A grid box with coordinates of 51.3568, 154.894 and 29.7124, and x, y, and z
dimensions of 23.009, 22.8623, and 26.0373 was used to define the location of the MAO-B
binding site. Docked results generated were saved in pdbqt format. Conformations with
best binding scores were selected and saved.

4.3.3. Molecular Dynamics Simulation

Six systems (five complexes bound with the inhibitors and unbound MAO-B (Apo))
were set up for molecular simulation using the GPU version incorporated in AMBER18 [41].
Forcefield FF14SB was used to define the systems. The ANTECHAMBER module was used
to add atomic partial charges to ligands using the Restrained Electrostatic Potential (RESP)
and the General Amber Force Field (GAFF) protocols [42].
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5. Conclusions

The current study demonstrated a series of thiomethyl group containing chalcones
as potent and selective class of MAO-B inhibitors. In conclusion, TM8 and TM1 were
found to be reversible, selective, and competitive inhibitors of MAO-B with Ki values of
0.0031 ± 0.0013 and 0.011 ± 0.001 µM, respectively. The isosteric replacement of the A ring
methoxy- with a thiomethyl- group and the introduction of different substituents on the
B ring showed good MAO-B inhibition. Moreover, TM8 and TM1 were found to be safe
as analyzed by an in vitro toxicity study. Additionally, the prooxidant and antioxidant
levels can be retained by TM8 and TM1. Our findings show that TM8 and TM1 are
selective inhibitors of MAO-B and have potential therapeutic value for the treatment of
neurological disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14111148/s1, Figure S1: Compound TM1 1H-NMR spectrum, Figure S2: Compound
TM1 ESI MS spectrum, Figure S3: Compound TM8 1H-NMR spectrum, Figure S4: Compound TM8
ESI MS spectrum, Figure S5: Compound TM9 1H-NMR spectrum, Figure S6: Compound TM9 ESI
MS spectrum, Figure S7: Compound TM10 1H-NMR spectrum, Figure S8: Compound TM10 ESI
MS spectrum.

Author Contributions: Conceptualization: B.M. and H.K.; synthesis: B.M.; biological activity: J.M.O.,
A.K., M.A.A., T.M.R., G.E.M. and L.R.N.; molecular modeling: C.A. and M.E.S.S.; original draft
writing: J.M.O. and B.M.; review and editing: H.K. and B.M.; supervision: H.K.; funding acquisition:
B.M. and A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from Amrita Vishwa Vidyapeetham University
(Seed Grant Number K-PHAR-20-628 to B. Mathew).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors acknowledge Taif University Researchers Supporting Project (Num-
ber: TURSP-2020/68), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [CrossRef]
2. Schapira, A.H.; Jenner, P. Etiology and pathogenesis of Parkinson’s disease. Mov. Disord 2011, 26, 1049–1055. [CrossRef]
3. Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial clinical manifestations of

Parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol. 2009, 8, 1128–1139. [CrossRef]
4. Jankovic, J.; Aguilar, L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat 2008, 4, 743–757.

[CrossRef] [PubMed]
5. Tipton, K.F. 90 years of monoamine oxidase: Some progress and some confusion. J. Neural. Transm. 2018, 125,

1519–1551. [CrossRef]
6. Carradori, S.; Secci, D.; Bolasco, A.; Chimenti, P.; D’Ascenzio, M. Patent-related survey on new monoamine oxidase inhibitors

and their therapeutic potential. Expert Opin. Ther. Pat. 2012, 22, 909–939. [CrossRef] [PubMed]
7. Youdim, M.B.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006,

7, 295–309. [CrossRef]
8. D’Amato, R.J.; Lipman, Z.P.; Snyder, S.H. Selectivity of the parkinsonian neurotoxin MPTP: Toxic metabolite MPP+ binds to

neurtomelanin. Science 1986, 231, 987–989. [CrossRef] [PubMed]
9. Foley, P.; Youdim, M.B.H.; Riederer, P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders?

Parkinsonism Relat. Disord. 2000, 6, 25–47. [CrossRef]
10. Ramsay, R.R. Inhibitor design for monoamine oxidases. Curr. Pharm. Des. 2013, 19, 2529–2539. [CrossRef]
11. Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H. Emerging therapeutic potentials of dual-acting

MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. Chem. Life Sci. 2019, 352, e1900177.
[CrossRef] [PubMed]

12. Desideri, N.; Fioravanti, R.; Monaco, L.P.; Biava, M.; Yáñez, M.; Ortuso, F.; Alcaro, S. 1, 5-Diphenylpenta-2, 4-dien-1-ones as
potent and selective monoamine oxidase-B inhibitors. Eur. J. Med. Chem. 2013, 59, 91–100. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ph14111148/s1
https://www.mdpi.com/article/10.3390/ph14111148/s1
http://doi.org/10.1016/S1474-4422(06)70471-9
http://doi.org/10.1002/mds.23732
http://doi.org/10.1016/S1474-4422(09)70293-5
http://doi.org/10.2147/NDT.S2006
http://www.ncbi.nlm.nih.gov/pubmed/19043519
http://doi.org/10.1007/s00702-018-1881-5
http://doi.org/10.1517/13543776.2012.698613
http://www.ncbi.nlm.nih.gov/pubmed/22702491
http://doi.org/10.1038/nrn1883
http://doi.org/10.1126/science.3080808
http://www.ncbi.nlm.nih.gov/pubmed/3080808
http://doi.org/10.1016/S1353-8020(99)00043-7
http://doi.org/10.2174/1381612811319140004
http://doi.org/10.1002/ardp.201900177
http://www.ncbi.nlm.nih.gov/pubmed/31478569
http://doi.org/10.1016/j.ejmech.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23207410


Pharmaceuticals 2021, 14, 1148 16 of 17

13. Hagenow, J.; Hagenow, S.; Grau, K.; Khanfar, M.; Hefke, L.; Proschak, E.; Stark, H. Reversible small molecule inhibitors of MAO
A and MAO B with anilide motifs. Drug Des. Dev. Ther. 2020, 28, 317–325. [CrossRef] [PubMed]

14. Kumar, S.; Nair, A.S.; Bhashkar, V.; Sudevan, S.T.; Koyiparambath, V.P.; Khames, A.; Abdelgawad, M.A.; Mathew, B. Navigating
into the Chemical Space of Monoamine Oxidase Inhibitors by Artificial Intelligence and Cheminformatics Approach. ACS Omega.
2021, 6, 23399–23411. [CrossRef]

15. Palakkathondi, A.; Oh, J.M.; Dev, S.; Rangrajan, T.M.; Kaipakasseri, S.; Kavuly, F.S.; Gmabacorta, N.; Nicolotti, O.; Kim, H.;
Mathew, B. (Hetero-)(arylidene) arylhydrazides as Multitarget-Directed Monoamine Oxidase Inhibitors. ACS Comb. Sci. 2020, 22,
592–599. [CrossRef] [PubMed]

16. Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B inhibitors: Miniperspective. J. Med. Chem. 2015, 58, 6717–6732.
[CrossRef] [PubMed]

17. Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets
of small molecules. Nucleic Acids Res. 2019, 47, W357–W3664. [CrossRef] [PubMed]

18. Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B
inhibitors. Eur. J. Med. Chem. 2020, 205, 112650. [CrossRef] [PubMed]

19. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem.
Rev. 2017, 17, 7762–7810. [CrossRef]

20. Zhang, X.; Rakesh, K.P.; Bukhari, S.N.A.; Balakrishna, M.; Manukumar, H.M.; Ain, H.L. Multi-targetable chalcone analogs to treat
deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg. Chem. 2018, 80, 86–93. [CrossRef]

21. Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.D.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V.
Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets 2019, 18,
432–445. [CrossRef] [PubMed]

22. Mahapatra, D.K.; Asati, V.; Bharti, S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-
present). Expert Opin Ther. Pat. 2019, 29, 385–406. [CrossRef] [PubMed]

23. Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Oraalo, F.; Ortuso, F.; Alcaro, S. Chalcones: A
valid scaffold for monoamine oxidases inhibitors. J. Med. Chem. 2009, 52, 2818–2824. [CrossRef] [PubMed]

24. Mathew, B.; Uçar, G.; Mathew, G.E.; Mathew, S.; Purapurath, P.K.; Moolayil, F.; Mohan, S.; Gupta, S.V. Monoamine oxidase
inhibitory activity: Methyl-versus chlorochalcone derivatives. Chem. Med. Chem. 2016, 11, 2649–2655. [CrossRef]

25. Shalaby, R.; Petzer, J.P.; Petzer, A.; Ashraf, U.M.; Atari, E.; Alasmari, F.; Kumarasamy, S.; Sari, Y.; Khalil, A. SAR and molecular
mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. J. Enzym. Inhib. Med. Chem. 2019, 34, 863–876.
[CrossRef] [PubMed]

26. Parambi, D.G.T.; Oh, J.M.; Baek, S.C.; Lee, J.P.; Tondo, A.R.; Nicolotti, O.; Kim, H. Design, synthesis and biological evaluation of
oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg. Chem. 2019, 93, 103335. [CrossRef] [PubMed]

27. Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of
fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking
studies. Bioorg. Chem. 2015, 62, 22–29. [CrossRef] [PubMed]

28. Morales-Camilo, N.; Salas, C.O.; Sanhueza, C.; Espinosa-Bustos, C.; Sepúlveda-Boza, S.; Reyes-Parada, M.; Gonzalez-Nio, F.;
Caroli-Rezende, M.; Fierro, A. Synthesis, Biological Evaluation, and Molecular Simulation of Chalcones and Aurones as Selective
MAO-B Inhibitors. Chem. Biol. Drug Des. 2015, 85, 685–695. [CrossRef]

29. Hammuda, A.; Shalaby, R.; Rovida, S.; Edmondson, D.E.; Binda, C.; Khalil, A. Design and synthesis of novel chalcones as potent
selective monoamine oxidase-B inhibitors. Eur. J. Med. Chem. 2016, 114, 162–169. [CrossRef] [PubMed]

30. Mathew, B.; Mathew, G.E.; Uçar, G.; Joy, M.; Nafna, E.K.; Lohidakshan, K.K.; Suresh, J. Monoamine oxidase inhibitory activity of
methoxy-substituted chalcones. Int. J. Biol. Macromol. 2017, 104, 1321–1329. [CrossRef]

31. Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain
barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [CrossRef]

32. Thiruvalluvar, A.; Subramanyam, M.; Butcher, R.J.; Karabasanagouda, T.; Adhikari, A.V. (E)-1-[4-(Methylsulfanyl) phenyl]-3-
phenylprop-2-en-1-one. Acta Crystallogr. Sect. E Struct. Rep. 2008, 64, o1263. [CrossRef] [PubMed]

33. Kavully, F.S.; Oh, J.M.; Dev, S.; Kaipakasseri, S.; Palakkathondi, A.; Vengamthodi, A.; Azeez, R.F.A.; Tondo, A.R.; Nicolotti, O.;
Kim, H. Design of enamides as new selective monoamine oxidase-B inhibitors. J. Pharm. Pharmacol. 2020, 72, 916–926. [CrossRef]

34. Baek, S.C.; Park, M.H.; Ryu, H.W.; Lee, J.P.; Kang, M.G.; Park, D.; Park, C.M.; Oh, S.R.; Kim, H. Rhamnocitrin isolated from
Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem. 2018, 28,
317–325. [CrossRef]

35. Mathew, B.; Baek, S.C.; Parambi, D.G.T.; Lee, J.P.; Joy, M.; Rilda, P.R.A.; Randev, R.V.; Nithyamol, P.; Vijayan, V.; Inasu, S.T.; et al.
Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. Med. Chem. Comm. 2018, 9,
1871–1881. [CrossRef] [PubMed]

36. Park, C.; Cha, H.J.; Hong, S.H.; Kim, G.Y.; Kim, S.; Kim, H.S.; Kim, B.W.; Jeon, Y.J.; Choi, Y.H. Protective effect of phloroglucinol
on oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in HaCaT
human keratinocytes. Mar. Drugs 2019, 17, 225. [CrossRef] [PubMed]

37. Pérez, W.I.; Soto, Y.; Ortíz, C.; Matta, J.; Meléndez, E. Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity,
reactive oxygen species production and micronucleus assay. Bioorg. Med. Chem. 2015, 23, 471–479. [CrossRef] [PubMed]

http://doi.org/10.2147/DDDT.S236586
http://www.ncbi.nlm.nih.gov/pubmed/32099324
http://doi.org/10.1021/acsomega.1c03250
http://doi.org/10.1021/acscombsci.0c00136
http://www.ncbi.nlm.nih.gov/pubmed/33047950
http://doi.org/10.1021/jm501690r
http://www.ncbi.nlm.nih.gov/pubmed/25915162
http://doi.org/10.1093/nar/gkz382
http://www.ncbi.nlm.nih.gov/pubmed/31106366
http://doi.org/10.1016/j.ejmech.2020.112650
http://www.ncbi.nlm.nih.gov/pubmed/32920430
http://doi.org/10.1021/acs.chemrev.7b00020
http://doi.org/10.1016/j.bioorg.2018.06.009
http://doi.org/10.2174/1871527318666190610111246
http://www.ncbi.nlm.nih.gov/pubmed/31187716
http://doi.org/10.1080/13543776.2019.1613374
http://www.ncbi.nlm.nih.gov/pubmed/31030616
http://doi.org/10.1021/jm801590u
http://www.ncbi.nlm.nih.gov/pubmed/19378991
http://doi.org/10.1002/cmdc.201600497
http://doi.org/10.1080/14756366.2019.1593158
http://www.ncbi.nlm.nih.gov/pubmed/30915862
http://doi.org/10.1016/j.bioorg.2019.103335
http://www.ncbi.nlm.nih.gov/pubmed/31606547
http://doi.org/10.1016/j.bioorg.2015.07.001
http://www.ncbi.nlm.nih.gov/pubmed/26189013
http://doi.org/10.1111/cbdd.12458
http://doi.org/10.1016/j.ejmech.2016.02.038
http://www.ncbi.nlm.nih.gov/pubmed/26974383
http://doi.org/10.1016/j.ijbiomac.2017.05.162
http://doi.org/10.1016/S0223-5234(03)00012-6
http://doi.org/10.1107/S1600536808017200
http://www.ncbi.nlm.nih.gov/pubmed/21202897
http://doi.org/10.1111/jphp.13264
http://doi.org/10.1016/j.bioorg.2018.10.051
http://doi.org/10.1039/C8MD00399H
http://www.ncbi.nlm.nih.gov/pubmed/30568755
http://doi.org/10.3390/md17040225
http://www.ncbi.nlm.nih.gov/pubmed/31013932
http://doi.org/10.1016/j.bmc.2014.12.023
http://www.ncbi.nlm.nih.gov/pubmed/25555734


Pharmaceuticals 2021, 14, 1148 17 of 17

38. Knez, D.; Colettis, N.; Lacovino, L.G.; Sova, M.; Pišlar, A.; Konc, J.; Samo Lešnik, S.; Josefina Higgs, J.; Kamecki, F.; Mangialavori,
I.; et al. Stereoselective activity of 1-propargyl-4-styrylpiperidine-like analogues that can discriminate between monoamine
oxidase isoforms A and B. J. Med. Chem. 2020, 63, 1361–1387. [CrossRef] [PubMed]

39. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, H.G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A
visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef] [PubMed]

40. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef] [PubMed]

41. Case, D.A.; Walker, R.C.; Huang, Y.; Lin, C.; Mermelstein, D.J.; Cheatham, T.E., III; Simmerling, C.; Li, P.; Roitberg, A.;
Onufriev, A.; et al. AMBER 2018 Reference Manual. University of California, San Francisco. 2018. Available online: https:
//ambermd.org/doc12/Amber18.pdf (accessed on 10 October 2021).

42. Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical
calculations. J. Mol. Graph. Model 2006, 25, 247–260. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.jmedchem.9b01886
http://www.ncbi.nlm.nih.gov/pubmed/31917923
http://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
http://doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
https://ambermd.org/doc12/Amber18.pdf
https://ambermd.org/doc12/Amber18.pdf
http://doi.org/10.1016/j.jmgm.2005.12.005
http://www.ncbi.nlm.nih.gov/pubmed/16458552

	Introduction 
	Results 
	MAO Inhibition 
	Kinetics 
	Reversibility 
	Cytotoxicity Evaluation 
	ROS Assay 
	Blood-Brain Barrier (BBB) Permeation Study by Parallel Artificial Membrane Permeability Assay (PAMPA) 
	Inhibitor-Induced Binding Pocket Dynamics 

	Discussion 
	Materials and Methods 
	Synthesis 
	Biological Evaluations 
	MAO Enzyme Inhibition 
	Kinetics Study 
	Reversibility Studies 
	Cytotoxicity and ROS Assays 
	BBB Study by PAMPA Method 

	Computational Studies 
	System Preparation 
	Molecular Docking 
	Molecular Dynamics Simulation 


	Conclusions 
	References

