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Abstract

Although it has long been posited that sensory adaptation serves to enhance information flow in 

sensory pathways, the neural basis remains elusive. Simultaneous single–unit recordings in the 

thalamus and cortex in anesthetized rats reveal that adaptation differentially influences thalamus 

and cortex in a manner that fundamentally changes the nature of information conveyed about 

vibrissae motion. Utilizing an ideal observer of cortical activity, performance in detecting vibrissa 

deflections degrades with adaptation, while performance in discriminating between vibrissa 

deflections of different velocities is enhanced, a trend not observed in thalamus. Analysis of 

simultaneously recorded thalamic neurons does reveal, however, an analogous adaptive change in 

thalamic synchrony that mirrors the cortical response. An integrate–and–fire model using 

experimentally measured thalamic input reproduces the observed transformations. The results here 

suggest a shift in coding strategy with adaptation that directly controls information relayed to 

cortex, which could have implications for encoding velocity signatures of textures.
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Introduction

Adaptation is a ubiquitous property across a large variety of areas within different sensory 

pathways of the brain1-6. Although typically associated with an attenuation of neural activity 

resulting from a number of different biophysical mechanisms, adaptation is thought to 
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enhance the flow of information transmission in sensory pathways in complex 

environments7. Computational studies have quantitatively demonstrated that adaptation 

maintains information rates in the face of changes in the statistics of the sensory input5, 6. 

Consistent with these notions, psychophysical studies have shown that adaptation to a 

periodic tactile input enhances human performance in both amplitude and frequency 

discrimination8-11. The precise link between the changes in coding properties and the 

feature representation in the various stages of processing that underlies perception, however, 

remains poorly understood.

Due to the well–studied feed–forward anatomy, the thalamus is classically described as a 

relay station between the sensory periphery and the cortex. However, the complex dynamic 

interaction between the thalamic and cortical structures is perhaps the key element in 

establishing representations that ultimately result in perception of our sensory environment. 

It has been asserted that thalamic gating can shift coding properties of the pathway between 

detecting salient features of the sensory environment and transmitting details of the sensory 

environment12, 13. By taking the perspective of an ideal observer of thalamic activity and 

decoding elements of the sensory input, we have previously shown that high frequency 

thalamic bursting is selective for detecting salient features in the natural sensory input14. 

Short inter–spike intervals of single thalamocortical neurons15 and synchronous activity 

across multiple thalamic neurons projecting to a common cortical target16, 17 are 

significantly more likely to evoke spiking in the downstream cortical neuron, consistent with 

the notion of a “window of opportunity” for integration for the cortical cell18. It has recently 

been shown that adaptation strongly shapes thalamic synchrony19 and dictates the window 

of integration of the recipient cortical target20. How this shapes not only how much, but 

what kind of information is conveyed to the cortex, is unknown.

Here, through simultaneous single–unit recordings in the ventral posteromedial (VPm) 

nucleus of the thalamus and cortical layer 4 in the rat vibrissa pathway during controlled 

vibrissa movements in the anesthetized rat, we show that sensory adaptation differentially 

influences thalamic and cortical activity in a manner that fundamentally changes the nature 

of the information conveyed about the sensory input. Specifically, from the perspective of an 

ideal observer of spiking activity, the cortical neurons exhibit a degraded performance in 

detecting vibrissa deflections with adaptation, while exhibiting an enhancement in 

discriminating between deflections of different velocities. Paired recordings in 

topographically aligned neurons in the VPm thalamus reveal no such trend in the projecting 

input to cortex, also reflected in putative monosynaptic pairings. Analysis of simultaneously 

recorded thalamic neurons does unveil, however, an analogous adaptive change in thalamic 

synchrony that mirrors the observations of cortical response magnitude. A simple leaky 

integrate–and–fire network model using experimentally measured thalamic input reproduces 

the observed transformations from thalamus to cortex. Taken together, the results here 

suggest an adaptive shift in the coding strategy with adaptation that has direct functional 

consequences regarding the nature of information relayed to cortex.
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Results

Single–unit, extracellular recordings were made of putative excitatory neurons (Regular 

Spiking Units (RSUs) – Fig. 1a, left, for a typical RSU waveform) in layer 4 of the vibrissa 

region of the primary somatosensory cortex, in response to controlled deflection of the 

corresponding primary vibrissa (Fig. 1a, Supplementary Fig. 1 online for all cortical units in 

the main dataset of the study). Cortical neurons adapted strongly to persistent, ongoing 

sensory stimuli, as shown by the peri–stimulus time histogram (PSTH) of evoked activity 

from a typical neuron in Fig. 1b in response to a 12 Hz periodic vibrissa deflection pattern.

In response to these transient vibrissa motions, cortical neurons exhibited an exponential 

reduction in spike count from the stimulus onset (Non–adapted) to steady–state (Adapted), 

shown for a sample of cortical neurons in the top panel of Fig. 1c (n=30). The reduction in 

spike count from the Non–adapted to Adapted states was quantified by the Adaptation Ratio 

(ratio of Adapted spike count to Non–adapted, see Methods), which was 67% here, 

consistent with other studies using similar experimental methodologies3, 4. The reduction in 

spike count with adaptation was accompanied by a corresponding reduction in trial–to–trial 

spike count variance, as shown in the bottom panel of Fig. 1c. The relationship between the 

mean and variance was non–linear, following a sub–linear exponential rise to an apparent 

saturation (Fig. 1d, dashed curve; Supplementary Fig. 5 online).

Detection and the Ideal Observer

Taking the perspective of an ideal observer of the cortical response, we can ask to what 

extent we can detect the presence of a vibrissa deflection, and how this is affected by 

adaptation. The observer was asked to indicate whether or not a vibrissa deflection was 

presented following a cue marking the stimulus onset (Fig. 2a). This can be envisioned as 

discrimination between “signal” and “noise”, in the classical signal detection theory 

framework.

The observer was challenged with this question before (Non–adapted) and after (Adapted) 

the pathway was presented with an adapting periodic vibrissa deflection. The ideal observer 

made the decision based on the summed activity across multiple trials, assumed to represent 

the aggregate population spike count21, 22 (see Methods). An example of the corresponding 

distributions in the presence (signal) and absence (noise) of a vibrissa deflection for a typical 

cortical RSU is shown (Fig. 2b). Plotted are the parametric fits of the experimentally 

measured distributions (Supplementary Fig. 3a online). The signal in this case was a weak 

punctate vibrissa deflection of 50 deg./sec. The spike count distributions for the Non–

adapted case are shown (top panel). The mean population spike count was of course larger 

for the signal (black) than for the noise (gray), but both exhibited some degree of variability, 

leading to overlap in the distributions. Classical signal detection involves the selection of a 

threshold, above which the response is classified as signal, and below which as noise. The 

area under the response distribution to the right of the threshold when a signal was actually 

present (black) is the probability of a correct detection (“hit”), whereas the corresponding 

area under the response distribution in the absence of signal (gray) is the probability of an 

incorrect attribution of the observed response to signal when it was actually noise (“false 

alarm”). Given the effect of adaptation on the spike count, we expected that the mean 
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population spike count for the vibrissa deflection would decrease, as shown in the bottom 

panel of Fig. 2b. In addition to the mean population spike count, adaptation decreased the 

variance and significantly altered the noise distribution (spontaneous activity). Together, 

these changes affected the degree of overlap between the signal and noise distributions.

The performance of the observer was quantified using a receiver operating characteristic 

(ROC) analysis21, 22, which captures the probability of false alarms versus correct 

detections as a function of the choice of thresholds (Fig. 2c). Because the performance 

varies with the choice of threshold, the total area under the ROC curve (AUROC) was used 

as a single metric of overall performance, where a value of 1 indicates a false alarm rate of 0 

and a hit rate of 1, and a value of 0.5 indicates chance. For this particular cortical neuron, for 

a given angular velocity, the AUROC was significantly larger for the Non–adapted (dotted) 

state as compared to the Adapted (solid). Shown is a scatter plot of performance in the Non–

adapted state versus the Adapted state for the larger sample (n=30) for the lowest velocity 

presented (Fig. 2d), exhibiting a significant degradation in detection performance with 

adaptation (left side of Fig. 2e, p<10−19, Wilcoxon signed–rank test). A control analysis 

showed that this effect was not due to the sub-linear decrease in variance with adaptation 

(Fig. 2e, right; see figure caption and Supplementary Note 1 online). Note that for Fig. 2e, 

the detection performance was evaluated for a range of probe velocities, exhibiting an 

overall higher level of performance as compared to the scatter plot for the low velocity 

probe in Fig. 2d.

Discrimination and the Ideal Observer

Again taking the perspective of an ideal observer of the cortical response, we can ask to 

what extent we can discriminate between different sensory inputs, and how this is affected 

by adaptation. The observer was asked to discriminate between vibrissa deflections of 

different velocities (Fig. 3a).

The observer was challenged with this question in the presence (Adapted) or absence (Non–

adapted) of previously adapting periodic vibrissa deflections. Shown are the velocity 

sensitivity curves across the sample of cortical neurons, in the Non–adapted (dotted) and 

Adapted (solid) states (Fig. 3b). It is clear that the adaptation attenuated the response 

magnitude for all stimuli (velocities). However, the difficulty of the task of the observer 

depended upon the overlap in distributions of the responses to each of the velocities. Shown 

is an example of the response distributions of a particular cortical neuron in response to five 

different stimuli (s1, s2, s3, s4, s5; Fig. 3c), which are five different angular velocities of 

vibrissa deflection (50, 100, 300, 600, 1200 deg./sec, respectively). Note that the stimulus 

design held the duration of the punctate stimulus fixed, and thus the peak amplitude of the 

deflection covaried with the velocity (see Methods). Plotted are the parametric fits of the 

experimentally observed distributions (Supplementary Fig. 3b online). We can immediately 

see that for this example cell in the Non–adapted case (top), the spike counts were relatively 

high, but the distributions were highly overlapped, and even unordered. In contrast, in the 

Adapted case (bottom), the spike counts were attenuated, but the distributions became more 

separated and ordered.
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To quantify the effects of this transformation on the performance of the ideal observer in 

discriminating between different deflection velocities, we used a Bayesian decoder to 

estimate the most likely velocity presented from the observed cortical response, given a 

uniform prior (i.e. each velocity was presented with equal probability). The inset in Fig. 3c 

shows the performance matrix, which displays the probability of inferring a particular 

velocity (columns) for each of the actual velocities presented (rows). The overall metric of 

performance reflects the fraction of correctly identified stimuli (chance would be 20% or 

0.2). In contrast to the detection task, the observer was significantly better at discriminating 

between different velocities in the Adapted state, as compared to the Non–adapted state (Fig. 

3d). This result is further summarized in Fig. 3e, where the discrimination performance was 

significantly better in the Adapted state as compared to Non–adapted (p<3×10−4, n=30, 

Wilcoxon signed–rank test). The control analysis reveals that the change in performance 

with adaptation observed in the data was not a trivial consequence of the attenuated response 

in the Adapted state, but instead relied on the non–uniform changes in the separation 

between the distributions with adaptation (see figure caption and Supplementary Note 1 

online).

In addition to the obvious adaptation effects on the spike count, the average overall shape of 

the sensitivity curve changed with adaptation, from a step–function form to that which 

exhibited a more gradual change in response with increased stimulus strength (Fig. 3b). The 

adaptation thus provided sensitivity over the range of angular velocities tested here. Taken 

together, the results of the Detection and Discrimination performance analysis show that 

adapting cortical neurons switched from a state in which detection was favored to a state in 

which discrimination was favored. Importantly, in an additional set of experiments, we 

found that adaptation enhanced discriminability between deflections of the vibrissa in 

different angular directions, pointing to a general phenomenon (Supplementary Note 3 and 

Supplementary Fig. 6 online).

Thalamic Input

Given the observations regarding the switch in performance with adaptation in the cortical 

response, it is important to ask how these properties arise. It may simply be the case that the 

cortex was trivially inheriting these properties from the projecting thalamic input. Neurons 

in the ventral posteromedial nucleus (VPm) of the thalamus do also adapt in response to 

persistent, ongoing sensory input in a manner similar to that in cortex, albeit to a lesser 

degree. Each of the cortical neurons in Figs. 1–3 was recorded while simultaneously 

recording from a topographically aligned VPm neuron (i.e. in the homologous barreloid, see 

Fig. 1a inset for typical VPm spike waveform, and Supplementary Fig. 2 online for all 

thalamic units in the main dataset of the study). Shown is a PSTH for a typical VPm neuron 

and the mean decay in VPm spike count in response to the same 12 Hz repetitive stimulus 

(Fig. 4a; n=32; for 2 recording sessions, two VPm units were recorded on separate 

electrodes of the multi–electrode positioned in thalamus). Note that the VPm PSTH 

exhibited a fairly rapid decrease in amplitude, whereas the spike count decay was much 

more gradual, consistent with previous observations23.
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Although the adaptation response was qualitatively similar to the cortical neurons, VPm 

neurons exhibited weaker adaptation and a correspondingly larger adaptation ratio of 80% 

(as compared to 67% for the cortical RSUs (n=30) in Fig. 1c, p<0.01, Mann–Whitney U 

test) – see inset. An ideal observer of the VPm spike count was then challenged with the 

same detection and discrimination tasks as above. Although the VPm detection performance 

did degrade with adaptation due to the decreased spike count (p<0.01, n=32, Wilcoxon 

signed–rank test; Supplementary Fig. 7 online), the adaptation produced no change in 

discrimination performance in contrast to observations in cortex (Fig. 4b; p=0.19, n=32, 

Wilcoxon signed–rank test). In contrast to their cortical counterparts, the velocity sensitivity 

curves for the VPm neurons exhibited only an overall scaling of the magnitude of the spike 

count with adaptation (Fig. 4c, dotted versus solid), as opposed to a fundamental change in 

shape of the sensitivity in cortex that gave rise to the change in performance (Supplementary 

Fig. 9 online).

To rule out the possibility that the observed discrepancy between changes in thalamic and 

cortical discrimination performance with adaptation was due to experimental methods or 

selection bias in the neural recordings, we analyzed the simultaneously recorded VPm and 

cortical activity in a pair–wise manner. First, a small subset of the thalamocortical pairs was 

conservatively identified as having monosynaptic connectivity (i.e. the recorded VPm 

neuron served as direct input to the layer 4 cortical neuron, crosses in Figs. 3d and 4b). This 

assessment was performed using spike cross–correlation analysis in the presence of a very 

weak vibrissa stimulation, as described in the Methods 24, 25.

Shown is an example of the shuffle–corrected spike cross–correlogram for a typical pair, 

with the raw cross–correlogram shown reflected about the horizontal axis (Fig. 5a). The 

dotted line represents a >99% confidence interval (3 standard deviations) on an uncorrelated 

process. The emergent peak at approximately 2 ms was consistent with monosynaptic 

connectivity across the thalamocortical structures15, 24. The inset shows the average 

correlograms across the subset of pairs we identified as monosynaptically connected (n=8 

pairs). For this subset of pairs, the discrimination performance was significantly better in the 

Adapted state as compared to the Non–adapted state for the cortical cell (Fig. 5b, left) 

(p<0.007, Wilcoxon signed–rank test), while the VPm cell exhibited no difference (Fig. 5b, 

right) (p=0.84, Wilcoxon signed–rank test). The primary result here thus held for the 

conservatively identified connected pairs. Further, it is likely that many of the other recorded 

pairs were also connected pairs, but did not meet the stringent requirements imposed here25. 

Shown is the pair-wise percent change in discrimination performance from the Non–adapted 

to Adapted state for each of the simultaneously recorded VPm and cortical pairs (Fig. 5c), 

with the identified monosynaptically connected pairs shown in gray, showing little or no 

trend in performance for the VPm while showing an enhanced performance for the cortex. 

The increase in cortical discrimination performance with adaptation was significantly 

greater than that in VPm (comparison of performance ratios, p<0.001, Student's t–test, see 

Methods).
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Thalamic synchrony affects cortical performance

The above results suggest that the cortical shift in performance was not trivially inherited 

from the projecting thalamic input. However, this does not completely preclude an 

explanation of the cortical response properties from the thalamic population input. Timing 

across the thalamic population has been shown to be a critical component in establishing 

feature selectivity in cortex26. In a separate set of experiments, a multi–electrode was 

utilized to record simultaneously from VPm pairs within the same barreloid in response to 

the adapting stimulus (see Methods). As the VPm adapts in response magnitude (spike 

count), we observed a desynchronization of the thalamic response. The mean synchrony 

decreased with the adapting stimulus (Fig. 6a; n=19 VPm pairs), where synchrony was 

defined as the central area under the spike cross–correlogram (+/− 7.5 ms, see Methods and 

Supplementary Note 4). The synchrony defined here is the probability, given a spike of one 

VPm neuron, of observing a spike from the other VPm neuron in the pair within +/− 7.5 ms 

(solid is from raw correlogram, dotted is from trial shuffled correlogram; Supplementary 

Fig. 8 online).

The synchrony across VPm neurons was also modulated by the vibrissa deflection velocity. 

The thalamic synchronies for the different velocities are denoted by the tick marks on the 

left (Non–adapted) and right (Adapted) of Fig. 6a, labeled as stimuli s1–s5. The different 

velocities elicited greater variation in the synchrony across the pairs in the Adapted as 

compared to Non–adapted states. This effect is shown in more detail in Fig. 6b, where the 

velocity effects on synchrony are presented for both the Non–adapted and Adapted states 

(n=19 VPm pairs). The adaptation acted to attenuate thalamic synchrony, while 

simultaneously increasing the sensitivity of thalamic synchrony to velocity. This can be seen 

in the shape of the synchrony curve in the Adapted state, reminiscent of the cortical spike 

count curve shown in Fig. 3b. Although the presence and importance of noise correlations 

has recently been described for this pathway19, the effects here were largely stimulus–

driven, as the noise correlations were comparatively small and relatively insensitive to 

deflection velocity (linear regression, p=0.32 for Non–adapted and p=0.35 for Adapted, see 

Supplementary Fig. 8 online).

The importance of the above observation becomes clear in considering the role of timing 

across thalamic neurons in determining the response of the downstream layer 4 cortical 

target. Consider the cartoon illustration in Fig. 7a. Shown is the relative timing of firing 

across a small population of VPm neurons, and the effects of the stimulus strength on the 

degree of synchronization of these responses.

Previous studies of the thalamocortical circuit have demonstrated that adaptation modulates 

the integration window of the thalamic influence on the recipient layer 4 neurons20. 

Specifically, adaptation delays the arrival of feedforward inhibitory inputs, increasing the 

window of opportunity for feedforward excitatory thalamic input. The integration window 

of the recipient cortical cell is illustrated with the shaded region for both the Non–adapted 

and Adapted states (12 +/− 2 ms Non–adapted, 22 +/− 2 ms Adapted20). In the Non–adapted 

case, the changes in the synchronization with stimulus strength are small relative to the 

integration window, thus leading to a relative insensitivity of the cortical response to 

stimulus strength (velocity). In contrast, in the Adapted case, although the integration 
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window is wider as compared to the Non–adapted state, the overall synchrony is less, and 

more importantly, the changes in synchrony with changes in deflection velocity are 

pronounced. This leads to spiking of some of the VPm cells outside the window of 

integration, and thus a less efficacious input to drive the recipient cortical target.

Detection, Discrimination, and Window of Opportunity

The above qualitative assertion can be demonstrated quantitatively through the use of a 

simple leaky integrate–and–fire model of the cortical response to incoming VPm inputs (Fig. 

7b). The degree of synchrony was nearly identical across simultaneously recorded VPm 

pairs when the trials were randomly shuffled relative to each other (Fig. 6a), suggesting that 

the VPm pairs had very weak noise correlations compared to the stimulus driven 

correlations (dotted curve in Fig. 6a). Although the weak pair–wise correlations might play a 

role in the behavior of the network at a larger scale27, here we focused on the stimulus 

driven correlations (see Discussion). In the model, a random selection of trials across all 

recorded VPm neurons was used as a surrogate for the population VPm response on a single 

trial. The thalamic population input corresponding to a particular deflection velocity (s1–s5) 

was generated from 10 trials of experimentally recorded VPm activity corresponding to that 

particular velocity, randomly drawn across all recorded VPm cells and trials. The VPm 

population firing produces excitatory post–synaptic currents (EPSCs) that were spatially 

summed, capturing the total synaptic drive of the cortical RSU. This input was integrated, 

yielding an instantaneous measure of the membrane potential of the model cortical cell. 

Action potentials were generated when the potential crossed a threshold, at which point the 

integrator was reset (see Methods for a description of the model membrane properties). The 

“window of opportunity” was assumed to follow that described previously, where adaptation 

delays the arrival of feedforward inhibitory inputs, increasing the window of opportunity for 

feedforward excitatory thalamic input to generate downstream suprathreshold activity20. In 

the Non–adapted state, the recorded VPm activity is sufficiently synchronous as not to affect 

the cortical response. The resulting cortical response in the Non–adapted state thus reflected 

primarily the fraction of VPm units firing. Since the VPm spike count was relatively 

insensitive to vibrissa deflection velocity in the Non–adapted state, the cortical spike count 

was also relatively insensitive to velocity. In contrast, however, in the Adapted state, the 

VPm input was less synchronous, and the degree of synchrony was more sensitive to the 

velocity as compared to the Non–adapted state (Fig. 6b). Weaker stimuli resulted in loss of 

synchrony. As a result, despite the lack of VPm spike count sensitivity to velocity, the 

model cortical spike count was sensitive to velocity, as shown in Fig. 7c. Note that the 

model prediction was quite similar to the experimental findings in Fig. 3b (Supplementary 

Figs. 9b,d online). As a result, there was an increase in discrimination performance from the 

Non–adapted to Adapted states (Fig. 7d; p<2×10−4, n=30 simulated neurons, Wilcoxon 

signed–rank test), as we observed in experimental data (Fig. 3e).

To confirm that the enhancement of cortical discrimination performance was due to 

adaptation of thalamic synchrony, and to rule out the contribution of VPm spike count in the 

observed phenomena, we performed a control analysis. Specifically, spikes were removed 

from the Non–adapted VPm responses according to the observed thalamic adaptation ratio 

of 80% (i.e. 20% of the spikes were removed) to create the hypothetical Adapted VPm input 
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for the Adapted state. In other words, we preserved the experimentally observed VPm spike 

count in the adapted state, but eliminated adaptation effects on the synchrony. The “control” 

Adapted VPm sensitivity curve thus was the same as the experimentally observed curve in 

Fig. 4d (solid), but the synchrony matched the Non–adapted case (dotted line in Fig. 6b). 

Using this to drive the model, we found that this dramatically degraded the discrimination 

performance of the resultant cortical model output (Control case in Fig. 7d, not significantly 

different from the Non–adapted case (p=0.43, Wilcoxon signed–rank test)). Thus, we 

conclude that the adaptation effect on thalamic synchrony was the key element in the shift in 

cortical coding strategy with adaptation.

Discussion

Our results provide a direct link between the long–observed phenomenon of enhanced 

sensory performance with adaptation and the underlying neurophysiological representation 

in the primary sensory cortex. Here, we show that adaptation not only serves to enhance 

discriminability of vibrissa deflection velocities, but also to enhance discriminability of 

deflection angle (Supplementary Note 3 and Supplementary Fig. 6 online), pointing to a 

general phenomenon. It has long been postulated that sensory adaptation serves to enhance 

information flow in sensory pathways7. Psychophysical studies have indeed shown that 

adaptation to a periodic tactile input on the skin surface enhances spatial localization in a 

two point discrimination task in humans10, presumably through engaging lateral inhibitory 

mechanisms serving to better spatially localize the cortical activation. Further, adaptation to 

periodic tactile input has also been shown to enhance amplitude9 and frequency 

discrimination8 in humans. Although the perceptual effects of adaptation have been studied 

in some detail, the link to the underlying neurophysiology has historically been much less 

clear. In contrast to previous studies focusing on how adaptation influences how much 

information is being transmitted by the pathway5, 6, here we show that it is also important to 

reframe the question: What is information being transmitted about?

Neurons in the sensory cortices adapt their mean firing rates to ongoing stimuli in a number 

of different pathways. However, in the face of dynamic sensory input there is a complex, 

evolving interplay between excitatory and inhibitory sub–populations of cortical neurons 

that affects the population activity across the thalamocortical structures in a more subtle, and 

computationally rich, manner23, 28. For example, the excitatory and inhibitory inputs to 

cortical cells dynamically adapt in response to a periodic stimulus3, 20, 29. This interplay 

between excitation and inhibition at the level of the cortex provides a “window of 

opportunity” for generating supra–threshold cortical responses20 that matches the dynamic 

range of the stimulus. During repetitive stimulation, feed–forward inhibition onto cortical 

excitatory cells decreases, due to depression of both thalamocortical and cortico–cortical 

synapses, leading to an increase in the integration window of excitatory responses20. Given 

that the effects of adaptation are strongly dependent upon the nature of the adapting 

stimulus19, 23, it remains to be seen how adapting inputs of varying strength and statistical 

structure30 would shape the cortical sensitivity. Taken together, our results here suggest a 

dynamically evolving relationship between thalamic timing precision and its impact on 

cortex that could be a key element in the observed perceptual effects of adaptation.
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Neuronal synchrony is thought to play a major role in sensory function and cognition31, and 

such precise timing has been implicated in playing a key role in neural coding28, 32. 

Thalamic synchrony has been previously proposed as an important component in generating 

cortical response properties in the vibrissa pathway18, 33. In response to a single sensory 

stimulus, the temporal precision of thalamic input influences the cortical response to a 

greater extent than the overall thalamic firing rate18, and high velocity vibrissa stimuli 

induce synchronous thalamic firing within a barreloid19, 25. Here, we show that although the 

cortical response is indeed sensitive to stimulus intensity in the Non–adapted state18, 

stimulus intensity can modulate thalamic synchrony more effectively in the Adapted than 

Non–adapted state. This results in better discrimination performance based on downstream 

neural firing activity due to enhanced sensitivity in the Adapted state. Although the precise 

timing of thalamic firing is thought to be primarily generated by the strong inputs from 

trigeminal brainstem afferents, the adaptation of inhibitory input from thalamic reticular 

nucleus (nRT) also likely modulates VPm synchrony34.

It has recently been shown that weak pair–wise correlations across neurons can have 

important implications for the large–scale network27. However, the effect of pair–wise 

correlations on coding strategies is still very much in debate35, 36, and the implications in 

the context of adaptation are unclear. We should note that the measurements we provide 

here are comparative in nature. That is, we characterize the shift in pair–wise correlations 

from Non–adapted to Adapted states. We implicitly assume that the relationship between the 

weak pair–wise correlations and the coding strategies of the large–scale network would be 

preserved through adaptation, but this remains an open question.

Rats and other rodents rely extensively on their tactile sense to navigate and perceive the 

external world. It has been shown that this sensory modality is endowed with the capability 

for surprisingly fine texture discrimination37, 38. When in contact with a textured surface, 

the vibrissae resonate transiently during discrete, high–velocity “slip–stick” events39-41. The 

rate/pattern of these high–velocity vibrissa transients varies with the properties of the texture 

and self–motion, resulting in patterns of temporally precise, stimulus locked spiking activity, 

described as a “kinetic signature” of the textured surface42. Thus the discrimination between 

different textures potentially involves the discrimination between patterns of velocity 

transients, based on corresponding patterns of cortical activation. In the natural environment, 

rats use foveal whisking to identify/palpate objects of interest43, generating high frequency 

vibrations of the vibrissae (hundreds to thousands of Hertz) for hundreds of milliseconds38. 

Such persistent activation of the pathway may put the brain in an Adapted state, resulting in 

an enhanced discriminability of the relevant features of the texture. In addition to surface 

texture properties, the vibrissa system also provides information to the animal that is useful 

for object localization44, aperture discrimination45, and stimulus detection22 and 

discrimination46, in many cases involving the inference of a single transient contact, such as 

that presented in the detection task in this study. Given this dichotomy, it has been proposed 

that the lemniscal and paralemniscal pathways separately process vibrissa motion in parallel 

for texture coding and object–contact, respectively1. The thalamic data shown here were 

identified as VPm in origin, and thus part of the lemniscal tract, based on stereotaxic 

coordinates and response latencies (Supplementary Note 5). While it is not presently known 

if the seemingly disparate types of sensory information involved in discrimination and 
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contact/detection are mutually exclusive behaviorally, nor is it known to what extent the 

pathways interact as the self–motion of the animal shapes the sensory input in a continuous 

manner47, our study does demonstrate that the lemniscal pathway preserves sufficient 

information for dynamically switching between different coding strategies in behavioral 

contexts.

The properties of the sensory input play a large role in controlling overall activation and 

timing precision across neurons in the local populations48, suggesting a potential role for 

thalamic synchrony in controlling information flow to cortex in the non–stationary natural 

sensory environment32. However, the thalamocortical network is also strongly influenced by 

non–peripheral inputs that are associated with states of arousal. Specifically, activation of 

the reticular formation influences thalamus and cortex both directly and indirectly. Recently, 

it was shown that electrical stimulation of the basal forebrain served to enhance 

discriminability across the thalamocortical circuit49, presumably through modulations in 

thalamic synchrony. Neurotransmitters associated with arousal act to depolarize the 

thalamus, shifting the firing properties50, and increasing the spontaneous firing rate of 

thalamocortical neurons51. Increased thalamic activity associated with arousal leads to an 

“adapted” state in cortex characterized by low background firing, higher signal–to–noise, 

and sharpened receptive fields51. Given the differences in thalamocortical activity between 

the anesthetized and awake animal50,51, it remains an open question as to how the neural 

phenomenon described here is impacted by wakefulness and higher level, top–down 

attentional processes. Nevertheless, adaptation to a periodic tactile input has been shown to 

enhance spatial localization and frequency discrimination in humans8-11.

Although the issue of rate versus temporal coding has been vigorously debated in the 

literature, currently there is fairly widespread agreement that the various pathways in the 

brain likely operate on a range of timescales52, and that the relevant timescales likely change 

with time and context. The timescale of firing activity across upstream neural populations is 

transferred to downstream neural activity by the dynamics of synaptic integration across the 

brain regions, and thus the range of timescales of synaptic integration ultimately determines 

the relevant timescales of the neural code. The results here suggest that with respect to 

stimulus strength (angular velocity), the thalamic population operates with a temporal code 

that is transformed to a rate code across the thalamocortical synapse. Moreover, the 

dynamics of thalamocortical integration change in a complex way with adaptation20, which, 

along with modulation of synchronization across the thalamic population, leads to a dynamic 

gating of information flow to cortex, consistent with the hypothesis that adaptation in the rat 

vibrissa system could serve to switch from a mode that facilitates detection to one that 

facilitates discrimination. Studies pairing electrophysiological recordings with behavior that 

permit the direct comparison of neurometric and psychometric performance suggest a 

complex relationship between the timecourse of cortical activity and perception53. Although 

it is not likely that cortical layer 4, or even S1, is solely responsible for generating 

perceptions, the emergence of feature selectivity across the thalamocortical synapse forms 

the constituent elements upon which perception is ultimately built.
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Materials & Methods

Surgery and preparation

Forty female adult Sprague Dawley rats (220–330 g) were used in the study. All procedures 

were approved by the Institutional Animal Care and Use Committees at Harvard University 

and Georgia Institute of Technology. Briefly, rats were sedated with 2% vaporized 

isoflurane and anesthetized with sodium pentobarbital (50 mg/kg, i.p., initial dose); 

Supplementary doses were given as needed to maintain a surgical level of anesthesia, 

confirmed by measurements of heart rate, respiration and eyelid/pedal reflexes to averse 

stimuli (toe or tail pinch). Body temperature was maintained at 37 °C by a servo–controlled 

heating blanket (FHC, Bowdoinham, ME). The animal was mounted on a stereotaxic device 

(Kopf Instruments, Tujunga, CA) on a floating table in preparation for the surgery and 

subsequent recordings. Atropine (0.5 mg/kg, s.c.) was injected, and 2% Lidocaine solution 

was applied to the tissue on top of the head. A small craniotomy was made on the left 

hemisphere over the barrel cortex (stereotaxic coordinates: 1.0–4.0 mm caudal to the 

bregma, and 4.0–7.0 mm lateral to the midline) and over the ventral posteromedial nucleus 

(VPm) of the thalamus (2.0–4.0 mm caudal, 2.5–3.5 mm lateral to the midline)4. The dura 

mater was then carefully removed. After the recording session, the animal was sacrificed 

with an overdose of sodium pentobarbital.

Electrophysiological recordings

Single–unit extracellular recordings were obtained by using either tungsten microelectrodes 

(5∼8 MΩ, FHC, Bowdoinham, ME) or quartz–insulated platinum/tungsten (90%/10%) 

microelectrodes (2∼6 MΩ, Thomas Recording, Germany). First, a microelectrode was 

advanced into VPm. After the principal whisker of the well–isolated VPm cell was 

identified, a micro–electrode was positioned perpendicular to the pial surface and advanced 

into the homologous barrel according to the barrel map, until a single unit was located that 

was homologous to the VPm barreloid and had a fairly restricted whisker input. For each 

thalamic cell, a shift in latency with adaptation greater than 20 ms resulted in exclusion of 

the cell from the study to ensure that the thalamic sample consisted solely of neurons from 

VPm, rather than POm1. A total of 32 thalamocortical pairs were recorded over the entire 

duration (> 1 hour) of the stimulus protocol (30 cortical neurons; 32 VPm neurons, two of 

which were recorded simultaneously with another VPm neuron).

A total of 19 simultaneously recorded pairs of VPm neurons were recorded utilizing a 20–

channel microdrive system (Mini–Matrix, Thomas Recording, Germany). Three to five 

pulled and beveled quartz–insulated platinum/tungsten (90%/10%) microelectrodes (4–6 

MΩ, 80 μm in diameter) were guided through a 5–channel linear microdrive head (Head05–

lin–305–305–b, Thomas Recording, Germany) with 305 μm inter–electrode spacing, then 

positioned approximately 100 μm apart on the cortical surface through a custom–made glass 

guide tube (tip diameter: approximately 250 μm). Subsequently, these electrodes were 

slowly advanced into the brain independently at 1 μm resolution. All 19 pairs presented here 

were recorded when the two electrodes were in the same barreloid.

Wang et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2011 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data were collected using a 32–channel data–acquisition system (Plexon Inc., Austin, TX 

USA). Neuronal signals were amplified, band–pass filtered (500–5 kHz), and digitized at 40 

kHz/channel. Recordings were analyzed using the OfflineSorter software suite (Plexon Inc., 

Austin, TX USA) to assign the recorded spike waveforms to single–units on the basis of 

standard template matching techniques and physiologically plausible refractory periods. All 

cortical cells were located at stereotaxic depths of 500–900 μm, presumably within cortical 

layer IV. Cortical cells were classified as regular spiking units (RSUs, putative excitatory 

neurons) or fast spiking units (FSUs, putative inhibitory interneurons) based on the width of 

action potential waveform. A recorded neuron was classified as an RSU when the initial 

trough was > 200 μs and the total duration of the waveform was > 850 μs (see 

Supplementary Fig. 1 online), and the spontaneous firing rate < 1 Hz24. Following this 

online classification, only RSUs were recorded in the subsequent stimulus presentation.

Whisker stimulation

Whiskers were trimmed at ∼12 mm from the face, and inserted into a 30 mm glass pipette 

fixed to the end of a calibrated multi–layered piezo–electric bimorph bending actuator 

(range of motion, 1 mm; bandwidth, 300 Hz; Polytec PI, Auburn, MA) positioned 10 mm 

from the vibrissa pad. Rostral-caudal pulse deflections consisted of exponential rising and 

falling phases (99% rise time, 5 ms; 99% fall time, 5 ms). Pulses with amplitude of 680μm 

(800 deg./s) were used as adapting stimuli (15 deflections at 12 Hz). The probe stimulus was 

presented as the 16th deflection of the 12 Hz stimulus, and thus there was an 83 ms delay 

between the last deflection of the adapting stimulus and the probe. Pulses with angular 

deflection velocities of 50, 100, 300, 600, 1200 deg./s were used as probe stimuli (s1–s5, 

respectively), where angular velocity was quantified as the average rate of rise to maximum 

amplitude. Note that the pulses had a fixed duration (10 ms), and thus the peak amplitude 

co–varied with the velocity23. Isolated deflections (Probe stimuli) were presented in the 

presence (Adapted) or absence (Non–adapted) of the adapting stimulus, forming stimulus 

blocks that were presented in an interleaved fashion. The interval between stimulus blocks 

was 5 seconds for probe stimuli preceded by adapting stimuli (i.e. 15 adapting deflections 

plus one probe deflection), and 1.5 seconds for probe stimuli. Stimulus blocks with different 

angular velocities of the probe stimulus were randomized. Each stimulus block was 

presented 100–120 times.

Response analysis

Mean spike count and variance were calculated from the trial-to-trial spike count in the 30 

ms post–stimulus window following each deflection. As further confirmation of recording 

sites, response latencies for cortical and thalamic units were quantified in both the Non–

adapted and Adapted states: Cortical (Non–adapted: 7.6+/−0.23 ms, Adapted: 13.3+/−0.91 

ms), VPm (Non–adapted: 4.8+/−0.15 ms, Adapted: 10.9+/−0.88 ms, mean +/− SEM), 

consistent with cortical layer 4 RSUs and VPm neurons, respectively. Mean population 

spike count was defined as the mean spike count times the number of assumed neurons with 

identical statistics. Adaptation ratio was calculated by dividing the average spike count 

elicited by the last three pulses by the average spike count elicited by the first three pulses. 

The spike count distributions were fit to Gamma distributions (see Supplementary Note 2 

online).
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Ideal Observer – Detection

We first quantified the effects of adaptation on our ability to detect the presence of vibrissa 

deflection in the presence of noise. The noise distribution was evaluated by measuring the 

spontaneous spike count within a random 30 ms window within a 1 second period following 

the probe stimulus for the Adapted state, and within a 1 second period preceding the probe 

stimulus for the Non–adapted state. We utilized the parameterized distributions of the spike 

count for stimulus evoked activity and for non–stimulus evoked spontaneous activity (see 

Supplementary Fig. 3a online), and applied classical signal detection theory21, 22. The 

receiver operating characteristic (ROC) curve expresses the probability of a false alarm 

(incorrectly attributing the activity to signal when it was actually noise) versus the 

probability of a hit (correctly attributing the activity to signal when it was actually signal). 

To summarize the performance, the area under the ROC curve (AUROC) was calculated for 

both Non–adapted and Adapted states.

Ideal Observer – Discrimination

The ideal observer was used to discriminate between 5 different possible stimuli (s1, s2, … 

s5) based on the observed activity. The spike count distribution associated with each 

stimulus intensity was parameterized with a Gamma distribution, with the performance of 

the observer determined by the amount of overlap between the different distributions. We 

consider the ideal observer as a Bayesian decoder utilizing maximum likelihood (ML) 

estimation to assign an observed response to a particular stimulus intensity. The likelihood 

function for a particular stimulus si is denoted p(r∣si), where r is the observed spike count. 

Therefore, p(si∣r) = p(r∣si)*p(si)/p(r). Note that for the case in which the stimuli are 

presented with equal probability, the ideal observer assigns the observation to the 

distribution for which the likelihood function is maximal. The performance matrix is a 5×5 

matrix in which the (i,j) element is the probability of assigning the observed response to 

stimulus sj when the real stimulus is si. The overall performance of the decoder is the sum of 

all diagonal elements of the performance matrix.

After we parameterized the Gamma distributions of neural activity, the theoretical 

performance of the ideal observer using the Bayesian decoding strategy was determined. 

The probability that the Bayesian decoder chooses si when the stimulus presented was 

actually sj is the area of the region of p(r∣sj) in which the p(r∣si) is maximal (Supplementary 

Fig. 4 online). Percent change in discrimination performance was calculated as the change in 

performance from the Non–adapted to Adapted states, divided by the performance in the 

Adapted state.

Simulation

A leaky integrate–and–fire model was used in all simulations. The model neuron had a 

resting potential of Vrest = −70 mV and membrane time constant of 5 ms. When the 

membrane potential reached −55 mV, the model neuron fired an action potential and was 

reset to −65 mV. Upon arrival of a presynaptic spike, an EPSC (0.4 nA, exponentially 

decaying with a time constant of 0.25 ms) was injected into the model neuron, whose 

membrane had a conductance of 2.86 nS (350 MΩ). White synaptic noise (maximum 

amplitude: 0.04 nA) was added to adjust the variance in trial–to–trial spike count while 
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maintaining the same mean spike count, tuned to match our experimental observations. The 

integration window of the model neuron was normally distributed across trials, with a mean 

+/− standard deviation of 12+/−2 ms in the Non–adapted state, and 22+/−2 ms in the 

Adapted state20. Thalamic spikes that arrive later than the integration window were 

discarded. To generate the thalamic input to the integrate–and–fire model of Fig. 6d, all 

thalamic spikes across all experimentally recorded neurons in response to a specific stimulus 

were pooled. For each simulated trial, 10 thalamic responses were randomly selected from 

the pool, and used as input to the model. This was repeated for 3200 trials, to generate an 

amount of simulated data comparable to that of the experimental data (across all cells and 

trials). Note that recent studies have suggested that the number of thalamic inputs to 

recipient cortical layer 4 neurons may be more on the order of 10025. Since we constructed 

the VPm population from randomly selected trials of the recorded VPm inputs, we are 

limited by the number of recorded trials. However, when the analysis was repeated for 20 

and 30 trials, there was no significant change in the results, suggesting that our smaller 

sample captures the essential relationship. Note that all simulations were repeated with a 

quadratic (squaring) nonlinearity in the output of the integrate–and–fire model55, resulting in 

no qualitative difference. Further, simulations were repeated while including a simple model 

of synaptic depression2. Specifically, during the adapted state, we attenuated the EPSC 

caused by the thalamic spike by 40%, but this resulted in qualitatively very similar results to 

those shown here.

Cross–correlation Analysis

A subset of thalamocortical pairs was identified as likely to be monosynaptically connected 

through cross–correlation analysis. Given the low spontaneous firing rates of neurons in 

primary somatosensory cortex, each pair was weakly driven with a 700 μm amplitude 4 Hz 

sinusoidal deflection of the principal whisker24, 25. A thalamocortical pair was identified as 

monosynaptically connected based on a sharp peak in the cross–correlogram at a very short 

(∼2 ms) latency15, 24. Due to the high degree of connectivity between neurons in a VPm 

barreloid and neurons in the corresponding layer 4 barrel25, it is likely that more of the pairs 

were monosynaptically connected than those conservatively reported here. Cross–correlation 

analysis was also used for stimulus–evoked activity to assess the synchrony across 

thalamocortical pairs, and the effects of adaptation on this relationship. The cross–

correlogram was constructed in the same manner as above, and the synchrony was defined 

as the central area under the cross–correlogram within a synchrony window as in 

Temereanca et al.19. The shuffled cross–correlogram was also generated for comparison24 

(Supplementary Fig. 10 online).

Statistical Analysis

Shapiro–Wilk normality test was used to assess the normality of data prior to performing 

statistical tests. If the samples were normally distributed, Student's t–test was used. 

Otherwise, the Mann–Whitney U test was used for unpaired samples, and the Wilcoxon 

signed–rank test was used for paired samples.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Statistical properties of cortical response adapt to vibrissa deflections
a. Single–unit extracellular recordings were made during movement of the identified 

primary vibrissa in the rostral–caudal plane using a computer–controlled piezo–electric 

bending actuator. Shown are example waveforms from recordings in the ventral 

posteromedial nucleus (VPm) thalamus (right) and cortical layer 4 (left). b. In response to a 

12 Hz sequence of punctate vibrissa deflections (15 cycles, 800 deg./sec – see Methods), 

cortical neurons strongly adapt. Shown is the peri–stimulus time histogram (PSTH, 2 ms 

binsize) for a typical cortical regular spiking unit (RSU). c. Top: The mean spike count (in 

30 ms bin following each deflection) across the sample (n=30 cortical RSUs). Inset shows 

Adaptation Ratio, defined as the ratio of the mean spike count in the Adapted to Non–

adapted states (67% for the cortical RSUs). Bottom: The corresponding spike count variance 

(left axis) and fano–factor (variance/mean, right axis), across the cortical sample. d. In 

general, the cortical response was sub–Poisson, with trial–to–trial spike count variance 

significantly less than the mean for high spike counts. Note that each data point represents 

the response in a 30 ms window following the probe stimulus. Dashed line shows 

exponential fit of relationship, as compared to the Poisson case for which the variance 

equals the mean (solid line). Error bars are +/− 1 standard error of the mean (SEM).

Wang et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2011 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Adaptation degrades stimulus detection for ideal observer of cortical activity
a. Observer attributes response to “signal” or “noise”, in the presence (Adapted) and absence 

(Non–adapted) of a preceding adapting stimulus (15 cycles of a 12 Hz sequence of a 

punctate deflection at 800 deg./sec). b. Variations in spike count from trial–to–trial establish 

distributions for the signal and the noise (parametric fits of raw data, Supplementary Note 

2), in both the Non–adapted (top) and Adapted (bottom) states. Above a threshold, the 

observed spike count was attributed to signal and below to noise. The mean spontaneous 

firing rate decreased from 0.68±0.093 Hz in the Non–adapted state to 0.42±0.064 Hz in the 

Adapted state (Mean±SEM, p<0.01, Wilcoxon signed–rank test). c. The area under the 

receiver operating characteristic (ROC) curve was used as a metric for overall performance 

(AUROC), greater for the Non–adapted (dotted) case as compared to the Adapted (solid). d. 
Performance (AUROC) in the detection task in the Non–adapted versus Adapted states 

(n=30 cortical RSUs) for the lowest velocity used for the probe. Dashed is the unity line. e. 
Detection performance was significantly better in the Non–adapted state as compared to 

Adapted (p<0.001, Wilcoxon signed–rank test). Shown are the performance results for the 

entire range of probe velocities. Control is the resultant performance when the spike count 

variance was forced to equal that of the experimentally observed mean spike count in the 

Non–adapted and Adapted states (Supplementary Note 1). Error bars are +/− 1 SEM.
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Figure 3. Adaptation enhances cortical discriminability
a. Observer attributed spike count to one of several possible stimuli, in the presence 

(Adapted) and absence (Non–adapted) of a preceding adapting stimulus. b. Mean sensitivity 

of the cortical response to the deflection velocity in the Non–adapted (dotted) and Adapted 

(solid) states (n=30 cortical RSUs). The velocities to be discriminated between (s1–s5) are 

noted on the horizontal axis. c. Population spike count distributions for a typical cortical 

neuron for the velocities (s1–s5) in the Non–adapted (top) and Adapted (bottom) states. 

Adaptation attenuated the response, but also separated the distributions. Shown in the inset 

is the performance matrix (see Methods). d. The overall discriminability performance was 

quantified as the fraction of correct identifications. The crosses represent cortical neurons 

that were identified as monosynaptic recipients of VPm inputs (Fig. 5). e. Discrimination 

performance was significantly better in the Adapted state as compared to the Non–adapted 

state (n=30 cortical RSUs, p<0.001, Wilcoxon signed–rank test). The first control (Control1) 

is the case where the mean spike count in response to each velocity in the Non–adapted state 

was attenuated by deleting 33% of the spikes to match the observed overall spike count 

reduction with adaptation. The second control (Control2) is the case where the mean and 

variance in the Non–adapted state were scaled down 33% to match the spike count reduction 

caused by the adaptation (Supplementary Note 1). In both control cases, there was no 

difference in performance from the Non–adapted state. Error bars are +/− 1 SEM.
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Figure 4. Cortical performance does not trivially mirror activity of thalamic projections
a. For each cortical recording, a VPm neuron in the homologous barreloid was recorded 

simultaneously. The VPm neurons adapted to the persistent, ongoing periodic vibrissa 

deflection, but exhibited less attenuation in the response (PSTH for a typical example – 1 ms 

bin, mean spike count across the larger sample, n=32 VPm units). The inset shows the 

adaptation ratio for the cortical RSUs (67%) and VPm (80%) neurons, as defined in Fig. 1. 

b. Shown is the discrimination performance in the Non–adapted versus Adapted states for 

the recorded VPm units (n=32). Highlighted with crosses are those that were identified as 

monosynaptically connected to the RSUs highlighted in Fig. 3d. Adaptation did not affect 

the discrimination performance for an ideal observer of VPm spike count (p=0.19, n=32, 

Wilcoxon signed–rank test). c. In contrast to cortex, the VPm curve retained its shape 

following adaptation, resulting in little or no change in overall sensitivity, and thus no 

change in performance. Error bars are +/− 1 SEM.
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Figure 5. Detection/Discrimination performance is maintained in monosynaptically connected 
thalamocortical pairs
a. VPm–CTX pairs were identified as monosynaptically connected based on the presence of 

a statistically significant, short–latency peak in the spike train cross–correlation function for 

weak 4Hz sinusoidal vibrissa stimulation. Shown is an example of the raw (reflected about 

axis) and shuffle–corrected correlograms for a particular VPm–CTX pair, along with the 

corresponding >99% confidence intervals on an uncorrelated process (dotted). The inset 

shows the average shuffle–corrected correlogram for the 8 pairs. b. The results for the larger 

sample (Figs. 3 and 4) held for the smaller, monosynaptically connected sample. c. Percent 

change in discrimination performance from Non–adapted to Adapted states, for each VPm–

CTX pair. Gray lines denote pairs identified as likely to be monosynaptically connected. 

Thick dashed line shows the mean performance change. Error bars are +/− 1 SEM.
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Figure 6. Thalamic population synchrony is modulated by adaptation
a. For VPm pairs recorded simultaneously, the adaptation served to reduce the timing 

precision across neurons, or desynchronize their firing activity (n=19 pairs). Synchrony was 

measured as the central area under the cross–correlogram (+/− 7.5 ms, see Supplementary 

Note 4 and Supplementary Fig. 10 online). Shown also are the measures of synchrony for 

the 5 velocities to be discriminated between, in the Non–adapted (left) and Adapted (right) 

states. Note that although adaptation decreased the synchrony among the VPm neurons, it 

facilitated an increased sensitivity of the thalamic synchrony with differences in deflection 

velocity. The inset shows the spike cross–correlograms in the Non–adapted and Adapted 

states. Note that when the trials were shuffled, the resulting synchrony in response to the 

velocity was unchanged (dotted line, open symbols). b. Synchronous firing across VPm 

pairs as a function of deflection velocity, in both the Non–adapted (dotted, circle) and 

Adapted states (solid, square).
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Figure 7. Thalamocortical network model predictions
a. Thalamic spiking that falls within the cortical integration window is relayed to cortex. In 

the Non–adapted state (left), velocity effects on synchrony of VPm activity are small, and 

signals are strongly relayed to cortex. In the Adapted state (right), the integration window 

widens, and the velocity strongly modulates the VPm synchrony. At lower velocities, VPm 

spiking falls outside the integration window, and fails to relay to cortex. b. The spiking 

activity from a population of VPm neurons was utilized as the input to an integrate–and–fire 

model of the cortical response. Firing of a VPm input generates an excitatory post–synaptic 

current (EPSC), the sum of which is integrated in the model to affect the cortical membrane 

potential. Upon crossing a threshold, the model cortical cell fires a spike, then resets. c. 
Velocity sensitivity curves for the simulated cortical response in the Non–adapted (dashed) 

and Adapted (solid) states, both normalized to their peak spike count. d. The change in 

thalamic synchrony with adaptation served to increase performance in discriminating 

between different velocities based on cortical spike count response. The control (Control) 

shows the case where the adaptation produced changes in the VPm spike count, as observed, 

but the degree of synchrony was maintained in the Non–adapted state, resulting in a loss in 

performance in the Adapted state. Error bars are +/− 1 SEM.
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