
TECHNOLOGY REPORT
published: 21 November 2016
doi: 10.3389/fneur.2016.00197

Edited by:
Xiaogang Hu,

University of North Carolina at
Chapel Hill, USA

Reviewed by:
Muhib Khan,

Michigan State University, USA
Francesco Negro,

University of Göttingen, Germany

*Correspondence:
Xu Zhang

xuzhang90@ustc.edu.cn

Specialty section:
This article was submitted to

Stroke, a section of the journal
Frontiers in Neurology

Received: 08 August 2016
Accepted: 25 October 2016

Published: 21 November 2016

Citation:
Wang D, Zhang X, Gao X, Chen X and

Zhou P (2016) Wavelet
Packet Feature Assessment for

High-Density Myoelectric Pattern
Recognition and Channel Selection

toward Stroke Rehabilitation.
Front. Neurol. 7:197.

doi: 10.3389/fneur.2016.00197

Wavelet Packet Feature Assessment
for High-Density Myoelectric Pattern
Recognition and Channel Selection
toward Stroke Rehabilitation
Dongqing Wang1, Xu Zhang1*, Xiaoping Gao2, Xiang Chen1 and Ping Zhou3,4,5

1Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China,
2Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China, 3Department of
Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA, 4TIRR
Memorial Hermann Research Center, Houston, TX, USA, 5Guangdong Work Injury Rehabilitation Center, Guangzhou, China

This study presents wavelet packet feature assessment of neural control information in
paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking
advantage of high-resolution time–frequency representations of surface electromyogram
(EMG) signals. On this basis, a novel channel selection method was developed by
combining the Fisher’s class separability index and the sequential feedforward selection
analyses, in order to determine a small number of appropriate EMG channels from
original high-density EMG electrode array. The advantages of the wavelet packet features
and the channel selection analyses were further illustrated by comparing with previous
conventional approaches, in terms of classification performance when identifying 20
functional arm/hand movements implemented by 12 stroke survivors. This study offers
a practical approach including paretic EMG feature extraction and channel selection
that enables active myoelectric control of multiple degrees of freedom with paretic
muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke
rehabilitation.

Keywords: myoelectric control, pattern recognition, wavelet packet transform, channel selection, stroke
rehabilitation

INTRODUCTION

Restoration of upper limb function is an important but challenging task in stroke rehabilitation due
to arm/hand dexterity (which is critical for daily activities). A number of upper limb robotic devices
have been designed to assist rehabilitation training for promoting upper limb motor recovery (1, 2)
among which some recently emerging ones involve different human–machine interfaces enabling
active response to user’s intention. Compared with passive training, such an active control approach
has proven to be more effective for motor function improvement (3, 4).

Electromyogram (EMG) is one of the most commonly used control signals for artificial limbs,
rehabilitation robots, and other assistive devices (5–7). Most development in myoelectric control is
primarily based on a simple control strategy that the EMG of a single muscle is mapped to a single
degree of freedom (DOF). Considering the complexity of upper limb functional movements per-
formed bymultiplemuscles, it is unfeasible to controlmultiple DOFs through such a straightforward
mapping (8). Because of this, myoelectric pattern recognition has been developed for controlling of
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multiple DOFs (8–10). So far, the myoelectric pattern recogni-
tion control strategy has been primarily focused on improving
dexterity of prosthesis control for amputee users, whereas its
application for neurological injury patients has not been fully
explored (5). Only very recently, myoelectric pattern recognition
was first reported to detect movement intention of affected limb
after stroke (8). A more comprehensive assessment of neural
control information from paretic muscles of stroke subjects was
further performed using high-density surface EMG recording and
pattern recognition techniques (4).

While high-density surface EMG pattern recognition has
revealed substantial neural control information that can be
extracted from neurologically impaired muscles, there are a num-
ber of issues to be considered for developing a myoelectric control
system. These include assessment of different EMG features, selec-
tion of a practical number of appropriate EMGchannels (myoelec-
tric control sites), and user-specific design according to individual
need and performance. A variety of features describing surface
EMG signals in different (time, frequency, time–frequency, etc.)
domains have been used for myoelectric pattern recognition anal-
ysis, but primarily aimed at prosthetic control (9–12). So far
for patients with neurological injuries, the myoelectric pattern
recognition analysis has been limited to using conventional time-
domain (TD) feature set [four time domain statistics proposed by
Hudgins et al. (9) and auto-regressive (AR)+ root mean square
(RMS) feature set (a combination of AR coefficients and RMS
amplitude) (5)]. Assessment of EMG features for neurological
injury patientsmight be promising to improvemyoelectric pattern
recognition performance, particularly given the neurologic injury
induced muscle impairments (such as weakness, spasticity, and
abnormal coactivation) (13).

Time–frequency analysis has been developed as a useful
tool for processing non-stationary biosignals (such as EMG).
Time–frequency representations of surface EMG such as using
wavelet packet transform (WPT) can also be applied in myoelec-
tric pattern recognition, as demonstrated in amputees or able-
bodied subjects (10, 14, 15). In the current study, the utility
of applying WPT to stroke subjects was examined. The WPT
is able to generate a redundant set of subspaces arranged in a
binary tree structure with any designed depth/resolution, where
the input signal can be accordingly decomposed. Performing
wavelet packet analysis of surface EMG recordings from paretic
muscles has several advantages. For example, its high resolution
in both time and frequency domains makes it feasible to pro-
duce a sufficient number of features, from which those highly
associated with different movement intentions of the affected
limb (i.e., discriminable features) can be easily selected via a
best basis selection approach to maximize the pattern sepa-
rability (15, 16). Moreover, such a feature selection approach
can be expanded for selecting surface EMG channels (myoelec-
tric control sites) from the high-density surface EMG record-
ings (by adopting the same discriminant measure). The advan-
tages of the WPT analysis for myoelectric pattern recognition
and channel selection were demonstrated for stroke patients.
These findings provide useful information for developing a pat-
tern recognition-based myoelectric control system for stroke
rehabilitation.

METHODS

Dataset Description
The dataset used in this study was selected from a database previ-
ously reported in Zhang and Zhou (4), which was approved by the
Institute Review Board of Northwestern University (Chicago, IL,
USA). This database included high-density surface EMG record-
ings from 12 chronic stroke subjects with hemiparesis during
their performance of different functional movements involving
the affected upper limb, notably the affected hand. The detailed
demographic information and clinical assessment for the stroke
subjects can be found in Ref. (4). All subjects gave their informed
consent before the experiment. Table 1 displays demographics
and clinical information of all stroke subjects in detail.

During the experiment, each subject was instructed to perform
20 functional movements using the affected upper limb, namely,
wrist flexion/extension, wrist supination/pronation, elbow
flexion/extension, hand open/close, thumb flexion/extension,
index finger flexion/extension, finger 3–5 flexion/extension,
fine pinch, lateral pinch, tip pinch, gun posture, and ulnar wrist
down/up. A video demonstration of each movement was used as
a guide for subjects to follow and perform the movement. The
experiment protocol comprised of 20 trials, each trial consisting
of 5 repetitions of the same movement. For each repetition, the
subject was asked to hold the muscle contraction for roughly 3 s
and then relaxed for a rest period of 5–20 s.

The high-density surface EMG signals in the original database
were recorded via 89 monopolar surface electrodes placed on the
affected upper arm, forearm, and hand muscles. A Refa EMG
recording system (TMS International BV, Netherlands) with a
band-pass filter between 20 and 500Hz was used for multi-
channel EMG recording at a sampling rate of 2 kHz per chan-
nel. Due to improved myoelectric classification performance and
more clinical relevance compared with monopolar configuration,
46-channel bipolar surface EMG data were produced from the
original 89-channel EMG recordings. The detailed information
about the electrode formation and single spatial differential fil-
ter is shown in Figure 1. Besides, 10 bipolar channels, namely,
the channel 9, 13, 17, 19–21, 23, and 41–43 were selected from

TABLE 1 | Subject demographics and clinical information.

Subject # Age Sex Duration Paretic FMUE C–M hand

1 59 F 13 L 28 2
2 56 M 23 L 15 2
3 67 M 8 L 20 4
4 63 F 7 R 19 2
5 45 M 6 L 58 5
6 58 F 2 R 23 2
7 64 M 8 L 38 2
8 61 M 7 R 56 4
9 65 M 15 L 20 2
10 46 M 13 L 52 3
11 81 M 17 L 28 2
12 71 F 22 R 22 3

Duration, years post stroke; paretic, the side of hemiparesis; FMUE, the Fugl-Meyer
assessment scale of the paretic upper-extremity (total score: 66); C–M hand, the hand
impairment part of the Chedoke–McMaster stroke assessment scale (from 1 to 7).
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FIGURE 1 | Illustration of the electrode placement for 46-channel bipolar sEMG signal recordings derived from 89-channel monopolar sEMG
database. The 10 electrode channels marked in a black/darker color are included in an empirically defined channel set.

the 46 channels to form a channel set. The selection of such
a channel set was in accordance with electrode sites frequently
used inmany previously reportedmyoelectric control systems (8).
These channels were regarded to target at primary muscles with
high relevance to functional movements of the upper limb, as
marked in a black/darker color in Figure 1. In this study, such an
empirically defined channel set was compared with all 46 high-
density channels or a number of optimally selected channels in
terms of myoelectric control performance.

For the recorded signals, the onset and offset of a voluntary
EMG activity segment corresponding to each repetition of muscle
contractionwere determined first as described inRef. (4). For each
repetition of muscle contraction, the EMG activity segment in a
form of multiple channels was further segmented into a series of
overlapping analysis windows with a window length of 256ms

and an overlapping rate of 75% for two consecutive windows.
Consequently, the following feature extraction and classification
procedures were performed on these analysis windows.

Feature Extraction Using WPT
The WPT was a generalized version of classical wavelet decompo-
sition method that offers a multi-resolution and time–frequency
analysis of non-stationary, such as biomedical signals (17, 18).
Define the original signal space as Ω0,0. The WPT is able to split
the signal into an approximation (in subspace Ω1,0) and a detail (in
subspace Ω1,1). Each approximation or detail obtained from the
top-level, supposed in the subspace Ωj ,k, can be further split into
a new approximation and a new detail, located in two orthogonal
subspaces Ωj+1,2k and Ωj+1,2k+1, respectively. This process can be
iteratively performed to a targeted depth J. Here, j is a scale index
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ranging from 0 to J, and k represents subband index within the
scale, ranging from 0 to 2j − 1. Consequently, the WPT generates
a binary tree structure of subspaces spanned by a set of bases, to
which a signal can be mapped for multi-resolution analysis. Such
a characteristic allows WPT to be successfully applied to feature
extraction in the fields of pattern recognition (14, 15, 18).

In this study, the WPT with the five-order symmlet wavelet
was first applied to each channel of an analysis window for
feature extraction. The five-order symmlet wavelet was selected
from many mother wavelet functions frequently used in previous
reports (10, 14, 15) and was further determined by some pretests
in terms of classification performance. The WPT depth is also an
important factor forWPT analysis. It is acknowledged that a small
depth cannot yield sufficient resolution for extracting effective
features, whereas a large depth leads tomuchmore computational
complexity. By considering this trade-off, the WPT depth of 3
or 4 has been recommended by previous studies (15, 19). The
WPT depth of 4 was chosen in this study after some pretests, thus
producing 30 subspaces in total. After the WPT, the energy values
of all 30 subspaces were calculated as potential features (refer to
feature selection approach in the following section), where the
energy of each subspace was defined as a logarithmic value of
the summation of the squares of all wavelet packet coefficients in
the subspace. The logarithmic transform was chosen for showing
better performance of classification after some tests.

Feature Selection Using Best Basis
Selection
The WPT binary tree yielded a redundant set of subspaces due
to the subspace overlap in frequency axis. Afterward, the features
extracted from all subspaces were regarded to carry redundant
information. A great number of redundant features were likely
to impose high computational cost and compromise classifica-
tion performance. For application of the WPT analysis to feature
extraction or pattern recognition, a best basis is usually chosen to
maximize the class separability in terms of a proper discriminant
measure. To achieve this goal, a feature selection procedure relying
on a best basis selection algorithm is necessary. In this study, the
algorithm was designed to choose the best set of subspaces from
the WPT binary tree, since each subspace produced a potential
feature. To determine the best subspace, Fisher’s class separa-
bility index (FCSI) described in Ref. (20) was employed as the
discriminant measure, which is introduced below.

Suppose that
{
x(c)
i,(j,k)

}Nc

i=1
represents a set of energy features

extracted from the subspace Ωj ,k of the training signals belonging
to class c (1≤ c≤C, here C= 20), where Nc is the number of
samples (i.e., analysis windows) in class c.

For each subspace, the mean and variance of these features
grouped by class can be calculated as

m(c)
j,k =

1
Nc

∑Nc

i=1

{
x(c)
i,(j,k)

}Nc

i=1
, (1)

var
1≤i≤Nc

(
x(c)i,(j,k)

)
=

1
Nc

∑Nc

i=1

(
x(c)i,(j,k) − m(c)

j,k

)2
. (2)

Here, the operator vari(·) is defined to calculate the variance of
a set of constant variables indexed by i. Thus, the FCSI, for the

subspace Ωj ,k, is finally defined as

FCSI =
∑K−1

p=1

∑K

q=p+1

∣∣∣m(p)
j,k − m(q)

j,k

∣∣∣2
var

1≤i≤Np

(
x(p)i,(j,k)

)
+ var

1≤i≤Nq

(
x(q)i,(j,k)

) .

(3)
where p and q represent the indices of two different classes.
Generally, a higher value of FCSI indicates higher degree of class
separability. The best basis selection algorithm using FCSI is able
to rank the features and make it practical to choose a subset of
these regarded as being most discriminant.

In this study, feature selection approachwas independently per-
formed on each channel. Many previous studies regarding wavelet
packet features also took the same procedure (10, 21, 22). For
each channel, the number of selected subspaces/features needed
to be carefully determined. It should be acknowledged that inad-
equate number of features may not guarantee the classification
performance, whereas too many features lead to much computa-
tional cost. Considering such a trade-off, we set the number of
subspaces/features per channel to 12 after performing sensitivity
analysis (in terms of classification accuracy) by varying the feature
number per channel from 1 to 25. Finally, the features from all
channels were further concatenated as a high-dimensional feature
vector for each analysis window.

Feature Dimensionality Reduction
and Classification
Even with the above feature selection procedure, the high-density
surface EMG recordings still resulted in very high-dimensional
feature vectors (i.e., 552-dimensional feature vectors with 12 best
bases for each of 46 channels). In this case, feature dimensionality
reduction is required to ensure the generalization capability of
a classifier (23). In this study, uncorrelated linear discriminant
analysis (ULDA) was used to reduce the feature dimension, which
minimizes within-class distance and maximize between-class dis-
tance by an optimal transformation (24).

After the feature dimensionality reduction, linear discriminant
classifier (LDC) was employed in this study. The LDC is able to
model the within-class density of each class as a multi-variant
Gaussian distribution and gives decisions of unknown samples
by using the maximum a posteriori probability (MAP) rule and
Bayesian principles (9, 25). The LDC was used due to its ease of
implementation and efficient classification performance (4, 8).

In this study, the pattern classification was conducted in a
user-specific manner, where both training dataset and testing
dataset were derived from the same stroke subject. A fivefold
cross-validation was conducted to evaluate the classification per-
formance. This indicated that the EMG data from any four repeti-
tions of muscle contraction were selected and assigned as training
dataset, while the EMG data from the remaining repetition were
used to form the testing dataset. The classification performance
for each subject was evaluated as classification accuracy, which
was calculated as the percentage of correctly classified windows
over all the testing windows including all movement patterns over
testing dataset. These window numbers were summed up over all
fivefold tests for each subject.
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For the performance comparison, the routine TD feature set
including four statistics of the surface EMG signals, namely, mean
absolute value (MAV), the number of zero crossing (ZC), the
slope sign change (SSC), and the waveform length (WL), was
also employed during the tests. The TD feature set was used in
a similar way as previous studies that all TD features from all the
considered channels were concatenated to form a feature vector
for each analysis window. The same feature dimension reduction
approach using ULDA was applied as well before LDC classifier
implementation.

Channel Selection
The use of FCSI for quantifying the discriminating power of fea-
tures was further extended to channel selection from high-density
surface EMGrecordings. After the feature extraction and selection
methods introduced above, a subset of features was determined
for each channel and used to form a vector representing the most
discriminable information from that channel. In order to perform
channel selection, it was necessary to assess the discriminating
power of feature vectors rather than scalars. Thus, the FCSI was
accordingly modified as follows.

Here, let
{
x(c)i,l

}Nc

i=1
be a set of feature vectors extracted from

the l-th channel of the training data belonging to class c. The
mean of these feature vectors, originally defined in Eq. 1, needs to
be modified, and their variance, namely var

1≤i≤Nc

(
x(c)i,l

)
, is further

defined to be the summation of all variances calculated along any
single dimension of the vector, as depicted in Eqs 4 and 5.

m(c)
l =

1
Nc

∑Nc

i=1
x(c)i,l , (4)

var
1≤i≤Nc

(
x(c)i,l

)
= var

1≤i≤Nc

(
x1(c)

i,l

)
+ var

1≤i≤Nc

(
x2(c)

i,l

)
+ · · · + var

1≤i≤Nc

(
xd(c)

i,l

)
, (5)

where x= [x1, x2, . . ., xd]T denotes a d-dimensional vector. Thus,
the FCSI, for the l-th channel, can be finally computed via

FCSI =
∑K−1

p=1

∑K

q=p+1

∣∣∣m(p)
l − m(q)

l

∣∣∣2
var

1≤i≤Np

(
x(p)i,l

)
+ var

1≤i≤Nq

(
x(q)i,l

) , (6)

where p and q represent the indices of two different classes
again. Similarly, a higher FCSI value indicates a higher degree
of class separability for a certain channel. Following the strategy
of feature selection using FCSI, a subset of optimal channels can
be selected by ranking the channels using FCSI. This channel
selection approach was termed as FCSI method in this study.

Channel selection has also been conducted in previous studies
(25, 26) to assess themyoelectric pattern recognition performance
using a reduced number of EMG channels selected from high-
density signal recordings. A straightforward algorithm, termed
as sequential feedforward selection (SFS), was often used, which
iteratively adds the most informative channels in terms of clas-
sification accuracy. In the first iteration of this algorithm, each
of all candidate channels is independently used and the channel

producing the highest classification accuracy was selected to be
the first optimal channel. During the next iteration, the previously
selected channels were combined with each of the other channels
to form a new subset sequentially, and the subset producing the
highest classification accuracy was determined. This procedure
can be iteratively performed when meeting a desired number of
selected EMG channels. Note that the SFS directly uses the classi-
fication accuracy as the criterion, which conventionally requires
classifier training and testing procedures in each iteration. Thus,
the channels selected by the SFS algorithm are more likely to be
overfitted to the testing data with limited generalization ability. In
order to avoid such overestimated performance in some degree,
the SFS algorithm used in this study was performed only on
the training dataset. This required the original training dataset
consisting of four repetitions of muscle contraction to be further
divided into two parts, one consisting of three repetitions for SFS
training and the other consisting of the remaining repetition for
SFS testing. To evaluate the classification performance with the
channels selected by the SFS algorithm, a classifier was imple-
mented with all the four repetitions (used for SFS) as training
dataset and the remaining fifth repetition (which was not used for
SFS) as testing dataset.

The channel selection using FCSI is able to independently
choose a subset of best channels in any size m. It should be
acknowledged that the m best channels may not be the best m
channels. By contrast, the standard SFS algorithmoffers a practical
way of selecting a subset of appropriate channels by taking the
effect of channel combination into account, but it conventionally
suffers from the overfitting problem. By taking advantage of both
methods to overcome its owndrawbacks, a novel channel selection
method named FCSI+ SFS was proposed in this study. For clarity,
the FCSI+ SFS algorithm can be briefly described as follows:

(a) Initialize a candidate channel set Φ = {l|l= 1, 2, . . ., L} and
a selected channel set ψ = empty, where L denotes the total
channel number.

(b) For any channel l in Φ, calculate its FCSI value via Eqs 4–6.
(c) Choose the channel lm that yields the highest FCSI value

among channels in Φ and then move the channel lm from Φ
to ψ.

(d) For any remaining channel l in Φ, combine the channel l with
all channels in ψ and calculate the FSCI value of their combi-
nation via Eqs 4–6. Note that in this case, the feature vector x
is formed by concatenating features from all combined chan-
nels. If applicable, the high dimensionality of these feature
vectors was reduced by ULDA prior to the FSCI evaluation.

(e) Choose the channel lm that yields the highest FCSI value,
when it is combined with all channels in ψ, and then move
the channel lm from Φ to ψ.

(f) Repeat the steps (d) and (e), until the size of the selected
channel set ψ reaches into a preset number.

Consequently, the performance of the proposed FCSI and
FCSI+ SFS algorithms was examined and compared with solely
using the SFS algorithm for channel selection. To ensure a fair
comparison, all the three algorithms selected their respective
desired channels using the training dataset (i.e., four repetitions),
while the classification performance of the selected channels was
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evaluated using the fifth one (not involved in channel selection
process) as testing dataset for the classifier.

RESULTS

Feature Selection and Classification
An example of the effectiveness of FCSI for quantifying the
discriminating power of features is shown in Figure 2, where
the distribution of features for three representative classes were
demonstrated in three scatter plots: (a) with the lowest FCSI
values, (b) with the highest FCSI values, and (c) from three TD
parameters (WL, ZC, and SSC). From the visual inspection, it
can be found that the features determined by three highest FCSI
values reflect good class separability in the figure, whereas such
separability was not observed for features with lowest FCSI values
or three TD features.

Following the wavelet packet feature extraction and selection
using FCSI, along with LDC classification, pattern recognition
analysis was implemented in a user-specific manner for all 12
stroke subjects. Table 2 summarizes the classification perfor-
mance in terms of overall accuracy for identifying 20 intended
upper limb movement, when both the WPT-based method and
TD feature extraction method were applied to the EMG data
consisting of 46 high-density channels or 10 predefined channels,
respectively. A two-way repeated-measure ANOVA was applied
on the classification accuracies, with the channel number (high-
density 46 and 10) and feature set (WPT and TD) both considered
as within-subject factors, in order to examine their effect. It can be
unsurprisingly observed that high classification accuracies above
95% were achieved for almost all subjects when the 46 high-
density channels were totally used, regardless of the feature extrac-
tionmethods. By contrast, the use of predefined 10 channels led to
a performance compromise with an averaged accuracy of 91.15%
for the TD features and 92.91% for the WPT features, respectively.
An overall significant effect of both channel number (F= 14.597,
p= 0.003) and feature set (F= 10.031, p= 0.009) on classification
accuracy was revealed by the ANOVA. In this case, the WPT-
based feature extraction approach showed superior performance

to the routine TD feature extractionmethod by about 2% accuracy
improvement with statistical significance.

Channel Selection
The performance of the proposed method for selecting an appro-
priate subset of channels was further examined. Admittedly, the
performance of myoelectric pattern recognition is sensitive to
both the channel number and the number of extracted features
per channel. By changing both factors, their effect on the classifi-
cation performance was simultaneously examined using the FCSI
algorithm. Figure 3 shows a representative example from Subject
2 illustrating how the classification performance (as described
by error rate) changes in the extracted/selected feature number
per channel varying from 1 to 25 and the channel number vary-
ing from 1 to 20. It can be observed that very low (approxi-
mately 1 or 2) feature number per channel or channel number

TABLE 2 | Classification accuracy (unit: %) in stroke subjects when both
TD and WPT features were extracted from the EMG data of 46 high-density
channels and 10 predefined channels, respectively.

Subject # 46 high-density
channels

10 predefined
channels

TD WPT TD WPT

1 94.36 98.74 82.89 86.57
2 91.15 95.75 80.61 82.46
3 94.07 98.56 93.47 89.34
4 87.36 98.00 82.93 87.69
5 96.81 94.22 96.73 98.49
6 95.02 98.61 86.56 86.65
7 99.65 100.0 94.67 96.56
8 99.58 100.0 96.39 99.47
9 93.63 98.96 95.94 94.90
10 97.84 99.78 86.80 96.26
11 99.32 99.78 98.60 97.95
12 100.0 100.0 98.20 98.60
Average 95.73±3.90 98.53±1.82 91.15±6.68 92.92±5.95

TD, the time domain feature set; WPT, the proposed feature set using wavelet packet
transform.

FIGURE 2 | Illustration of the effect of FCSI values on feature separability. Three upper limb movements (wrist flexion, wrist supination, and fine pinch) in the
18-th channel from Subject 3 are used as an example to produce the scatter plots. The three-dimensional coordinate axes stand for feature values. (A) Three
features with the lowest FCSI values; (B) three features with the highest FCSI values; and (C) three TD features (WL, ZC, and SSC) used for comparison.
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FIGURE 3 | Effect of number of optimal wavelet basis on the channel selection performance from Subject 2. The three-dimensional x, y, and z coordinate
axes stand for number of channels, number of features, and error classification rates evaluated by LDC classifier. The number of optimal wavelet basis can be
determined based on features first reaching the minimum error rate and the trade-off of computational cost and classification performance.

could not produce high classification performance (low error
rate) and the increase of channel number played a critical role in
performance improvement. Similar findingswere observed for the
other subjects. Considering the trade-off between classification
performance and practicability (i.e., low computational cost and
reduced number of channels), the feature number was set to be 12,
producing an error rate of 1.22% for Subject 2 when the channel
number was reduced to 7. This confirmed our setting of feature
number per channel to 12 in both previous and following data
analyses.

After the feature number per channel was appropriately deter-
mined, the performance of three channel selection algorithms was
evaluated. Figure 4 reports the classification accuracies averaged
across 12 stroke subjects, when the EMG channels were pro-
gressively selected using FCSI, SFS, and FCSI+ SFS, respectively.
When applying WPT and TD feature extraction methods on
10 predefined channels, in addition, the achieved classification
accuracies are indicated as two horizontal dashed lines in Figure 4
for comparison purpose. It can be found that each of the three
algorithms yielded a similar increasing trend of classification
accuracy when the channel number increased. The classification
accuracy increased rapidly to approximately or over 90% at chan-
nel number ranging from 1 to 10 and then remained almost steady
or slightly increased with further channel number increasing. The
proposed FCSI+ SFS method demonstrated its superior perfor-
mance to the other two with highest average accuracies. Specifi-
cally, by using 10 optimally selected channels as compared with
the 10 predefined channels, improved classification performance
was obtained. Meanwhile, the use of only 5 channels optimally
selected by either FCSI+ SFS or SFS algorithm was found to
produce classification performance comparable to that of using
10 predefined channels. Furthermore, a series of bivariate Pear-
son’s correlation analyses were conducted to further examine the

effect of subjects’ clinical information (including years post stroke,
FMUE, and C–M hand scores) on the classification accuracies
derived from the use of any channel number (high-density 46,
predefined 10, or optimally selected 10 channels by FCSI_SFS or
SFS) along with any feature set (WPT or TD), respectively. No
significant correlationwas foundbetween any clinical information
and the classification accuracy (p> 0.058) except the correlation
between the FMUE score and the classification performance with
WPT feature extracted from 10 predefined channels (correlation
coefficient R= 0.651, p= 0.022).

Table 3 shows the first 10 selected channels for each subject
using the 3 methods. It was found, as would be expected, that
the selected channels were different across subjects even using the
same method. For each subject, the selected channels also varied
when three methods were performed, respectively. However, for
each subject, several channels (marked in bold numbers, though,
with varying order of selection)were commonly selected using any
of the three algorithms.

DISCUSSION

Myoelectric pattern recognition has great potential for imple-
menting interactive control of assistive robotic devices, which is
of particular importance for restoration of dexterous arm/hand
functions. Previous high-density surface EMG pattern recog-
nition analysis using conventional TD or AR+RMS features
has revealed that substantial neural control information can be
readily extracted from paretic muscles of stroke patients. In the
current study, a feature extraction method based on WPT was re-
examined and applied to high-density surface EMG signals from
stroke subjects for improvedmyoelectric pattern-recognition per-
formance. Taking advantage of the classic wavelet packet fea-
ture extraction and selection approach, a novel channel selection
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FIGURE 4 | The classification performance as a function of number of channels selected via the FCSI, SFS, and FCSI+SFS methods, respectively. For
each subject, the classification accuracies were derived from the testing dataset. The classification accuracies from all 12 subjects were averaged and plotted with
SD error bars. The classification accuracies derived from applying both WPT and TD features to 10 predefined channels are indicated as two horizontal dashed lines.

TABLE 3 | List of the first 10 selected channels for all 12 stroke subjects using 3 channel selection methods, respectively.

Subject # FCSI +SFS SFS FCSI

Channel combination Channel combination Channel combination

1 (46, 6, 7, 29, 40, 5, 26, 27, 20, 44) (6, 46, 2, 27, 3, 17, 36, 29, 26, 7) (19, 11, 3, 46, 43, 20, 2, 12, 7, 21)
2 (10, 17, 44, 1, 6, 13, 34, 36, 24, 8) (4, 25, 44, 5, 6, 10, 31, 17, 7, 27) (2, 44, 13, 17, 25, 10, 1, 5, 38, 16)
3 (22, 38, 45, 12, 18, 43, 44, 31, 2, 25) (18, 30, 45, 5, 43, 25, 26, 29, 27, 1) (45, 30, 42, 31, 41, 1, 38, 8, 23, 22)
4 (30, 42, 46, 22, 12, 32, 4, 25, 35, 21) (4, 45, 5, 35, 39, 22, 19, 6, 26, 20) (33, 32, 28, 25, 20, 17, 19, 12, 4, 40)
5 (37, 42, 17, 21, 44, 24, 34, 27, 46, 9) (24, 37, 43, 27, 31, 35, 18, 10, 32, 4) (42, 45, 37, 3, 38, 4, 9, 44, 41, 27)
6 (46, 24, 37, 40, 5, 34, 30, 6, 42, 43) (46, 30, 18, 40, 32, 20, 24, 17, 34, 16) (41, 44, 43, 46, 27, 5, 28, 13, 38, 18)
7 (37, 43, 46, 31, 41, 17, 22, 24, 13, 19) (37, 23, 17, 34, 27, 30, 35, 39, 15, 26) (1, 13, 16, 9, 10, 5, 8, 14, 6, 27)
8 (4, 43, 41, 38, 17, 11, 5, 32, 23, 3) (17, 19, 23, 29, 26, 13, 39, 8, 11, 6) (5, 4, 13, 22, 12, 3, 2, 11, 8, 25)
9 (21, 38, 22, 44, 24, 37, 9, 29, 42, 17) (37, 22, 20, 41, 10, 44, 35, 21, 12, 23) (44, 22, 17, 4, 2, 26, 10, 40, 32, 7)
10 (10, 31, 33, 45, 16, 30, 26, 44, 11, 38) (30, 18, 15, 28, 25, 23, 33, 34, 26, 38) (10, 16, 8, 9, 1, 33, 7, 15, 32, 2)
11 (31, 17, 40, 30, 28, 45, 42, 43, 24, 23) (31, 25, 13, 36, 4, 16, 18, 5, 21, 17) (42, 45, 46, 43, 25, 37, 23, 39, 31, 17)
12 (24, 21, 5, 16, 43, 44, 12, 17, 32, 38) (24, 5, 37, 27, 9, 1, 35, 3, 7, 6) (32, 43, 44, 25, 41, 37, 24, 4, 2, 12)

The bold numbers represent commonly selected channels using any of the three methods for each subject.

methodwas furthermore developed to determine a practical num-
ber of appropriate EMG channels for maintaining high classifica-
tion accuracies, an issue particularly important for implementing
a practical myoelectric control system.

The FCSI was used in this study to quantify the discriminating
power of each feature or wavelet packet basis/subspace where
the feature was derived. There have been different algorithms
or criteria for determining the best basis or subspace in WPT
analysis (15, 20). For pattern recognition analysis, the adopted
criterion is preferably associated with class separability. The FCSI
is such a criterion that is able to measure the class separability of
a feature or feature vector, more specifically, in almost the same
way as the LDC classifier does. The FCSI was used to determine

the most discriminating features from those produced by WPT
analysis in various time–frequency scales. Due to the advantages
of time–frequency resolution provided by the WPT as well as the
FCSI analysis, the wavelet packet feature extraction and selection
approaches demonstrated improved performance, as compared
with the previously used conventional time domain or frequency
domain feature sets, especially for subjects with relatively high
levels of impairments. For example, 5 of 12 stroke subjects (i.e.,
Subjects 1, 2, 3, 4, and 9) produced relatively low classification
accuracies below 95.0%, respectively, when the TD feature set was
applied, whereas improved accuracies above 95% (Table 2) were
achieved for these subjects using the wavelet packet features. It is
worth noting that the TD and AR features were often employed
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for myoelectric pattern recognition for amputee subjects toward
prosthesis control, which can achieve comparable performance
to more complicated features including wavelet packet features
(8, 9, 25). In contrast, the advantages of wavelet packet feature
extraction and selection appeared more evident in processing
stroke data, presumably due to the fact that the residual mus-
cles of an amputee subject are neurologically intact, whereas the
paretic muscles of stroke subjects usually suffer from different
symptoms such as weakness, spasticity, etc. Due to the fact that
neural control information delivery is hampered by injuries to
neuromuscular pathways after stroke, more complicated features
(e.g.,WPT features) are likely to emerge their advantage in charac-
terizing such paretic EMG signals, whichwas demonstrated in this
study.

The FCSI used for WPT feature selection was further extended
for channel selection, in combination with the SFS method. The
combined FCSI+ SFS method demonstrated superior perfor-
mance for channel selection in terms of classification performance
than solely using the SFS or the FCSI method. Using the FCSI
rather than the direct classification accuracy in combination with
the SFS algorithm avoids repeated training and testing of a classi-
fier (required for each iteration). Furthermore, in this study, the
channel selection procedure and the performance testing proce-
dure were not based on the same datasets in order to overcome
the overfitting problem. Besides, when the same number (e.g.,
10) of channels were employed, the channels selected via an
optimal algorithm (e.g., FCSI+ SFS) yielded higher classification
accuracies across all 12 stroke subjects than those predefined elec-
trode sites. In addition, with the WPT feature set, the correlation
analyses revealed dependence of the classification performance
on the FMUE score with statistical significance (p= 0.021) when
a set of predefined 10 channels were used. Such dependence
disappeared when high-density 46 channels or optimally selected
10 channels were adopted (p> 0.021), indicating that those sub-
jects with relatively high levels of impairments (i.e., low clinical
assessment scores) had substantial improvement of classification
performance. The channel selection analysis not only confirms
previous findings in Ref. (4, 27) that it is feasible to use a small
number of EMG channels (rather than a high-density electrode
array) for decoding sufficient neural control information from
paretic muscles but also indicates the necessity of determining
appropriate control site locations (rather than predefined chan-
nels) for improved classification performance. Therefore, effective
algorithms, such as the FCSI+ SFS, reported in this study are
of critical demand for developing a practical myoelectric control
system, particularly for stroke users.

When examining the selected channel index, it was found that
the selected channels were different among 12 stroke subjects
even using the same channel selection method, primarily due to
individual subject difference following stroke (such as impair-
ment nature and level, recovery status, daily activity, etc.). It
confirms our previous suggestion (4) that the myoelectric pattern
recognition should be designed or conducted in a user-specific
manner. The designed system may include appropriate EMG
features and channels (e.g., electrode number, location, configu-
ration, etc.) that maximize the classification accuracy to enhance
its usability for stroke subjects with any impairment level, while

its suitability for real time application (such as computational
cost, adaptability to slight electrode movement, etc.) should also
be considered. We acknowledge that the examined WPT-based
feature extraction and selection approach may induce relatively
higher computational complexity than using conventional TD
feature set. Even so, the WPT method is still very practical for
real-time implementation demonstrated by an enormous number
of previous studies (10, 14, 28). Also, the choice of the target
movements or controlled function should consider subject need
and classification performance. Although high-density surface
EMG recording contains much redundant information for myo-
electric pattern recognition analysis, it provides a very useful and
essential way to optimize the myoelectic control system designed
for individual stroke patients. In this regard, the high-density
sEMG recording, along with effective channel selection, can be
designed as a necessary calibration procedure. Such a procedure
is recommended to be conducted just once, rather than regu-
larly, during the prescription of the myoelectrically controlled
robotic training for stroke patients with different impairment
levels.

CONCLUSION

In this study, a feature extraction method based on WPT was
applied to myoelectric pattern recognition analysis in stroke
survivors. By processing high-density surface EMG recordings
from paretic muscles of 12 stroke subjects, the WPT features
achieved an improved performance for classification of 20 differ-
ent arm/hand movements compared with the conventional TD
EMG features. Furthermore, a novel channel selection method
was developed by combining the FCSI and the SFS analyses, which
can effectively determine a small number of appropriate EMG
channels without significantly compromising the classification
performance achieved from high-density surface EMG. These
novel feature extraction and channel selection analyses confirm
substantial neural control information available in pareticmuscles
of stroke survivors, and moreover, demonstrate the feasibility of
extracting such information with a practical number of EMG
channels. The findings are helpful for development of myoelectric
control systems for stroke rehabilitation.
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