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Abstract

Acute and precise signal perception and transduction are essential for plant
defense against insects. Insect elicitors—that is, the biologically active
molecules from insects’ oral secretion (which contains regurgitant and
saliva), frass, ovipositional fluids, and the endosymbionts—are recognized
by plants and subsequently induce a local or systematic defense response.
On the other hand, insects secrete various types of effectors to interfere
with plant defense at multiple levels for better adaptation. Jasmonate is a
main regulator involved in plant defense against insects and integrates with
multiple pathways to make up the intricate defense network. Jasmonate
signaling is strictly regulated in plants to avoid the hypersensitive defense
response and seems to be vulnerable to assault by insect effectors at the
same time. Here, we summarize recently identified elicitors, effectors, and
their target proteins in plants and discuss their underlying molecular
mechanisms.
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Introduction

There are about 1 million insects and over 300,000 plants on
our planet, and plant—insect interactions are the driving force
of biodiversity. With long-term co-evolution, plants and insects
have developed sophisticated mechanisms for adaptation'.
In general, plants can recognize herbivore-/damage-/microbe-
associated molecular patterns (HAMPs/DAMPs/MAMPs) and
make the right defense. The early defense responses contain
depolarization of the plasma transmembrane potential, changes
of cytosolic Ca®, reactive oxygen species (ROS) burst, and
mitogen-activated protein kinase (MAPK)™. Most of these
reactions are able to activate jasmonate (JA)-mediated plant
defense’”. JA is a main regulator of plant defense and its
synthesis and regulation have been extensively studied”.
Recent studies reveal new insights in JA oxidative metabo-
lism and their negative regulation in the JA pathway'*''. In most
plants, JA-Ile is the active signal recognized by the COIl and
promotes JAZ-COI1 interaction leading to JAZ degradation.
This relieves the JAZ-interacting transcription factors to
activate downstream defense gene expressions'>~'°. However, in
Marchantia polymorpha, MpCOIl recognized OPDA-Ile instead
of JA-lle. That work revealed the ligand-receptor co-evolution
of the JA signaling pathway in land plants’’. MYC2 is a
well-studied transcription factor in JA signaling and can inter-
act with both JAZ and MED?2S5, the subunit of the mediator
complex. The JAZ proteins recruit TOPLESS scaffold pro-
tein to inhibit gene transcription, whereas MED25 brings
COIl to MYC2 targeting promoters'®. In this model, COIl is
thought to be the nuclear receptor. JAT1, which localizes at
the nuclear envelope and plasma membrane, is the transporter
responsible for the influx of JA-Ile into nucleus”. To balance the
tradeoff between growth and defense, plants strictly regulate JA
signaling to avoid a hypersensitive defense response’™”'. Some
development regulators, including SPLs and DELLAs, target JAZ
or MYC transcription factors to modulate JA signaling output™—°.
Interestingly, some insects use similar strategies to attenuate plant
defense for fitness.

Herbivorous insects have different mouthparts and feeding hab-
its. Active molecules from insects’ oral secretion (OS) (which
contains regurgitant and saliva), frass, ovipositional fluids,
and the endosymbionts of insects have a large impact on plant
defense. Some of these molecules used by plants to trigger
specialized defense are called elicitors, and those to weaken
the plant defense response are defined as effectors. Plant—
insect recognition is the first and also the key step of an effec-
tive defense in plants””*. In this review, we discuss recent
research advances in insect elicitors and effectors and their
roles in plant—insect interactions.

Plant perceptions of insect herbivory

Plant perception of an insect attack is the first step of defense.
Insect herbivory raised diverse active molecules such as dam-
age-associated molecules, insect-derived elicitors, and the
plant endogenous molecules activated by insect digestive
enzymes (Figure 1). The specific and efficient recognition of
these active molecules guarantees the timely priming of plant
defense™*".
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Plant-derived signal molecules activated by herbivory
Wounding damage caused by insect herbivory will quickly trig-
ger plant defense signaling. The first reported damage-related
peptide signal was systemin, an 18-amino acid polypep-
tide cleaved from prosystemin (inactive form) in tomato
upon wounding stimulus’. Systemin promotes JA accumu-
lation and activates the expression of genes encoding pro-
teinase inhibitors which have insecticide activity””. Whereas
systemin had been reported long before, its receptor SYRI, a
leucine-rich repeat receptor kinase (LRR-RK), was identified
recently. The introgression line, which lacks SYRI1 expression,
is highly sensitive to Spodoptera littoralis*. Besides systemin,
other wound-induced peptides had been identified in plants,
including Arabidopsis, maize, and rice. The application
of synthetic 23—amino acid maize Peps could mimic the
Spodoptera exigua attack, and similar Peps were found in
rice recently* . In Arabidopsis, AtPeps, which is generated
from PROPEPs under the catalyzation of the cysteine protease
METACASPASE4 (MC4), acts as signals to trigger both
JA and SA signaling pathways’. Like the systemin-SYRI
module, the reported receptors of AtPeps—AtPEPR1 and
AtPEPR2—are also classified in the LRR-RK family***.

From Spodoptera frugiperda larval OSs, researchers isolated
a disulfide-bridged peptide (+ICDINGVCVDA-), termed
inceptin, that can induce the accumulation of defense hor-
mones such as ethylene, JA, and SA in cowpea plants. Incep-
tin is the proteolytic fragment of chloroplastic ATP synthase
y-subunit of cowpea plants digested by S. frugiperda larvae**''.
Recently, on BioRxiv, it was reported that the receptor of incep-
tin in plants was a leucine-rich repeat receptor-like protein,
INR, which is distinguished from LRR-RKs by lacking an
intracellular kinase domain*’. These findings expand the paradigm
of plant surface recognition of insect herbivory.

Elicitors secreted by insects

Besides plant signal molecules activated by insect feeding, a
number of reported elicitors are derived from insects them-
selves and most of them belong to HAMPs*. It had been
reported that the OS, the oviposition and the honeydew of insects
could induce a plant defense response, including the accumula-
tion of JA and secondary metabolism*. These insect-derived
elicitors can be classified as fatty acid derivatives, enzymes, and
some other proteins®.

The first identified fatty acid—amino acid conjugate (FAC)
elicitor was volicitin, which was isolated from S. exigua
larval OSs. Volicitin can induce the emission of volatiles in
maize to attract predators™. After volicitin, other forms of
FACs from various insect OSs had been found in succession**".
In Nicotiana attenuate, FACs from Manduca sexta activate the
MAPK pathway**. Besides FACs, califerins, the sulfooxy fatty
acids that exist in OSs of grasshopper (Schistocerca americana)
larvae, also have elicitor activity”. Glucose oxidases (GOXs)
and B-glucosidase are enzyme-like elicitors. GOX is identified
from Helicoverpa zea and specifically activates defense response
in tomato™”'. The [-glucosidase in Pieris brassicae larval
OSs triggers the emission of volatiles from wounded cabbage
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Figure 1. Schematic diagram of herbivory-associated elicitors and effectors manipulating plant defense. Receptors (SYR, PEPR, INR,
and LecRKs) located on the plant cell surface recognize small peptides (sytemine, inceptin, and Peps) and, together with the co-receptors
(SERKs/BAK1 and SOBIR1), trigger downstream defense signaling. Also, elicitors derived from insects, including FACs, B-Glu, and GOX, are
able to activate plant defense with the unknown mechanisms. On the other hand, insects secrete effectors to weaken plant defenses. Some

effectors interfere with jasmonate (JA) signaling directly (HARP1,

2b, C2, BC1, and SSGP-71) or indirectly (Armet and Bt56) by enhancing

salicylic acid (SA) accumulation to compromise JA signaling. Some effectors (Mp1 and Me10) target plant proteins (VPS52 and TFT7) that
are directly involved in defense. The DNase Il eliminates the extracellular DNA which is released by damaged cells to trigger plant defense.

MIF and C002 from aphids are of benefit to insects living on the

host plants, but the underlying mechanisms remain elusive. Notably, some

elicitors/effectors are plant-specific. Here, the GOX from Helicoverpa zea acts as an effector, inhibiting nicotine accumulation in tobacco, and,
on the other hand, acts as an elicitor specifically inducing plant response in tomato.
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leaves and this attracts predators such as parasitic wasp
Lipase and phospholipase C are other types of salivary enzyme-
like elicitors. Lipase of Schistocerca gregaria OS elevates
oxylipin accumulation and defense response in Arabidopsis™.
Phospholipase C of Spodoptera frugiperda induces the
accumulation of proteinase inhibitors in corn™.

The above-mentioned elicitors are from chewing insects.
The elicitors from the piercing-sucking insects are isolated
largely from salivary glands. The mucin-like salivary protein
(NIMLP) of planthopper (Nilaparvata lugens) is a double-edged
sword. On one hand, it contributes to the formation of salivary
sheaths for successful feeding; on the other hand, it was used
by plants to trigger a defense response, like Ca* mobiliza-
tion, the MEK2 MAPK cascades, and JA signaling transduc-
tion, thereby reducing the performance of N. lugens>®. Tetranins
is another characterized elicitor identified from Tetranychus
urticae. Tetranins increases the expression of defense genes
and activates JA, salicylic acid (SA), and abscisic acid bio-
synthesis in plant. It also promotes volatile emission to attract
predatory mites”’.

Some elicitors are from endosymbionts. MAMPs could be
released through herbivory OSs and recognized by plants to induce
pattern-triggered immunity (PTI)***°. The chaperon GroEL from
the endosymbionts Buchnera of potato aphids (Macrosiphum
euphorbiae) induces oxidative bursts and PTI in Arabidopsis®™.
From the S. littoralis larval OSs, the porin-like proteins most
likely of bacterial origin can induce the early response of
plant defense’. A recent report reveals that some elicitors are
from honeydew-associated microbes in sucking arthropods®.

Insect effectors twist plant defense

To adapt to their host plants, insects have developed multilay-
ered means for fitness. Besides releasing elicitors, the insect
releases effectors that disturb host plant defense response
for successful feeding®. The reported insect effectors are
identified from both the herbivory itself and insect-related
microbiomes (Figure 1).

The first reported insect effector was GOX from the chew-
ing insect, H. zea, which inhibits nicotine accumulation and
elevates the SA-mediated PR-la protein level in tobacco®.
Notably, the same GOX protein induces plant response in
tomato™', which we discussed in the °‘Elicitors secreted by
insects’” section. This suggests that the same protein acts as the
effector or as the elicitor depending on their interacted host
plant. Another piece of evidence in support of insect effectors
is that the S. littoralis larvae that fed on OS pretreated plants

had a greater weight increase®.

The direct interaction with JA signaling-related components
is an efficient way for herbivory effectors to inhibit plant
defense. In our recent work, we isolated a venom-like protein
termed HARP1, which is identified from the OS of Helicoverpa
armigera. HARP1 can interact with multiple JAZ proteins
of Arabidopsis and cotton plants to prevent COIl-mediated
JAZ degradation, thereby blocking the JA signaling output®.
SSGP-71 is an E3 ubiquitin ligase—mimicking protein in
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Hessian fly (Mayetiola destructor). It allows the insect to
hijack the plant proteasome and block the basal immunity®.
These studies fill in the gap of the working mechanism about
how insects manipulate effectors to block plant defense for
better adaptation.

Some insect effectors inhibit plant defense by interfering with
the crosstalk between SA and JA. For example, Bt56 from the
whitefly (Bemisia tabaci) enhanced the performance of the
whitefly on tobacco by decreasing JA signaling through the
antagonism between JA and SA. Bt56 could directly inter-
act with KNOTTED 1-like homeobox transcription factor
NTH202 and eliminate the negative modulation of NTH202
on SA accumulation”. Armet, the effector of pea aphid
(Acyrthosiphon pisum) protein, induced SA accumulation by
blocking SA methylation and enhanced the pathogen resist-
ance in plants, reflecting a novel tripartite interaction of
insect—plant—pathogen’’".

The extracellular DNA and hydrogen peroxide that are
released by damaged cells can trigger plant defense®. There-
fore, some insects secrete effectors to eliminate the produc-
tion of these DAMPs. The planthopper (Laodelphax striatellus)
secretes salivary DNase II, which acts as an effector by erasing
extracellular DNA, and the Trichoplusia ni salivary catalase
functions as an ROS scavenger to reduce hydrogen peroxide,
thus inhibiting ROS burst and other plant defense responses’ .

Moreover, some effectors were reported to target other
defense-related proteins in plants. A set of saliva proteins
in aphids were proven to have effector activity through pro-
teomic combined RNA sequencing (RNA-seq) analysis®’*"". A
macrophage migration inhibitory factor (MIF) from pea
aphid saliva inhibits immune response in N. benthamiana and
improves aphid performance. Interestingly, the MIFs in ver-
tebrates are also involved in the immune pathway, suggesting
the highly conserved function of MIF**!. Vacuolar protein
sorting-associated protein 52 (VPS52) in potato (Solanum
tuberosum) has negative impacts on green peach aphid (Myzus
persicae) infection. M. persicae saliva-secreted protein Mpl
targets the VPS52 as an effective virulence strategy’*>. MelO
from M. euphorbiae interacts with tomato TFT7, a 14-3-3 iso-
form involved in aphid resistance, and enhances aphid lon-
gevity and fecundity®. Some effectors can target the host cell
wall. Expansin-like protein (HaEXPB2) from the nematode
(Heterodera avenae) binds to cellulose of tobacco, thereby
increasing nematode infectivity*'.

The effectors mentioned above are generated from the insect
itself. Other effectors are also derived from insect-borne
microbe. Although the exact effector components need to be
explored, it was found that Colorado potato beetle (Leptinotarsa
decemlineata) larvae suppress tomato defense response by
exploiting bacteria in their OSs and gut™*. Besides bacte-
ria, some active molecules from vector-borne pathogens are
reported to interfere with plant defense and are of benefit for their
insect vectors living on host plants®’. The phytoplasm protein
SAP11 and SAP54 of aster yellows phytoplasma strain
witches’ broom was proposed to promote aphid colonization
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and also interfere with plant development®*°. The BCI1 of
tomato yellow leaf curl China virus directly interacts with MYC2
protein to decrease the MYC2-regulated terpene synthase,
thereby reducing plant resistance to the whitefly’’. The 2b pro-
tein of the aphid-borne cucumber mosaic virus (CMV) stabilizes
JAZ proteins by direct interaction, thus blocking JA signaling
output, and this benefits aphid (M. persicae) performance on the
host plant™. The C2 protein of tomato yellow leaf curl virus can
also compromise JA signaling in tobacco by interacting with
plant ubiquitin to block JAZ1 protein degradation, thereby reduc-
ing plant resistance to the insect vector whitefly”’. These stud-
ies reveal the intricate interaction of plant—virus—insect vector.
In Table 1, we summarize the reported insect-associated elicitors
and effectors from different species and their probable roles.

F1000Research 2020, 9(F1000 Faculty Rev):198 Last updated: 19 MAR 2020

Prospects

JA is a conserved defense regulator in the plant kingdom.
On one hand, various elicitors can be recognized by plants
to trigger JA signaling. On the other hand, the JA pathway
tends to be targeted by a diverse range of attackers for fitness
(Figure 1). Some insect effectors have a mechanism simi-
lar to that of the virus proteins in blocking JA signaling®”'=".
It would be interesting to study whether there are relation-
ships between the phylogeny of insect effectors and viral
proteins. Although numerous elicitors and effectors were identi-
fied, their target proteins, the underlying mechanisms, and the
transportation mechanisms of the effectors entering plant
cells are largely unknown and deserve further investiga-
tion. In plants, JA is integrated with multiple signaling to

Table 1. Herbivory-associated elicitors and effectors.

Name Origin Biofunction References
m Systemin Wounded tomato plants Perceived by SYR1, induce accumulation 31,33
Q. of proteinase inhibitor and ethylene, and
S induce oxidative bursts
PEPs Wounded plants (Arabidopsis, Induce defensin and burst of hydrogen 36,38,39
Plant-derived maize, rice) peroxide (H,0,) after perceiving by
PEPRs
Inceptin Degradation of cowpea ATP Increase the concentration of JA and SA 40,42
synthase by Spodoptera by interacting with INR
frugiperda during herbivory
Volicitin Spodoptera exigua Induce volatiles emission in corn 45
Caeliferins Schistocerca americana 49
GOX Helicoverpa zea, Ostrinia nubilalis ~ Specifically promote defense response 50,51
in tomato
B-glucosidase Pieris brassicae Increase volatile emission in cabbage 52
Lipase Schistocerca gregaria Elevate the oxylipins accumulation in 54
Arabidopsis
Phospholipase C S. frugiperda Trigger proteinase inhibitors 55
accumulation in corn
Bruchins Bruchus pisorum Induce neoplasms formation beneath the 94,95
insect egg in pea
Derived f . L
inzg\éte rom NIMLP Nilaparvata lugens Induce plant defense response in rice 56
Tetranins Tetranychus urticae Cytosolic calcium influx and membrane 57
depolarization induce biosynthesis of JA.
SA and ABA in kidney bean
GroEL Buchnera in Macrosiphum Induce PTI and ROS accumulation in 60
euphorbiae Arabidopsis

Porin-like proteins

Bacteria in Spodoptera littoralis

Trigger membrane potential changes and 61
cytosolic Ca®* elevations in Arabidopsis
and Vicia faba

Unidentified Gut-associated bacteria in H. zea  Increase salivary GOX to induce defense 96,97
in tomato
Unidentified Honeydew-associated microbes Induce accumulation of phytoalexins and 62,98

N. lugens

volatile emission in rice
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Insect-
derived

Derived from
insect-borne
microbe

Name
GOX

HARPA

SSGP-71

Bt56

Armet

DNase I
Catalase
C002
MIF

Mp1

Me10
Mp42, Mp55 Me23
HaEXPB2

Phosphatase 2C

Endo-beta-1,4-
Glucanase (NIEG1)

NcSP75
NcSP84
NISEF1
Unidentified
SAP11

SAP54

BC1

2b

(0

Origin

H. zea

Helicoverpa armigera

Mayetiola destructor

Bemisia tabaci

Acyrthosiphon pisum

Laodelphax striatellus

Trichoplusia ni

A. pisum, Myzus persicae

A. pisum, M. persicae

M. persicae

M. euphorbiae
M. persicae,
M. euphorbiae

Heterodera avenae

M. destructor

N. lugens

Nephotettix cincticeps

N. cincticeps

N. lugens

Gut and oral secretion—-associated
bacteria in Colorado potato beetle

Aster yellows witches’ broom in

Macrosteles quadrilineatus

Aster yellows witches’ broom in M.

quadrilineatus

Tomato yellow leaf curl China virus

in B. tabaci

Cucumber mosaic virus (CMV) in

M. persicae

Tomato yellow leaf curl virus in B.

tabaci

Biofunction

Decrease nicotine accumulation in

tobacco

Interact with and stabilize JAZs, depress

JA signaling in Arabidopsis

Interact with Skp, decrease plant
proteasome activity, thus block hormone

signaling in wheat

Interact with NTH202 to increase SA
biosynthesis, thus decrease JA response

in tobacco

Help feeding of insect, induce SA
accumulation and pathogen response in
N. benthamiana and Medicago truncatula

Erase extracellular DNA released by

damaged cell in rice

Reduce H,0O, in tomato

ApC002 and MpC002 help insect
foraging and feeding on fava bean and
N. benthamiana, respectively

Improve aphid performance, inhibit
immune response in N. benthamiana

Interact with VPS52 to relocalize to
vesicle-like structures and enhance
insect virulence in Arabidopsis and

potato

Interact with TFT7, enhance the longevity

and fecundity on tomato

Increase aphid reproduction, suppress

N. benthamiana defenses

Bind to cellulous and target cell wall
when parasitizing N. benthamiana

Interfere with the wheat signal
transduction pathway possibly by

phosphatase ability

Degrade celluloses in plant cell wall,
enable insect stylet to reach the rice

phloem

Help successful ingestion from sieve

elements of rice

Suppress accumulation of Ca* and H,0,
and sieve element clogging in rice

Help successful ingestion from sieve

elements of rice

Suppress tomato defense response
Bind and destabilize TCPs, reduce plant

defense in Arabidopsis

Degrade MTFs through interacting with
RAD23, influence floral development in

Arabidopsis

Interact with MYC2 and suppress
MYC2-regulated terpene synthesis in

Arabidopsis

Interact with and stable JAZ protein,
blocking JA signaling in Arabidopsis

Interact with plant ubiquitin, blocking JA

signaling in tobacco
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form a complex and flexible defense network. Recent research
has revealed the intricate defense network shaped by insect

herbivory

02107719 Studies have also shown that insects can use

plant defense metabolites to find their host plants and to fend off
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