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Abstract 
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is 
one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections 
caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle 
this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) 
have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in 
their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique 
functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications 
in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article 
deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
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Introduction

Diseases caused by infectious microbes go on to be the 
greatest challenge and warning to worldwide health care. 
Although significant progress has been attained over the 
past few decades with the introduction of novel and effective 
antimicrobials, current antimicrobial therapy is still experi-
encing some major setbacks, including lack of selectivity 
of usual drugs, unwanted side effects, uneconomical and 
time-consuming synthetic processes, and more importantly 
the acquirement of multidrug resistance (Brown and Wright 
2016; Namivandi-Zangeneh et al. 2019).

The term multidrug-resistant (MDR) bacilli cover spe-
cifically the pathogens including Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and Entero-
bacter species which are referred to as ESKAPE pathogens 
and are being considered as critical and high priority organ-
isms to cause unwanted effects. The success rate posed by 
conventional antibiotics against these organisms has been 
proved to be only a handful (Boucher et al. 2009; Mahlapuu 
et al. 2016; Mukhopadhyay et al. 2020). It has been studied 
from a recent survey that over 700,000 people are getting 
affected by drug-resistant microbes each year worldwide. 
The number is estimated to increase to 10 million in another 
50 years if no successful steps are taken (Mahlapuu et al. 
2016; Shen et al. 2018). Therefore, it is a necessary prereq-
uisite to design, synthesize and introduce novel antimicro-
bial agents to overcome or tackle the problems associated 
with antimicrobial resistance (AMR). Figure 1. depicts a 
continent-wise estimation of the number of deaths by AMR.

The emergence of drug-resistant microbes and the rais-
ing concerns about the usage of antibiotics resulted in the 
development of antimicrobial peptides (AMPs) which are 
produced as a first line of defense by many multicellular 
organisms. AMPs are a class of naturally occuring small 
peptide molecules and have a wide range of inhibitory 
actions to directly prevent the growth of organisms like bac-
teria, fungi, parasites, viruses and even cancer cells. AMPs 

are classified based on their source, antimicrobial activity, 
structural characteristics and amino acid composition. Apart 
from medicine, they also have good application prospects 
in other fields like food, animal husbandry, agriculture and 
aquaculture (Mukhopadhyay et al. 2020).

In the past few decades, synthetic replicas of AMPs, a 
portion of the distinct immune response among all living 
species have raised focus from researchers as a gifted solu-
tion to fight against MDR bacteria (Thomson and Bonomo 
2005; Xu et al. 2014; Zu et al. 2014; Gill et al. 2015). These 
potent, broad spectrum antibiotics are known to exhibit 
as efficient and novel therapeutic agents which have been 
proved to be more competitive candidates in antibacterial 
therapy. There are two types of AMPs based on antimicro-
bial therapy. The first type refers to inherent antimicrobial 
polymers which do not involve any modifications while the 
other type has a need for modifications for the antimicro-
bial actions. Though having many advantages over com-
mon antibiotics, AMPs also faced limited clinical achieve-
ments, which may be due to uneconomical manufacturing 
procedures, inactivation under physiological conditions, a 
poor profile of pharmacokinetic parameters, and high tox-
icity in vivo (Ananth et al. 2020; Deslouches et al. 2005; 
Gill et al. 2015; ). Further, some AMPs exert their actions 
only under specific experimental conditions and their effect 
is influenced mainly by forming the interactions between 
pathogens and tissue-dependent host (Yount et al. 2006; 
Bechinger and Gorr 2017). These obstructions prevent them 
from being utilized as efficient systemic therapeutic repre-
sentatives and many of them are used specifically in topical 
applications (Rosignoli et al. 2018; Håkansson et al. 2019).

In spite of showing many applications, both natural and 
synthetic AMPs pose some limitations like damaging the 
cell membrane of eukaryotes and to cause hemolytic side 
effects, higher production costs and technical problems, their 
limited stability at particular pH and so on. In addition, they 
show decreased activity in the presence of iron and some 
serum. Further, they are easily hydrolyzed by proteases.

To triumph over the limitations of AMPs, Structurally 
Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) 
have been introduced as novel agents having more potency, 
stability and bioavailability. SNAPPs indicate a new class 
of synthetic AMP replicas; exist as star-shaped polypeptide 
nanoparticles containing hydrophilic lysine and hydropho-
bic valine amino acid residues (Lam et al. 2016a). These 
are provided with outstanding antimicrobial characteristics 
and effective even at very low concentrations against many 
Gram-negative pathogens including multidrug-resistant 
bacilli to treat the ailments concerned. They are shown to 
exhibit minimum toxicity and are proved to display superior 
selectivity on bactericidal action against numerous Gram-
negative pathogens compared to conventional antibiotics and 
linear AMPs (Ng et al. 2013).Fig. 1   Continent wise estimation of number of deaths by AMR
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In recent years, SNAPPs have been given prime impor-
tance in various pharmaceutical fields due to their unique 
properties and also the degree of functionality that has 
exposed them as potential candidates to act as successful 
drug delivery vehicles (Torchilin 2007; Peer et al. 2007; 
Wu et al. 2015; Chen et al. 2015). Attention has also been 
focussed on their significance for advanced applications in 
many fields including emulsification, catalysis, gene deliv-
ery, bio-imaging, tissue engineering, and many more (Sulis-
tio et al. 2011; Nakayama 2012). Continued interest in the 
study of SNAPPs proved them as versatile and unique mate-
rials having the potential to employ in high-value pharma-
ceutical applications. In this article, mainly design, synthe-
sis, mechanism of action, and wider applications of SNAPPs 
in various fields are discussed.

Design and synthesis of SNAPPs

SNAPPS in the form of star-shaped peptide polymer nano-
particles, have been recently demonstrated as a new class of 
antimicrobial agents with superior in vitro and in vivo effi-
cacy and they belong to the class of macromolecular cova-
lently bonded branched architectures (Lam et al. 2016). In 
their structure, several linear arms are radiating from the 
central core. They differ from one-dimensional linear poly-
mers in having a higher order of architecture with exclusive 
properties due to compact 3D structures (Isono et al. 2013). 
At the core of the structure, there is a multi-functional ini-
tiator poly (amidoamine) with primary amines. Lysine and/
or valine amino acids are polymerized to the N-terminus of 
the core to form polymers of varying arm numbers ranging 
from S16 or S32. There are several types of star structures 
known, based on composition and sequence, distribution of 
the arm polymer, the difference in arm species, functional 

placements, nature, and size of the core structure. There are 
three prominent approaches available for the synthesis of 
star shaped SNAPPs which include the core-first, arm-first, 
and grafting-onto approach. Each of these approaches has 
merits and demerits of its own.

Core‑first spproach

In this approach, radiating arms are allowed to build from 
the pre-prepared multifunctional core. The initiating sites 
on the core must have equal reactivity to obtain polymeric 
structures with the same arm number and arm length. Fur-
ther, the rate of the initiation step should be faster than the 
propagation step. Since there is controlled polymerization, 
polymers with better control over structure, functionality, 
and composition can be prepared easily with better yield 
by involving this approach. The reactions are generally per-
formed under ice-cold conditions to improve the control 
of polymerization and to avoid side reactions (Vayaboury 
et al. 2004; Cheng and Deming 2012). But in this approach, 
sometimes polymers having low arm numbers and a much 
smaller core domain may be formed which affects both the 
arm number and core dimension of the resulting star poly-
mer and causes characterization problems. Figure 2. repre-
sents the schematic illustration of the synthetic approaches 
of SNAPPs via the core-first approach. 

Arm‑first approach

This approach adopts the formation of SNAPPs by crosslink-
ing linear polymers involving coupling reaction in a con-
gregant fashion. The first step is arm formation in which 
linear polymers act as terminal initiating sites where short 
cross-linkable block segments are obtained first. This is 
followed by linking together these linear polymers using 

Fig. 2   Schematic illustration 
of the synthetic approaches of 
SNAPPs via ore-first approach
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coupling polymerization to yield SNAPPs. This approach 
offers advantages such as facilitating efficient coupling 
among cross-linkable functionalities, minimal star–star 
intermolecular cross-linking, better structural control, and 
generation of polymers with very high molecular weight 
and large arm numbers (Bapat et al. 2012). Figure 3 shows 
the schematic illustration of the synthetic approaches of 
SNAPPs via the arm first approach.

Grafting‑onto approach

In this approach, synthesis and characterization of core 
and arm can be done independently before SNAPPs for-
mation. Polymers are obtained by coupling reaction of the 
multifunctional core and arms which act as a balancing 
reactive terminus. This is followed by post-polymerization 
end-group modification. The prepared SNAPPs usually 
have a low arm number and small core size because of the 

functionality and dimension of the coupling compounds 
used and also due to steric factors. Figure 4 gives the sche-
matic illustration of the synthetic approaches of SNAPPs 
via grafting onto the approach.

Mechanism involved in the SNAPPs 
formation

The formation of SNAPPs involves various mechanisms 
such as ring-opening polymerization (ROP), reversible 
addition − fragmentation chain transfer (RAFT) polymeri-
zation, atom transfer radical polymerization (ATRP) and 
nitroxide-mediated living radical polymerization (NMP).

Fig. 3   Schematic illustration 
of the synthetic approaches of 
SNAPPs via arm first approach

Fig. 4   Schematic illustration 
of the synthetic approaches 
of SNAPPs via grafting onto 
approach
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Ring‑opening polymerization (ROP)

This method involves ROP of cyclic esters and derivatives 
or N-carboxy anhydride where the later one has been proved 
to be a more flexible and controls chain-growth polymeriza-
tion technique for the synthesis of peptide polymers having 
antimicrobial properties. This method relies on employing 
amino acids as building blocks to obtain polymers having 
a close structural resemblance to naturally occurring pep-
tides and proteins, hence specific functionalities can be eas-
ily incorporated into polypeptide materials. This approach 
enables preparing synthetically challenging high molecu-
lar weight biopolymers which are better compared to other 
polymers. Improvements in NCA–ROP have shown a super-
ficial direction for the synthesis of distinct peptide polymers 
with complex macromolecular architectures, like star poly-
mer nanoparticles though they cannot compete with spe-
cific peptide orders attained by solid-phase peptide synthesis 
(Hawker et al. 2001; Nicolas et al. 2013).

Ring-Opening Metathesis Polymerization (ROMP) is the 
modified form of the ROP technique that operates by open-
ing the cyclic construction, discharging the ring strain of 
the monomer, and introducing the monomer into the bud-
ding chain. The main advantages of this method include easy 
flexibility, faster reaction rate, negligible side reactions, and 
very simple end-group modification (Mota et al. 2013).

Reversible addition − fragmentation chain transfer 
(RAFT) polymerization

RAFT polymerization is an extremely flexible method for 
the synthesis of functional macromolecules with highly 
complicated topological designs such as multiblock, hyper-
branched, gradient, star, and many more. The efficiency of 
the chain transfer process and the synthesis of RAFT play 
an important role in influencing the structural integrity of 
the final polymer like chain-end fidelity and polymer disper-
sity. Steric congestion acts as a chief feature in the outcome 
that influences the trials such as addition and fragmentation 
along with the numerous categories of impurities (Wang 
et al. 2014; Fischer et al. 2015).

Atom transfer radical polymerization (ATRP)

ATRP is a method of transition metal-mediated controlled 
radical polymerization that permits the synthesis of diverse 
functional polymers with required molecular weights and 
low disparities (Solomon 2005; Boyer et al. 2011; Moad 
et al. 2012). The synthesis of brush, comb, SNAPPs, and 
others have been very well demonstrated and exhibits nota-
ble considerations by polymer-researchers with the adapta-
tion of core first, arm-first, or grafting-onto strategies (Sulis-
tio et al. 2011, 2012). A novel group of star polymer shows 

single-molecule stars made by the intermolecular folding 
followed by the cross-linking of random copolymers to sta-
bilize “brush-like” structures that act as star arms and hydro-
phobic moieties that drive the self-folding. But others are for 
polymerization by post functionalization into vinyl groups 
to act as a cross-linking point (Liu et al. 2012).

Nitroxide‑mediated living radical polymerization 
(NMP)

NMP is an old method that has exceptional characteristics 
like being metal and catalyst-free along with bearable func-
tionalities. Yet, currently, it is not much under use due to its 
fragile maintenance for the end group and also requires high 
temperature (> 100 °C) for the reaction to occur (Nakayama 
2012; Byrne et al. 2012, 2013; Lam et al. 2016a).

From various studies, the following general observations 
are drawn from the characterization data of synthesized 
SNAAPs.

•	 Star-shaped SNAPPs with different arm numbers hav-
ing medium (M) range arm length which was designed 
in preference to studying the effect of arm number on 
antimicrobial performance. They exhibited comparable 
results to the expected values.

•	 Star-shaped SNAPPs molecular weight is found to be 
directly proportional to arm number and the hydrody-
namic diameter of the stars was also observed to be 
slightly increasing with arm number.

•	 Stars with varying arm lengths (S, M, L and VL) have 
been studied with different degrees of polymerization 
values. There is an increase in molecular weight and a 
slight increase in hydrodynamic diameters.

•	 The surface charge values exhibited similar values 
obtained across the SNAPPs prepared. Further, any 
increase in arm number and arm length of the SNAPPs is 
also found to be increasing with the size of the SNAPPs 
(Nguyen et al. 2011; Afacan et al. 2012). Figure 5 gives 
schematic illustration of the arm length of SNAPPs.

Mechanism of action of SNAPPs

SNAPPs act through a unique, multimodal mechanism 
involving lipopolysaccharide (LPS) targeting, destabiliza-
tion /fragmentation of outer membrane, and unregulated ion 
movements across the membranes in many Gram-negative 
pathogens, including MDR bacteria. This movement results 
in membrane disruption along with hyperpolarisation and 
depolarization of the membrane followed by oxidative stress 
and production of reactive oxygen species (ROS) (Kohanski 
et al. 2010). This again is influenced by the arm number and 
arm length of each SNAPPs. They work literally by tearing 
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cell wall cytoplasmic membrane apart, thus leading to cell 
death (Lam et al. 2016a).

Applications of SNAPPs

In recent years, star-shaped nanopolymers and their wide-
spread applications gained more attention among research-
ers owing to their enhanced stability, biocompatibility, and 
therapeutic efficiency. They are proved to display a wide 
range of applications including targeted drug delivery (Sulis-
tio et al. 2011), gene therapy (Lam et al. 2014), bioimaging 
(Wang et al. 2014), tissue engineering (Mota et al. 2013), 
and many more. Some of the important and popular applica-
tions of SNAPPs are discussed below.

Antibiotic adjuvant therapy

One of the successful solutions to overcome MDR bacte-
rial infections is to follow synergistic therapy involving co-
administration of SNAPPs with other drugs to achieve maxi-
mal therapeutic efficacy. This is a promising and economical 
solution for bacterial infections to surmount the inadequa-
cies of antibiotic immunotherapy and is being extensively 
used to treat many health disorders including cancer, tuber-
culosis, and viral infections (Bozkurt-Guzel et al. 2014; 
Mohamed et al. 2014; Zhang et al. 2014; Namivandi-Zan-
geneh et al. 2019). Synergistic therapy plays significant roles 
such as minimizing acquisition of bacterial resistance (Ngu-
Schwemlein et al. 2015; De Gier et al. 2016) re-sensitizing 

MDR bacteria to antibiotics (Goldberg et al. 2013; Amani 
et al. 2015) and negligible toxic profile (Khalil et al. 2008).

The earlier attempt to combine colistin with another 
antibiotic to overcome MDR Gram-negative infections was 
highly unsuccessful due to the emergence of resistant strains. 
To overcome this problems, SNAPPs were combined syn-
ergistically with another drug like ampicillin or gentamicin 
or silver (Ag+) ions to show counter action against many 
Gram-negative pathogens. All of them have registered mini-
mum bactericidal concentrations with superior antibacterial 
efficacies. Further investigation was performed with the syn-
ergy of SNAPPs with Doxycycline (Alkawash et al. 1999; 
Beringer et al. 2012), Imipenem (Rodríguez-Martínez et al. 
2009), Tobramycin (De Gier et al. 2016), and so on. All of 
them were proved to be exhibiting outstanding results with 
an increase in efficacy compared to when they are admin-
istered alone.

SNAPPs have shown great effectiveness against almost 
all Gram-negative bacteria with the addition of infections 
that occurred due to CMDR Acinetobacter baumannii. The 
bacteria did not show any acquisition of resistance to the 
SNAPPs. SNAPPs showed the death of the bacterial cells 
by a multimodal mechanism like the destabilization of the 
outer cell membrane, unregulated movement of ions across 
the cytoplasmic membrane and apoptotic-like death path-
way induction. Its low cost and great effectiveness make it 
a powerful weapon for combating various MDR bacteria 
(Lam et al. 2016b).

Star-shaped nanoparticles were prepared by Lam et al. 
(2016), using SNAPPs and also, bio-nano interaction was 

Fig. 5   Mechanism of action 
involved in use of SNAPPs
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studied. Anti-microbial activity of SNAPPs against various 
Gram-negative pathogen in the different medium was also 
evaluated to mimic the in vivo conditions. An antagonistic 
effect was observed in the presence of proteins and salts 
on the SNAPPs anti-microbial efficacy (Lam et al. 2016c). 
The relationship between the structure and activity of the 
SNAPPs was studied for setting the basis for future SNAPPs 
design and development with improved biological activity. 
The library of SNAPPs was synthesized by varying the 
length of arms and their number which can be the prime 
requirement and investigated for its biocompatibility and 
the biological antimicrobial activity by performing the anti-
microbial assays to examine the mechanism of pathogenic 
bacteria killing or disruption. An increase in arm length and 
its number increases its effectiveness, which may be due to 
the availability of polypeptide arms local concentration with 
higher alfa-helical content. But meanwhile, it increases the 
toxicity. Based on calculations of the therapeutic index, it 
was identified that the polypeptide with 4-arm to 16-arm as 
best therapeutic moiety. No systemic damage was observed 
when evaluated for the biocompatibility of SNAPPs with 
biological activity in mice (Shirbin et al. 2018).

Drug delivery systems

Due to various problems associated with the delivering pure 
drug as such, generation of drug carrier which improves 
the activity of drug by encapsulating it and targeting to the 
required site. In that, over the past few decades development 
of well-designed SNAPPs as competent functional encap-
sulation tools for drug molecules has been a special area 
of interest (Haag 2004; Torchilin 2007; Peer et al. 2007). 
SNAPPs have been utilized as the carriers for delivering 
the guest or drug moieties owing to their unique structural 
and chemical characteristics. In general, these devices are 
nonpolar molecules and can be loaded in the hydrophobic 
core surrounded by a hydrophilic stabilizing crust. SNAPPs 
with more arm numbers can function as unimolecular drug 
carriers while using for encapsulation as they do not undergo 
disintegration into individual polymer under the changes in 
conditions like pH, ionic strength, and high dilution (Gao 
2012) and these are outstandingly stable. Further, the length 
and block ratio of the arms in these structures can be con-
veniently regulated. These unique features of SNAPPs make 
them helpful to achieve effective drug encapsulation and 
controlled drug release.

Multifunctional integrated systems for encapsulation 
and drug delivery could be facilitated by introducing differ-
ent targeting groups into the periphery of SNAPPs where 
hyperbranched or multifunctional structures provided bet-
ter results for this purpose (Xiao et al. 2012; Zhao et al. 
2013b; Wu et al. 2015). Antineoplastic agents like pacli-
taxel (Duan et al. 2017), doxorubicin (Schramm et al. 2009) 

and hydrochlorthiazide (Chen et al. 2011) were successfully 
encapsulated with superior drug loading content and loading 
efficiency and there is better cell uptake by tumor tissues. 
SNAPPs have been proved as effective drug carriers and 
applicable mainly for sustained, controlled and targeted drug 
delivery (Wu et al. 2015). This is because of their special 
characteristics like the solubilizing ability of hydrophobic 
drugs, high molecular weight, targeting particular physi-
ological sites and easy controlling rate of drug release (Sal-
ata 2007). A large number of macromolecules with a high 
degree of functionality have been prepared and employed 
as drug delivery vehicles that are capable of reducing the 
dosage requirements along with minimal undesirable side 
effects of the drug.

Compared to block copolymer micelles and dendrimers, 
the use of SNAPPs has registered more efficiency and appli-
cations in drug delivery (Wu et al. 2015). These copoly-
mers get self-assembled in aqueous media to form micelle 
structures in which hydrophobic core domains are enclosed 
by a hydrophilic periphery. The core domine is capable to 
solubilize hydrophobic drug molecules while the hydrophilic 
region is to solubilize the particles in aqueous media. Fur-
ther, SNAPPs have other advantages as they can also provide 
an alternative route for drug administration and convenient 
to administer drugs orally or parenterally. Demonstration 
on encapsulation of doxorubicin in SNAPPs was performed 
in which the drug was made to conjugate with the aldehyde 
groups in the star core via an imine linkage and resulting in 
controlled release of the drug at lower pH (Nasr et al. 2015). 
It was shown that the SNAPPs could accumulate better in 
the tumour cell with longer plasma circulation time and con-
firmed that these polymers potential enough for improved 
delivery of therapeutic agents in vivo. Drugs such as pacli-
taxel (Duan et al. 2017), progesterone (Jones et al. 2003), 
furosemide (Schramm et al. 2009), hydrochlorthiazide (Chen 
et al. 2011), etoposide (Wang et al. 2005) and 5-fluorouracil 
(Aryal et al. 2009) have also been successfully encapsulated 
in the core of SNAPPs to explore their releasing efficiencies.

Moreover, this type of delivery system must be stable dur-
ing systemic circulation in blood to minimise the leakage of 
the encapsulated drug before reaching the target tissue and 
this depends again on the local environment (Chen et al. 
2008; Cabral and Kataoka 2010). Later, active targeting by 
functionalizing drug carriers with antibodies, peptides and 
small molecules have been adapted to improve efficiency 
which can distinguish exact receptors in pathological tissues 
and there is a severe reduction in adverse effects observed 
(Prabaharan et al. 2009; Yang et al. 2010).

For gene delivery

Various genetic disorders like cancer, diabetes, blind-
ness, cystic fibrosis and parkinson’s disease can be treated 
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successfully with the application of gene therapy (Grigsby 
and Leong 2010). Therapy or treatment provided by this 
mode is dependent on the delivery of genetic materials such 
as plasmid DNA, siRNA and microRNA into cells, as these 
negatively charged hydrophilic materials cannot efficiently 
pass through hydrophobic membranes which are also nega-
tively charged. Further, these materials can undergo enzy-
matic degradations before reaching the nucleus; hence it is 
necessary to encapsulate them (Hancock and Sahl 2006; 
Zhou et al. 2010). The earlier attempts to use viral carrier 
vectors for encapsulation were unsuccessful clinically due 
to various reasons like possible immune responses, the 
amount and size of genetic materials and high production 
cost. Hence, the cationic SNAPPs have been employed as 
transfection vectors to complex electrostatically with the 
negatively charged nucleic acids. The aqueous solubility and 
biocompatibility were improved with polyethylene glycol 
(PEG) as a common chemical group connected to polymeric 
vectors (Cloninger 2002) which depends upon molecular 
weight, architecture, degree of branching, and charge density 
of SNAPPs.

An extensive study on gene therapy in relation to SNAPPs 
based on peptide-functionalized polymers or polypeptides 
has been carried out by many research teams (Fichter et al. 
2008; Zhao et al. 2013a) and the results were documented in 
terms of size and surface charges that the star-shaped poly-
mers can complex efficiently compared to the linear ones. 
It was also showed that the size of polymers plays a major 
role in systemic and intratumoral distributions with their size 
range of 10 − 30 nm exhibiting deep tissue penetration (Lee 
et al. 2010; Tang et al. 2012) and decreased blood clearance 
(Perrault et al. 2009).

Newer type core-shell SNAPPs have also been synthe-
sized which can complex with many nucleic acid molecules. 
The chain extension with PEG on star polymer having 
N-(2-aminoethyl) methacrylamide hydrochloride (AEMA.
HCl) cationic core has displayed better colloidal stability, 
neutral zeta potentials and minor cellular toxicity which 
provides a modified carrier for efficient siRNA delivery. 
SNAPPs that can respond to stimuli like pH (Kim et al. 
2009; Guo et al. 2010), redox potential (Kamada et al. 2010; 
Terashima et al. 2014, 2015), light (Nyström et al. 2011; 
Boyer et al. 2012), temperature (Tan et al. 2014; McKen-
zie et al. 2016) and enzymatic changes (Byrne et al. 2012; 
Thornton et al. 2013) have been recently developed and 
one of the popular area for targeted drug and gene delivery 
applications.

Interfacial stabilizing agents

Recent studies suggest that SNAPPs having many arms and 
a crowdedly cross-linked core are established as efficient 
interfacial stabilizing agents for emulsion systems (Qiu et al. 

2011; Li et al. 2012). The flexible polymeric chains spread 
out from the central core can be readily deformed and can 
act as either pickering stabilizers (particle-like) or estab-
lished asymmetric surfactants (molecule-like) (Binks and 
Lumsdon 2001). When demixing of the arm occurs from 
solubility differences, traditional asymmetric type struc-
tures are formed in the form of much larger sized spheres 
having characteristics of surfactant. Hence, SNAPPs can be 
stimuli-responsive which can distinguish a stable emulsion 
from an unstable state. Reversible emulsification demulsi-
fication processes on stimuli-responsive core cross-linked 
star (CCS) polymers have been studied and shown that the 
thermoresponsive nature of these polymers is accountable 
for thermally triggered demulsification of polymer-stabilized 
emulsions (Binks and Lumsdon 2001). This sort of control 
and adjustability over temperature for destabilization can be 
conveniently applicable in environments like targeted drug 
delivery.

The conversion of W/O system into O/W type and vice 
versa depends mainly upon pH. At lower pH, the arms are 
more protonated, become cationic, and prefer their higher 
solubility in water and lesser in an oil phase. Hence the for-
mation of O/W emulsion is favoured where the polymers 
go mainly into the aqueous continuous phase (Golemanov 
et al. 2006). With an increase in pH, there is a preferential 
formation of W/O type emulsion. It was also demonstrated 
that stabilization of emulsions can be possible at a very low 
concentration of polymers and in particular, SNAPPs which 
are larger with more radiating arms could stabilize emul-
sions at lower concentrations efficiently. These parameters 
are highly helpful to overcome the formulation problems in 
the study of emulsions.

Bioimaging

By following the biodistribution and targeting efficiency of 
a drug delivery system, an in vivo studies have been per-
formed to know the cell migration and nature of the disease. 
An imaging with clinical diagnostic methods/agents help in 
assessing the state and extent of the disease before decid-
ing for initial therapy (Adkins et al. 2012). The distinctive 
properties and structural characteristics of SNAPPs make 
them appropriate as fluorescent explorers, contrast agents 
and in vitro diagnostic systems (Fukukawa et al. 2008; Wang 
et al. 2012; Bagby et al. 2012).

To determine the effect of SNAPPs on Gadolinium Mag-
netic Resonance Imaging (Gd3+MRI) contrast agents, mac-
romolecular ligands were chelated to complex Gd3+ and the 
results were compared by studying reflexivity properties 
(Li et al. 2012). The star nano gel exhibited a relaxation 
rate much higher than in the commercial Gd3+ MRI contrast 
product. Poly acrylate-based SNAPPs with bimodal imaging 
agents which is the combination of fluorescent and magnetic 
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resonance features have also been developed (Adkins et al. 
2012). Later, SNAPPs were structurally altered with dopa-
mine analogs and made into chelate formation with lantha-
nides like Gd3+ and Eu3+. High molecular weight polymer 
drug carriers with branched star-like structural design have 
been proved to exhibit higher accumulation in tumor tissues 
due to better permeability and retention effect (Ulbrich et al. 
2003; Etrych et al. 2008).

Summary and future prospectives

Currently, SNAPPs, in the form of star-shaped polymers pre-
sent an emerging novel approach for the treatment of vari-
ous infections associated with antimicrobial resistance. The 
unique properties of SNAPPs make them more successful 
and widely acceptable for the various applications of the 
pharmaceutical field and also help in delivering the drug 
molecules with minimal toxicity and greater therapeutic 
effect. In the current review, we have covered the detailed 
synthesis and mechanism behavior of the SNAPPs. Also, 
various novel applications of SNAPPs are included by dis-
cussing the case studies.

In the future, with the help of various approaches, the 
effective, less toxic and nanomaterial sized SNAPPs can be 
given priority to provide permanent solutions for microbial 
resistance developed infections. Though having many advan-
tages over other polymers and formulations, the commercial 
utility of these precious SNAPPs is awarded less attention. 
More focus can be provided for their commercial value from 
researchers by keeping parallel coordination with those from 
other disciplines and industries. It is highly necessary to 
continue extensive research in the development of efficient 
star-polymers to acquire highly economical and still better 
reproducible outcomes. Further modulations of functionali-
ties in SNAPPs development and their role in therapeutic 
value with minimal impurities and utility in many other 
important fields can be kept as a futuristic goal for the forth-
coming research activities.
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