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Abstract

Traumatic brain injuries (TBIs) are caused by a hit to the head or a sudden acceleration/deceleration movement
of the head. Mild TBIs (mTBls) and concussions are difficult to diagnose. Imaging techniques often fail to find
alterations in the brain, and computed tomography exposes the patient to radiation. Brain-specific biomolecules
that are released upon cellular damage serve as another means of diagnosing TBI and assessing the severity of
injury. These biomarkers can be detected from samples of body fluids using laboratory tests. Dozens of TBI
biomarkers have been studied, and research related to them is increasing. We reviewed the recent literature and
selected 12 biomarkers relevant to rapid and accurate diagnostics of TBI for further evaluation. The objective was
especially to get a view of the temporal profiles of the biomarkers’ rise and decline after a TBI event. Most
biomarkers are rapidly elevated after injury, and they serve as diagnostics tools for some days. Some biomarkers
are elevated for months after injury, although the literature on long-term biomarkers is scarce. Clinical utilization
of TBI biomarkers is still at a very early phase despite years of active research.
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Traumatic brain injury (TBI) is a common problem, called a “silent epidemic” because of a general
unawareness of the condition. TBI is difficult to diagnose with imaging techniques, and there is no definite
laboratory test to support the diagnosis. An undiagnosed case of TBI can result in premature “return to play”
with severe consequences or in a chronic neurodegenerative condition later in life. An ideal laboratory test,
detecting a brain injury—specific biomarker in one of the body fluids, would confirm or rule out the TBI,
predict the outcome, and indicate when recovery is complete. This article reviews recent research on brain
injury biomarkers that could be used for rapid and accurate diagnostics of TBI in easily accessible fluid

ksamples. j

Introduction
Traumatic brain injury (TBI) is caused by a blow to the
head, penetration of foreign objects through the skull, or
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sudden motions of the head. A recent systematic review
reports that the overall incidence rate of TBI is 262 in
100,000, the mortality rate is 10.5 in 100,000 in Europe,
and falls and road traffic accidents are the most common
causes of TBI (Peeters et al., 2015). The statistics of the
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Centers for Disease Control and Prevention show that the
overall incidence rate of TBI in the United States is 577 in
100,000 (total 1.7 million cases per year), and the mortality
rate is 17.6 in 100,000 (>51,000 deaths per year; Faul
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Figure 1. Biomarkers detected after TBI. This schematic figure demonstrates the possible cellular origin of the biomarkers that are
associated with TBI pathology. TBI causes cellular injury to neuronal and nonneuronal cells. The trauma manifests in damaged BBB,
ionic imbalances, energy depletion, and cell death. The cascade of events starts by an increase in extracellular glutamate and
intra-axonal calcium levels. Increased calcium activates calpains, caspases, and phosphatases that trigger the cleavage of NFs and
a-spectrin, which leads to the disruption of the cytoskeleton and cell death. Calcium also activates transcription factors that
upregulate inflammatory mediators, such as TNF-a and IL-1B. In addition, mechanical injury causes synaptic dysfunction and
accumulation and release of intracellular products, which impairs neurotransmission.

et al., 2010). It is estimated, however, that the presented
numbers probably underestimate the incidence of mild
TBI (mTBI), and the data are confounded by the great
variation in the definitions of TBI.

The pathophysiology of TBI varies considerably de-
pending on the location of the injury, the type of injury,
and its severity. A mild injury may just cause a feeling of
discomfort, headache, dizziness, or transient uncon-
sciousness, whereas moderate or severe injuries may
lead to diffuse axonal injury, epidural or subdural hema-
tomas, intracerebral bleedings, large destruction of the
brain tissue, and even death (Pearn et al., 2016).

Currently the diagnosis of TBI is made mainly based on
a neurological examination of the patient and additionally
using imaging radiology techniques such as computed
tomography (CT) or magnetic resonance imaging (MRI).
The Glasgow Coma Scale (GCS) assesses the severity of
TBI on the basis of cognitive behavior (Teasdale and
Jennet, 1974; Teasdale et al., 2014). A total score of
13-15 refers to mTBI, 9-12 to moderate TBI, and 3-8 to
severe TBI (Faul and Coronado, 2015). Imaging tech-
niques do not provide definitive means for the diagnostics
of TBI, since they fail to find alterations in a large propor-
tion of patients that have a mild to moderate injury (Hof-
man et al., 2001; Borg et al., 2004; Hughes et al., 2004;
Belanger et al., 2007). One of the more advanced modes
of MRI currently is diffusion tensor imaging (DT-MRI). It
traces the direction of water molecules’ diffusion and uses
computed parameters of diffusivity as measures of axonal
integrity (Delouche et al., 2016). The technique allows for
accurate 3D modeling of neural tracts (tractography) by
means of computerized image analysis. DT-MRI is con-
sidered a promising tool for TBI diagnostics because of
the ability to focus on axonal structures, but the literature
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regarding the detection of acute mTBI is somewhat in-
consistent. For example, Arfanakis et al. (2002) and In-
glese et al. (2005) reported significant alterations in
diffusivity after mTBI in particular brain areas, implying
diffuse axonal injury (DAI), whereas llvesmaki et al. (2014)
concluded that acute mTBI is not associated with white
matter change on DT-MRI. Another special modality of
MRI is functional MRI (fMRI), which indicates the activa-
tion of various brain regions upon different stimuli or
tasks. The imaging detects changes in cerebral blood flow
and oxygen consumption based on different magnetic
properties between oxyhemoglobin and deoxyhemoglo-
bin. In the diagnostics of mTBI, fMRI may be a promising
technology. It has shown functional alterations in the brain
of concussed athletes who were asymptomatic in clinical
assessment and neuropsychological testing (Slobounov
et al., 2011), and subtle changes have been detected even
1 year after an injury (McAllister et al., 2006). However, the
literature regarding the diagnostics of acute mTBI using
fMRI is scarce (McDonald et al., 2012).

Biomarkers of a brain injury (Fig. 1) can be detected in
the cerebrospinal fluid (CSF) and in the blood directly after
TBI (Zetterberg and Blennow, 2015). The blood-brain
barrier (BBB), which normally is almost impermeable, can
lose its integrity upon brain injury and allow the perme-
ation of molecules into the blood (Baskaya et al., 1997).
Alternatively, they may be transported to the blood via the
glymphatic system (Plog et al., 2015). Urine is sampled
noninvasively and can be an appropriate sample source in
decentralized field assay conditions. The route of bio-
markers from the brain to urine is indirect and contains
potential barriers and dilutive interfaces, yet markers of
brain injury have been found in urine (Rodriguez-
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Rodriguez et al., 2012; Ottens et al., 2014; Oliver et al.,
2015).

Recent review articles discuss the biomarkers of TBI
from various viewpoints, for example, comparison of body
fluids as a source of biomarkers, their diagnostic and
prognostic value, and the use of biomarkers in special
situations such as sports and military accidents (Jeter
et al., 2013; Yokobori et al., 2013; Zetterberg et al., 2013;
Strathmann et al., 2014; Kulbe and Geddes, 2016). The
timeline, or kinetics, of the emergence, persistence, and
decline of the biomarkers is a rising area of active re-
search. Acute biomarkers are valuable for the confirming
or ruling out a brain injury shortly after a head injury. On
the other hand, persistent biomarker levels can reveal a
past TBI event. This information can help a person to
avoid risky behavior that may result in a new head injury.
It can also provide evidence for juridical processes and
insurance claims related to an accident in which a head
injury has occurred. In this review, we briefly introduce
and discuss recent research and temporal courses stud-
ied on TBI biomarkers, focusing on body fluid samples
that are easily accessible for rapid and specific diagnos-
tics.

Biomarkers

Biomarkers of TBI in body fluids
S100B8

S1008 is one member of the calcium binding protein
family S100, which was first isolated from the bovine brain
in 1965 (Moore, 1965). A relationship between neurolog-
ical injury and S1008 was discovered by Michetti et al.
(1980). S100p is expressed in astrocytes and other neural
cells, but also in some cells of nonneural origin (summa-
rized by Donato et al. 2009). High S100p8 levels correlate
with mortality and unfavorable prognosis (Mercier et al.,
2013). However, S1008 is not brain injury specific: its
concentration increases in some other diseases and trau-
mas (Anderson et al., 2001; Undén et al., 2005; Studer
et al., 2015), as well as during intensive physical exercise
(Stocchero et al., 2014). A later sampling (12-36 h after
trauma) of S10083 has shown enhanced prognostic value
over early sampling (Thelin et al., 2013). Despite compro-
mises in brain specificity, S1008 has a good negative
predictive value, and it is getting attention as a clinical
marker to rule out a brain injury (Undén et al., 2013).

S1008 kinetics

A study by Rodriguez-Rodriguez et al. (2012) showed a
peak in serum <6 h after injury and thereafter a gradual
decrease until the end of the follow-up period (96 h).
Thelin et al. (2014) reported that a secondary peak (a new
rise even as low as 0.05 ug/l) detected in serum =48 h
after trauma strongly correlated with later pathological
findings in CT and MRI. A comprehensive kinetic model-
ing by Ercole et al. (2016) confirms that a relatively sharp
peak of S100B occurs in serum just 1 day after trauma
(mean time to peak, 27.2 h). S1008 has also been studied
in urine. A study showed a peak at admission (=6 h
postinjury) and a subsequent decrease until 48 h, after
which the concentration slightly increased until 96 h
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(Rodriguez-Rodriguez et al., 2012). Another study in urine
(pediatric patients) showed that S1003 peaked at a mean
of 55.3 h after injury (Berger and Kochanek, 2006). The
peak in serum appeared significantly earlier, at a mean of
14.6 h after injury. Overall, the concentration of S1008 in
the blood rises and peaks in some hours, but then it
decreases quite rapidly, since the half-life of S1008 in
serum is only on the order of 1.5 h (Townend et al., 2006).

Glial fibrillary acidic protein

Glial fibrillary acidic protein (GFAP) is an intermediate
filament protein that was reported for the first time in 1971
(Eng et al., 1971), and its relation to brain injuries was
elucidated later in animal studies (Latov et al., 1979;
Moore et al., 1987). GFAP is abundantly expressed in the
cytoskeleton of astrocytes, although some expression in
other types of cells has been discovered (Kasantikul and
Shuangshoti, 1989). However, several studies confirm the
high specificity of GFAP to brain injuries in comparison to
other biomarkers such as S1008 and neuron-specific
enolase (Honda et al., 2010; Papa et al., 2014, 2016b). The
concentration of GFAP in serum differs between patients
that have a GCS value of 3-5 and 13-15, and thus, GFAP
has diagnostic potential to discriminate between severe
and mild cases of TBI (Lee et al., 2015). Acute GFAP levels
correlate with the recovery and outcome of the patient
(Mannix et al., 2014; Takala et al., 2016), although in mTBI
cases, the predictive value was found to be weaker (Met-
ting et al., 2012).

GFAP kinetics

One of the earliest studies (Missler et al., 1999) mea-
suring GFAP in human blood reported that admission
samples (3-16 h postinjury) showed increased levels of
blood GFAP in 12 of 25 patients, with a mean concentra-
tion of 0.10 ng/l. Approximately 85% of the healthy con-
trols were below the detection limit of 0.010 ug/l. In 24-
and 48-h samples, GFAP was detectable in a smaller
number of patients, and the levels were only slightly ele-
vated. A more recent study (Lei et al., 2015), which fol-
lowed the levels of GFAP for 0-5 days after the injury,
reported that the peak was detected at admission (0.5-4
h). Zurek and Fedora (2012) monitored children that had
TBI, and they also found the highest levels of GFAP in the
admission samples drawn <12 h after injury. The GFAP
levels were much higher in nonsurvivors compared with
survivors; however, the temporal profiles were similar in
both groups during the 6-day follow-up period. Papa et al.
(2016a) monitored GFAP levels at short intervals in pa-
tients enrolled no more than 4 h after injury. They found
that GFAP was detectable in serum within 1 h, and the
peak appeared at 20 h in patients who had a mild or
moderate TBI. Other studies have also confirmed that
GFAP is detectable in serum as early as 1 h after the injury
(Papa et al., 2014, 2015b).

Neuron-specific enolase

Enolases are enzymes that catalyze the conversion of
2-phosphoglycerate into phosphoenolpyruvate in the gly-
colysis pathway. Evidence on the existence of a brain-
specific enolase came forth in the 1970s (Bock and
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Dissing, 1975; Rider and Taylor, 1975). Known as neuron-
specific enolase (NSE), +y-enolase, or enolase 2, the
neuron-specific isoenzyme consists of two vy-subunits
(yy) with a total molecular weight of 78 kDa. Increased
levels of NSE in the serum of TBI patients were first
observed in the early 1990s (Skogseid et al., 1992). A
recent meta-analysis reports that high concentrations of
NSE in serum is significantly associated with mortality and
unfavorable outcome (Cheng et al., 2014). Arisk related to
the use of NSE is that the samples may be contaminated
by enolases from hemolyzed red blood cells (Ramont
et al., 2005), although improved accuracy can be obtained
with a correction factor (Tolan et al., 2013). The presence
and diagnostic value of NSE is not clear in mTBI and
concussion, however, as a significant elevation of NSE in
the serum was detected after kicks to the head in karate
(Graham et al., 2015) but not in concussed ice hockey
players (Shahim et al., 2014).

NSE kinetics

Herrmann et al. (2000) reported that the temporal pro-
files of NSE in serum differed significantly between groups
with mTBI and moderate to severe TBI, but the concen-
tration came down to the normal level in 25-48 h even in
the severe TBI group. Further, in cases of DAl and intra-
cranial pressure, the peak of NSE appeared on the third
day. Zurek and Fedora (2012) also found different
severity-dependent profiles in children; whereas the con-
centration of NSE gradually decreased after injury in sur-
vivors, nonsurvivors had increasing NSE concentrations
during days 1 and 2. A recent study analyzed serum NSE
levels for 5 d after severe TBI (Olivecrona et al., 2015). The
initial NSE level (sampled on average 15 h postinjury)
reached ~19 pg/l and gradually decreased to ~8 ug/l
until day 5. The study also showed an association of NSE
levels with intracranial pressure, cerebral perfusion pres-
sure, and CT findings.

Ubiquitin C-terminal hydrolase-L1

Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1),
also known as protein gene product 9.5 (PGP 9.5), is a
27-kDa enzyme abundant in the soma of neurons.
UCH-L1 cleaves ubiquitin, a small regulatory protein
involved in labeling proteins for metabolism, from the C
terminus of its target proteins. UCH-L1 was discovered
in the 1980s and constitutes some 1-5% of the brain’s
total protein content (Doran et al., 1983; Wilkinson
et al., 1989).

Active research on UCH-L1 in the context of TBI has
emerged since the first decade of the 2000s (Siman et al.,
2009; Papa et al., 2010). UCH-L1 has been shown to be a
brain-specific biomarker, and its levels correlate with the
severity of TBI and outcome (Mondello et al., 2012b;
Takala et al., 2016). In mTBIs, the results are inconsistent;
Papa et al. (2012) reported that serum UCH-L1 levels
discriminate mTBls from controls, whereas some studies
were unable to show a sufficient discriminating power
between patients with mTBI and noninjured controls
(Berger et al.,, 2012; Puvenna et al.,, 2014). However,
UCH-L1 was shown to outperform GFAP and S10083
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when the goal was to reduce CT scans in patients with
mild to moderate TBI (Welch et al., 2016).

UCH-L1 kKinetics

The concentration of UCH-L1 in serum rises within a
few hours after injury, but the level also declines quite fast
(Brophy et al., 2011; Mondello et al., 2012b). In cases of
mild to moderate TBI, the concentration of UCH-L1 was
shown to peak in 8 h after injury, which was earlier than
the peak of GFAP (Papa et al., 2016a). The time window
for the detection of UCH-L1 was short, but the authors
discussed that the rapid rise of UCH-L1 enables the
assaying of TBI in point-of-care settings at the accident
site or in ambulances.

Neurofilaments

The neuronal cytoskeleton is mainly composed of neu-
rofilaments (NFs), which is one subcategory (Type IV) of
intermediate filaments. The three main proteins (NF sub-
units) that compose neurofilaments are named according
to their sizes: light (NF-L, 68-70 kDa), medium (NF-M,
145-160 kDa), and heavy (NF-H, 200-220 kDa). Neuro-
filaments are localized in the axon, and they regulate the
structure and diameter of a neuron (Trojanowski et al.,
1986). The phosphorylated form of the heavy subunit
(p-NF-H) is specific to axons and can be detected in the
blood with an immunoassay, thus being a potential bio-
marker of DAI (Shaw et al., 2005; Anderson et al., 2008).
Gatson et al. (2014) reported that the level of p-NF-H was
significantly increased in the serum of mTBI patients and
clearly distinguished patients from noninjured controls. It
was also shown that p-NF-H is a decent predictive marker
of outcome in adult TBI patients (Shibahashi et al., 2016).

NF kinetics

The kinetic profile of p-NF-H in serum differs somewhat
from that of many other biomarkers. Although several
biomarkers peak and then decline within a couple of days
after injury, the concentration of p-NF-H still increases.
The continuous increase was shown with a pediatric pop-
ulation during 6 consecutive days (Zurek and Fedora,
2012), and in another study within 4 up to 10 days after
injury (Vajtr et al., 2012).

Myelin basic protein

Oligodendrocytes and Schwann cells produce the my-
elin sheath of the axons. The myelin sheath contains lipids
and proteins, and the main protein component of the
myelin sheath is myelin basic protein (MBP), which com-
prises ~30% of myelin’s protein content. Myelination is
an age-dependent process, and thus the amount of my-
elin in the CNS varies between children and adults (Stein-
man, 1996; Paus et al., 2001). The relation of MBP to TBI
was discovered in the late 1970s (Thomas et al., 1978).
MBP has been found to correlate specifically with clinical
outcome (Yamazaki et al., 1995; Berger et al., 2005).

MBP kKinetics

MBP can be detected already 1.5-8.0 h after injury
(Yamazaki et al., 1995), but MBP peaks somewhat
slower than S1008 and NSE (Berger et al., 2005, 2006).
Serum MBP remains elevated for even up to 2 weeks
(Thomas et al., 1978). The time course of MBP was
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shown to be different in various types of TBI; in pedi-
atric patients, serum MBP peaks later in inflicted TBI
compared with noninflicted TBI (Berger et al., 2005,
2006). Specific temporal patterns thus may help in
distinguishing brain injury induced by child abuse from
accident-based brain injuries.

Spectrin breakdown products

Spectrin is a cytoskeletal protein that maintains cell
membrane integrity and cytoskeleton structure (De Mat-
teis and Morrow, 2000). Upon cellular injury, calpains and
caspases cleave spectrin to spectrin breakdown products
(SBDPs). Different SBDPs are present depending on the
type of cell death and the enzymes involved in the pro-
cess (Wang et al., 1998; Biki et al., 2000). A relevant
SBDP for brain injuries is calpain-derived N-terminal all-
spectrin fragment (SNTF), which can be readily detected
in concussions, but also in a subset of orthopedic injuries
(Siman et al., 2013, 2015).

SBDP kinetics

In concussed ice hockey players, the concentration of
serum SNTF increased above the prior measured pre-
season level 1 h after head injury. In persistent concussion
(=6 days), serum SNTF was increased as much as 2.5-
fold above the baseline and stayed elevated from 1 h to 6
days. The average of the 12- to 36-h postinjury serum
level showed the greatest accuracy in discriminating per-
sistent concussions from milder concussions whose
symptoms were alleviated within a few days (Siman et al.,
2015).

Tau

Tau is one of the microtubule-associated proteins
(MAPs) that were discovered in the 1970s (Weingarten
et al., 1975; Witman et al., 1976). Tau is a 48- to 68-kDa
protein that stabilizes microtubular assembly and is en-
riched in the axons of neurons, although it is not com-
pletely specific for the CNS (Goedert et al., 1989; Morris
et al., 2011). Upon cellular injury and activation of pro-
teases, tau is cleaved into fragments of 10-18 kDa and
30-50 kDa (cleaved tau or c-tau; Zemlan et al., 1999;
Gabbita et al., 2005). In addition, injuries lead to the
phosphorylation of tau, which in extreme cases results in
the aggregation of hyperphosphorylated fragments (tau
tangles) that are characteristic for neurodegenerative dis-
eases such as Alzheimer’s disease and chronic traumatic
encephalopathy (Simi¢ et al., 2016).

Clearly elevated levels of serum tau with reliable prog-
nostic value have been reported after severe TBI (Liliang
et al.,, 2010). In mTBI, serum tau levels were also in-
creased, but the difference from the noninjured controls
was not statistically significant (Bulut et al., 2006), and
weaker prognostic values have been reported (Bazarian
et al., 2006; Ma et al.,, 2008). However, new sensitive
assay techniques have shown enhanced diagnostic per-
formance for tau between injured and noninjured samples
and an advantage for the use of tau in cases where many
other biomarkers have failed to detect brain injury (Nese-
lius et al., 2013; Shahim et al., 2014; Olivera et al., 2015;
Rubenstein et al., 2015).
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Tau kinetics

Ultrasensitive immunoassays have revealed temporal
profiles of tau in blood. Among concussed ice hockey
players, the highest total tau levels in plasma were mea-
sured during the first hour after a concussion, and the
level declined already during the first 12 h. In addition, a
trend to a second peak at 36 h after concussion was
observed (Shahim et al., 2014). Phosphorylated tau re-
mains elevated in serum longer than total tau (Rubenstein
et al., 2015). Elevated levels of total tau in plasma were
measured among soldiers who had suffered TBI during
their deployment within the past 18 months, thus indicat-
ing that tau may serve as a long-term biomarker of an
earlier TBI event (Olivera et al., 2015).

Microtubule-associated protein 2

Microtubule-associated protein 2 (MAP2), like tau, be-
longs to the family of microtubule stabilizing proteins.
MAP2 is abundant in nerve cells and is believed to be
specific for neurons’ dendritic injuries (Garner et al.,
1988). Elevated levels of MAP2 were detected in the
serum of severe TBI patients at 6 months after injury
(Mondello et al., 2012a). Survivors of TBI had higher levels
of MAP2 than patients that had gone into a vegetative
state. The authors concluded that a severe TBI results in
a chronic release of MAP2, but it is also a marker of
remodeling and indicates emergence into the higher level
of consciousness for TBI patients.

MAP2 kinetics

MAP2 is a novel biomarker of TBI, and the above
6-month time point is the only temporal data on the
presence of MAP2 in human blood; it suggests that MAP2
can indicate a past TBI event. In human CSF, MAP2 was
found to be elevated within 6 h after injury, and the
concentration remained quite stable for at least 24 h
(Papa et al., 2015a).

Amyloid B

Amyloid precursor protein is a cell surface receptor and
a transmembrane precursor protein that is cleaved to
various peptides, including amyloid B (AB), which is a 36-
to 43-aa-long peptide abundant in amyloid plaques, char-
acteristic of Alzheimer’s disease (Vivekanandan et al.,
2011; Tharp and Sarkar, 2013). Abnormal concentrations
or altered structure of AB is neurotoxic. AB plaques have
been found in ~30% of TBI patients, and TBI is consid-
ered an independent risk factor for Alzheimer’s disease
(Roberts et al., 1994; Tsitsopoulos and Marklund, 2013).
Immunohistochemical staining has shown that the accu-
mulation of amyloid precursor protein in injured axons and
thus AB could be a biomarker of diffuse axonal injury
(Johnson et al., 2016).

Amyloid B kinetics

Using an ultrasensitive digital ELISA, Mondello et al.
(2014) found that AB,, rises in the plasma within the first
day after injury, and the level remains quite steady for at
least 6 d after injury. In contrast, one study reported no
change in the plasma AB,, level during a follow-up of up
to 11 days after severe TBI (Olsson et al., 2004).
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Table 1. Laboratory tests for the biomarkers reviewed in this article that are available in hospital laboratories.
Biomarker Sample Method Normal range Range in TBI
S1008 Serum IC <0.11 pg/l >0.11 ug/I?
NSE Serum Immunodetection From <17 to <25 ug/l, depending on age >20 pg/I?
based on ECL
CSF Immunodetection <15 pg/l 54.80 *+ 43.34 pg/I°
based on ECL
P-tau CSF ELISA <70 pg/mi N/A
Tau CSF ELISA <400 pg/ml 1684-8691 pg/mlI°®
AB-42 CSF ELISA >500 pg/ml <230 pg/ml®
<350 pg/ml°®
IL-6 Plasma IC <5.9 ng/l N/A
IL-8 Plasma IC <62 ng/l N/A
TNF-a Serum IC <8.1 ng/l N/A

The assays shown in the table respond to the head injuries and to the conditions of the central nervous system, but only S1008 has TBI as the main indica-
tion. The data were collected from the laboratory manuals of large hospitals in September 2016. IC, immunochemiluminescence; ECL, electrochemilumines-
cence; AB-42, amyloid-beta-42 protein. 2Reference values defined in clinical laboratories. PBrandner et al. (2013). “Magnoni et al.(2012). “Franz et al. (2003).

°Mondello et al.(2014).

Cytokines

Neuroinflammation is an essential part of the secondary
injury cascade after TBI. Several proinflammatory cyto-
kines and chemokines are upregulated, and they recruit
immune cells into the CNS and promote astrogliosis
(Hellewell et al., 2016). The CNS inflammatory response
initiates already a few minutes after injury, and proinflam-
matory mediators are highly elevated in situ, whereas
anti-inflammatory cytokines remain unchanged (Frugier
et al.,, 2010). Tuttolomondo et al. (2014) reported that
tumor necrosis factor (TNF)-«, especially, plays an essen-
tial role in mediating an immune response in TBI and
ischemic stroke. Interleukin (IL)-6 is considered another
central mediator in neuroinflammation; increased levels of
IL-6 in serum have been found after acute cerebral isch-
emia and correlated with poor functional and neurological
outcome (Fassbender et al., 1994). Also, elevated levels of
a small chemokine in plasma, chemokine CC ligand-2
(formerly monocyte chemoattractant protein 1) correlated
with the severity of TBI (Ho et al., 2012).

Cytokine kinetics

High levels of cytokines have been measured predom-
inantly in the CSF, where they peak within the first days
after injury and where the concentrations of several cyto-
kines are typically higher than in the blood (Kossmann
et al., 1997; Csuka et al., 1999; Maier et al., 2001). How-
ever, Santarsieri et al. (2015) found several inflammation
markers in significantly higher concentrations in the serum
than in the CSF. Similar kinetic trends as in the CSF have
been detected in the serum, i.e., peaking within the first
days, and also a mild secondary rise of IL-10 in the
second week (Csuka et al., 1999; Hayakata et al., 2004).
Elevated levels of several cytokines in serum were mea-
sured for >3 months after a TBIl, which indicate the
presence of chronic post-TBI inflammation (Kumar et al.,
2015).

Autoantibodies

Autoantibodies against brain proteins have been known
for some time; recently, they have gained interest in serv-
ing as diagnostic tools for CNS injury (Kobeissy and
Moshourab, 2015). Disrupted BBB due to TBI permits the

November/December 2016, 3(6) €0294-16.2016

leakage of brain proteins and their breakdown products
into the circulation, and in some cases, antibodies against
these released self-antigens are generated (Raad et al.,
2014). Autoantibodies remain in the blood quite a long
time, and therefore they present a new class of biomark-
ers for a past TBI event and chronic sequelae.

Autoantibodies against GFAP and its breakdown prod-
ucts have been recently reported in the context of TBI.
When the sera of severe TBI patients were screened using
brain immunoblots, a significant increase in the amount of
GFAP-specific antibodies was detected beginning at day
5 after TBI (Zhang et al., 2014). The concentrations of
GFAP-specific autoantibodies were found to be signifi-
cantly higher in TBI patients compared with healthy con-
trols at 6 months after injury (Wang et al., 2016). In
addition, autoantibodies against S1008 were detected in
the serum of football players during season (Marchi et al.,
2013). The autoantibody levels correlated with the S1003
levels measured shortly after each game. The players that
were enrolled in the study had suffered regular repeated
hits to the head but no concussion or TBI during the
game. The authors concluded that even subconcussive
hits disrupted the BBB and permitted the leakage of
S1008 into the blood and subsequent generation of au-
toantibodies.

Biomarkers of TBI in clinical laboratories

Of the biomarkers presented in this review, some are
available (Table 1) in hospital laboratories, according to
the laboratory manuals of large hospitals (Fimlab Labora-
tories Oy; Hospital District of Helsinki and Uusimaa; Hos-
pital District of Southwest Finland; University of Eastern
Finland, Brain Research Unit). Several laboratory assays
respond to TBI and other abnormal conditions of CNS.
However, S1008 is the only one that has TBI as the main
indication. The main indications of NSE are neuroblas-
toma and small cell lung cancer. Tau and AB are a bio-
markers of Alzheimer’s disease, and cytokines are general
biomarkers of inflammation and sepsis. The Scandinavian
Neurotrauma Committee has recommended the analysis
of serum S100p of head trauma patients who have a mild
injury (GCS 14-15) and can be sampled within 6 h after
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Figure 2. Kinetics of TBI biomarkers. Schematic representation shows the rise and decline of the TBI biomarkers for which
representative kinetic data were available in serum or plasma. Separate long-term values (months to weeks) are included when

possible.

injury (Undén et al., 2013). The concentration of 0.1 ug/lis
considered the cutoff for a CT scan (see Discussion). The
validation of these guidelines showed that approximately
one third of CT scans for mild TBI cases can be avoided
with little or no impact on patient outcome (Undén et al.,
2015). Diagnostic kits for S1003 are available from several
manufacturers; however, clinical comparison of kits’ per-
formance has shown that the results are not interchange-
able between different suppliers’ assays (Muller et al.,
2006; Hallén et al., 2008; Erickson and Grenache, 2011).

Nonclassic brain injury markers

The glymphatic system has been suggested to serve as
a clearance pathway of interstitial fluid and solutes from
the brain parenchyma, and also as a potential route of
brain injury biomarkers from the brain to the blood (lliff
et al., 2012; Plog et al., 2015). Interestingly, the pathway
itself is impaired after TBI as well. lliff et al. (2014) found
progressive impairment of CSF-interstitial fluid exchange
within the glymphatic pathway 1-28 days after TBI. The
dysfunction of the glymphatic system results in the accu-
mulation of tau and A, thus promoting the development
of neurofibrillary pathology and neurodegeneration. It may
be possible to assay the integrity of the glymphatic path-
way in vivo by using appropriate contrast agents, and this
might in the future serve as a highly sensitive novel indi-
cator of brain injury.

Discussion

We reviewed recent research on TBI biomarkers with
special focus on the time course of the markers in easily
accessible body fluids relevant for rapid diagnostics. The
usual approach in several studies is that the follow-up of
the biomarkers starts upon the admission of the patient to
the hospital and continues at various intervals for different
periods of time, typically a few days to ~1 week. The
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admission of the patient to the hospital and the time of the
first sampling occurs some time after the accident; thus
the first measures in the sequence represent a time point
of a few hours after injury at the least. There are hardly any
data on the very early kinetics of biomarkers in human
subjects because of the lack of rapid tests useful for
paramedics and ambulances. Several studies were made
on patients who had sustained moderate to severe TBI.
Concussions and mTBIs bear less cellular injuries, and the
overall release of intracellular molecules is lower, making
their measurement more demanding, especially in the
blood, because of barriers and dilution, which happens
when a molecule traverses from brain to the blood.

The time profiles of the biomarkers evidently represent
different molecular origins and release mechanisms.
Many biomarkers are released during the first burst upon
cellular injury and the concomitantly triggered degrada-
tion processes. Those markers peak early, within a few
hours, and then decline after the molecule-specific half-
life in the blood. Neuroinflammation and the emergence of
cytokines are somewhat slower processes, and therefore
cytokines peak in <48 h. Autoantibodies against brain
proteins rise slowly but stay elevated for a fairly long time.
The temporal profiles and the relative levels presented in
Figure 2 are approximate and must be read with consid-
eration in the absence of uniform data collection and
research methods. For example, the severity of TBI af-
fects the peak heights and durations.

Awareness of the temporal profiles of the biomarkers is
essential when defining and setting the most appropriate
diagnostic time window for sampling after injury. Further-
more, integrated area under the time-curve as a diagnos-
tic determinant, instead of just a single time point
measurement, can give advanced diagnostic perfor-
mance, as shown by Brophy et al. (2011). In addition, the
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trend between successive measurements indicates the
progression of the injury. For example, a TBI patient who
was originally considered a mild case showed continuous
increase of NSE and S100p until the patient died at 76 h
after admission. The mean values of those biomarkers, as
calculated from all patients of the group in the study,
showed descending trends, however (Herrmann et al.,
2000). This is something that frequently remains undis-
closed in several study reports; temporal profiles are
shown as mean values of the patient cohort or mean
values of patient categories (e.g., mild and severe
trauma), although follow-up of individual trends would
reveal some essential information that is hidden within the
mean values.

Recently published Scandinavian guidelines (Undén
et al., 2013, 2015) recommend for the first time to mea-
sure the biomarker S1008 in the serum of patients who
have sustained a mild head injury. The biomarker S10083
should be assayed in cases where the GCS is 14 and no
other risks are present, and when the GCS is 15 and the
patient has a history of loss of consciousness and re-
peated vomiting. The guidelines recommend that the pa-
tients mentioned above are admitted to CT imaging only
when the concentration of S1008 is =0.10 ug/l. This
approach reduces the number of CT scans by approxi-
mately one third and saves those patients from unneces-
sary exposure to radiation (Undén et al., 2015). The S100
assay has a good negative predictive value (Undén and
Romner, 2010; Asadollahi et al., 2015), meaning that a
negative value of S1008 quite reliably rules out brain injury
in any patient. Increased levels of S1008 may originate
from a brain injury, but also from lesions in some other
tissues. This means that a positive value of S1008 does
not necessarily confirm the presence of a brain injury,
especially in multitrauma patients (Sorci et al., 1999; Un-
dén et al., 2013; Gebhardt et al., 2016; Wolf et al., 2016).

TBI, its consequences, and other brain traumas are
admittedly gaining increasing awareness in society. The
detection of these conditions, as well as the overall as-
saying of brain status and recovery after injury, is not
unambiguous, however. Biomarkers that can be mea-
sured from body fluids in regular laboratory practice, or
even in decentralized conditions, can supplement diag-
nosis or perhaps serve as a new means of definitive
diagnosis for mild injuries. But, consensus and coherence
among TBI biomarkers is still missing, and S1008 is the
only one that is gradually being implemented into clinical
use. Some trends for the future can be seen, however, as
diagnostic technologies develop and can detect smaller
molecular quantities with higher resolving power. This can
bring some current biomarkers into new light. Second,
multiplexing—detection of several biomarkers in parallel
in one assay—has been adapted in TBI biomarker study
as well (Diaz-Arrastia et al., 2014; Di Battista et al., 2015).
Furthermore, proteomic (and other “-omic”) approaches
can discover new brain injury-related biomolecules which
can be harnessed and validated in time into new diagnos-
tic TBI biomarkers.
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