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Atherosclerosis is well known as an inflammatory disease that can lead to clinical complications such as heart attack or stroke. C-
peptide as a cleavage product of proinsulin is in the last few decades known as an active peptide with a number of different effects
on microvascular and macrovascular complications in type 2 diabetic patients. Patients with insulin resistance and early type 2
diabetes show elevated levels of C-peptide in blood. Several last findings demonstrated deposition of C-peptide in the vessel wall
in ApoE-deficient mice and induction of local inflammation. Besides that, C-peptide has proliferative effects on human mesangial
cells. This review discusses recently published proinflammatory effects of C-peptide in different tissues.

1. Structure of C-Peptide

C-peptide is a small peptide of 31 amino acids and short
half-life of approximately 30 minutes. It has been identified
by Steiner 1967 as a by-product of proinsulin and its main
role was in assisting in the arrangement of the correct
structure of insulin [1]. Proinsulin consists of an A chain,
connecting peptide (C-peptide), and B chain. C-peptide
has a central glycine-rich region which allows a correct
positioning of A and B chains for insulin to achieve its
tertiary structure [1]. It is secreted into the bloodstream
in equimolar amounts together with insulin in response to
glucose stimulation. C-peptide has been since a long time
considered as an inactive peptide. However, over the last two
decades, numerous studies revealed that C-peptide displays
a physiological role in different cell types [2, 3]. C-terminal
pentapeptide of C-peptide obtains the full activity of intact
C-peptide in stimulating Na*/K*-ATPase [4]. Amino acid
sequence of C-peptide is in different species relatively
variable, although it has several conserved sequence like N-
terminal acidic region, glycine-rich central segment, and
C-terminal pentapeptide [5]. Binding of C-peptide was
investigated by fluorescence correlation spectroscopy. The
authors find C-peptide binding to the cell membranes of
intact fibroblasts with the saturation at the physiological
levels of C-peptide [6]. Although C-peptide receptor remains

unknown, it has already been shown that C-peptide activates
signaling pathways in different cell types. For example, it
binds to pertussis-toxin-sensitive G-protein-coupled recep-
tor on Swiss 3T3 fibroblasts [7] and activates p38 protein
kinase pathway in mouse lung capillary endothelial cells
(8, 9]. Effects of C-peptide have a positive influence on long-
term complications in type 1 diabetic patients. C-peptide
has an impact on diabetic neuropathy via improvements of
endoneural blood flow and axonal swelling [10] or improves
decreased blood flow in extremities. [11]. Several studies
proposed direct role of endogenous insulin and C-peptide
in improvement of endothelial dysfunction [12]. Moreover,
C-peptide increases nitric oxide (NO) production through
ERK1/2 MAP kinase-dependent up-regulation of endothelial
nitric oxide synthase (eNOS) gene transcription [13].

The effects of C-peptide in type 2 diabetes and cell
proliferation are controversial. The metabolic syndrome,
prediabetes, and type 2 diabetes mellitus accelerate vascular
disease and increase development of the disease [14].

2. Proinflammatory Effects of
C-Peptide in the Vasculature

First reports about the C-peptide deposition in the vessel
wall came from Marx et al., when they demonstrated
deposition of C-peptide in the subendothelial space in


mailto:daniel.walcher@uniklinik-ulm.de

thoracic aorta in diabetic subjects [15]. In this study,
it was found the C-peptide deposition in intima of the
vessel wall in the thoracic aorta of diabetic subjects. From
21 subjects with deposition of C-peptide, 77% showed
infiltration of monocytes/macrophages and 57% infiltration
of CD4" lymphocytes [15]. In further studies, in vitro
migration assays reported that C-peptide induces migration
of CD4* lymphocytes and monocytes/macrophages in a
concentration-dependent manner. These effects were similar
to those induced by monocyte chemokine MCP-1 or T-
lymphocyte chemokine RANTES. Checkerboard analysis
in the same study shows that C-peptide induces chemo-
taxis rather than chemokinesis with maximal effect that
correspond to physiological concentrations of C-peptide
(I1nmol/L) [15, 16]. C-peptide mediates its chemotactic
activity in CD4" lymphocytes and in monocytes through
an as of yet unidentified pertussis toxin-sensitive G-protein
coupled receptor and stimulates specific intracellular signal-
ing pathways in these cells [17]. C-peptide stimulates similar
signaling pathways in different cell types. For example,
Nat/K*ATPase [4, 18], ERK1/2 MAP kinase, and PI-3 kinase
[9, 16, 19, 20]. Aleksic et al. revealed that activation of
PI-3 kinasey induced by supraphysiological concentrations
(10nmol/L) of C-peptide leads to an activation of Rho
GTPases. Rho, Racl, and Cdc42 are small GTP-binding
proteins with GTPase activity. Activation of Src-kinase and
RhoA, Rac-1, and Cdc42 GTPases act via PAKs (p21 acti-
vated kinase) and stimulate LIMK (LIM domain-containing
protein kinase), which phosphorylates and inhibits cofilin.
This leads to increased accumulation of polymerized actin at
the leading edge of cells. RhoA stimulates MLC (myosin light
chain) phosphorylation via ROCK (Rho kinase) activation
which is important for cell body contraction and migration
[17]. C-peptide positively controls the expression of the
PPARy-regulated CD36 scavenger receptor in human THP-
1 monocytes. Its stimulates PPARy activity in a ligand-
independent fashion and this effect is mediated by PI-3
kinase [21].

Further, effects of C-peptide on smooth muscle cell pro-
liferation have been investigated. Walcher et al. showed that
high levels (10 nmol/L) of C-peptide induces proliferation
of human and rat smooth muscle cells in concentration-
dependent manner assessed by Ki-67 assay and 3[H]
Thymidin assay. Extent of proliferation was similar to those
induced by platelet-derived growth factor (PDGF) [19].
In addition, C-peptide induces phosphorylation of protein
tyrosine kinase (Src) and PI-3 kinase. Further, it induces
activation of specific ERK1/2 MAP kinase [19]. VSMC
proliferation by extracellular stimuli takes place in mid-to-
late G; phase of the cell cycle, where D-type cyclins promote
G- to S-phase transition by leading to Rb phosphorylation
[22]. Walcher et al. showed that C-peptide increases cyclin
D1 expression and Rb phosphorylation that suggests that C-
peptide acts via similar signaling pathways [19]. In another
study, Insulin cannot alter endothelial cell (EC) proliferation
or migration, where 10nmol/L C-peptide stimulates EC
proliferation by 40% [23]. Proliferation effects of C-peptide
have been shown in different cell types, for example, like
endothelial cells, HEK293 cells, and chondrocytes. Lindhal
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et al. found that C-peptide stimulates rRNA synthesis
and induces expression of 47S in HCS-2/8 chondrocytes
derived from a human chondrosarcoma. This regulation of
ribosomal RNA provides amechanism by which C-peptide
can apply its transcriptional effects and its growth factor
activity [24].

Summarizing these results our group tested initial hy-
pothesis show on in the Figure 1(b). Patients with early
diabetes type 2 and insulin resistance show increased levels
of C-peptide in blood. Together with increased endothelial
dysfunction, this leads to deposition of C-peptide in the
intima of the vessel wall. According to the in vitro results,
C-peptide may have chemotactic effect on the inflammatory
cells involved in the onset of the atherosclerosis, like mon-
ocytes/macrophages and CD4*% lymphocytes. Further, C-
peptide has an effect on the proliferation of smooth muscle
cells in the media. These cells migrate into developing
atheroma and together with inflammatory cell recruitment
represent initial step in the developing of atherosclerosis.

To test the hypothesis in an animal model, we used ApoE
deficient mice. The animals were divided into two groups.
C-peptide group numbered 18, and placebo 17 mice per
group [25]. Subcutaneous injections (200 nmol/injection) of
dissolved peptide increased blood C-peptide levels 5 to 6
folds compared to basal levels (12.9 + 1.8 nmol/L compared
with 2.7 = 0.8 nmol/L; C-peptide versus placebo; P <
0.05). At the same time, mice were put on the Western
type diet to trigger atherosclerosis. C-peptide deposition
was found in the vessel wall of aortic arch and in
early atherosclerotic lesions (Figure 1(a)). Computer-assisted
image quantification revealed significantly higher deposition
of C-peptide in treated mice, compared to placebo one
(2.1 = 0.4 versus 0.8 = 0.1% positive area; P < 0.01)
treated with water. Similar results were obtained in the
aortic root (data not shown). This deposition of C-peptide
was followed with increased local inflammation in aor-
tic arch. After immunohistochemical staining, computer-
assisted image quantification showed increased infiltration of
monocytes/macrophages in the vessel wall. Further, we know
that diabetes accelerates smooth muscle cell proliferation
in atherosclerotic lesions and that it correlates with insulin
levels [26]. Smooth muscle cells and their secreted products
are the main components of advanced atherosclerotic lesions
[27]. Staining of aortic arch in ApoE—deficient mice for a-
actin showed increased content of smooth muscle cells in C-
peptide-treated group (C-peptide versus placebo; 4.8 + 0.6
versus 2.4 + 0.7% positive area; P < 0.01) as well as a trend
towards more Ki-67 proliferated cells in C-peptide treated
group [25]. Analysis of lipid deposition in placebo and C-
peptide treated mice revealed increased deposition of lipids
stained with Oil-red-O in C-peptide-treated mice compared
to placebo. Lipid deposition in en face preparations of the
abdominal and thoracic aorta in C-peptide-treated mice
did not reach statistical significance compared to placebo
mice (C-peptide versus placebo; 5.64 = 0.69% versus 3.98 +
0.5% P = 0.07) [25]. Proinflammatory effects of C-peptide
were obtained in the ApoE-deficient animals on top of a
high cholesterol diet. Effects of high cholesterol diet can
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FIGURE 1: C-peptide deposits in mouse aortic arch. Red areas represent C-peptide deposition indicated by arrow on the high power
view. Adjacent sections represent negative control and show no immunoreactive C-peptide areas (Figure 1(a)). Lower panel (Figure 1(b))
illustrates potential hypothesis about C-peptide effects in vessel wall. Patients with insulin resistance and type 2 diabetes show increased levels
of C-peptide in the blood. Together with endothelial dysfunction and increased endothelial permeability C-peptide deposits in the intima
of the vessel wall and from there induces recruitment of inflammatory cells and their migration into the subendothelial layer. C-peptide
deposits also in the media and has an effect on the proliferation of smooth muscle cells.

partly cover the proinflammatory effects of C-peptide in this
model.

Our study revealed no differences in E-selectin and
ICAM-1 levels as well as levels of the inflammatory markers
such as TNFa and soluble IL-6, that is, in contrast to several
findings where C-peptide has anti-inflammatory effects
and reduces upregulation of cell adhesion molecules under
inflammatory conditions [28, 29]. C-peptide is nowadays
recognized as an active peptide with various effects. Further
work is needed to identify C-peptide receptor and elucidate
mechanisms by which it modulates cell signaling in different

cell types. Different effects in type 1 and 2 diabetes seem to
be tissue and cell specific.

3. Proinflammatory Effects of
C-peptide in Kidneys

We already know that C-peptide administration in replace-
ment dose given to diabetic rats limits or prevents glomeru-
lar hypertrophy and mesangial matrix expression [30].
In several further studies, C-peptide reduces glomerular
hyperfiltration, hypertrophy, and proteinuria [31-33]. Lower
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FIGURE 2: C-peptide deposition in mouse juxtaglomerular apparatus. Upper panel: Representative photograph of mouse kidney sections
with C-peptide deposition in the glomeruli in C-peptide treated mice (Figure 2(a)). Red areas represented C-peptide deposition indicated
by arrow. On the lower panel is schematic explained the way C-peptide induces proliferation of mesangial cells suggesting a possible role of
C-peptide in glomerular hyperproliferation in patients with diabetic nephropathy (Figure 2(b)).

C-peptide levels are connected with increased albuminuria,
retinopathy, and nephropathy [34] whereas other studies did
not show relation between C-peptide levels and microangio-
pathic diabetic complications [20, 35]. In our previous work,
we demonstrate that C-peptide exhibits mitogenic activity
on human mesangial cells (MCs). High levels of C-peptide
(10 nmol/L) induce proliferation of kidney human mesangial
cells in a concentration-dependent manner assessed by Ki-67
assay with maximal induction of 2.6 + 0.4 folds. Further, pre-
treatment of cells with inhibitors PP2 (Src kinase inhibitor)

or PD98059 (MEK 1 inhibitor) decreases C-peptide-induced
human mesangial cell (MC) proliferation. As well, pretreat-
ment of cells with PI-3 kinase inhibitor wortmannin also
reduces human MC proliferation. These results suggest the
involvement of Src-kinase, ERK1/2 MAP kinase, and PI-3
kinase as downstream elements of the signaling pathway.
We further investigated the activation of signaling pathways
involved in C-peptide-induced proliferation of mesangial
cells. C-peptide activates phosphorylation of Src that leads to
activation of PI-3 kinase and involvement of ERK1/2 MAP
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kinase. High-concentration C-peptide (10 nmol/L) increases
phosphorylation of ERK1/2 MAP kinase in human MCs
in a time-dependent manner with a maximal effect after
10 minutes. Cyclin D activates cyclin-dependent kinase 4
(CDK4) during G1 phase that leads to phosphorylation of
retinoblastoma tumor suppressor protein (pRb) [36]. C-
peptide stimulation increases activation of cyclin D1 and
phosphorylation of Rb suggesting that C-peptide-induced
proliferation may use similar signaling pathways. These
results are in agreement with in vitro data of swiss 3T3
fibroblasts, where C-peptide has been shown to activate PI-
3 kinase [7]. Serum levels of C-peptide are associated with
the metabolic syndrome in patients with type 2 diabetes and
in diabetic patients with nephropathy and vascular disease
[37]. C-peptide is eliminated from the body by kidneys
[38]. In the period of insulin resistance and early type 2
diabetes increased levels of C-peptide are circulating through
glomeruli and could deposit in juxtaglomerular apparatus
and from there could demonstrate its mitogenetic effect on
mesangial cells.

The ApoE-deficient mouse model is a conventional
model for investigating atherosclerosis. These mice have
greatly increased plasma lipid levels [39]. Appearance of
atherosclerosis is similar to those in humans induced by
ApoE deficiency called type III hyperlipoproteinemia [40].
It is known that ApoE-deficient mice with increased hyper-
lipidemia demonstrates glomerular injury characterized
by glomerular endothelial cell activation and macrophage
recruitment [41]. Elevated levels of albumin in urine serve as
clinical predictors of diabetic nephropathy [42]. Apolipopro-
tein E modulates human mesangial cell proliferation depend-
ing on the length of stimulation and cell conditions [43]. It
has been shown that mice with increased hyperlipidemia in
plasma have an increased progression of renal disease [44].

Assuming in vitro effects of C-peptide on human MCs,
we further investigated deposition of C-peptide in mouse
juxtaglomerular apparatus. Longitudinal sections of mouse
kidneys were stained for C-peptide. Red areas in mouse
glomeruli demonstrate C-peptide deposition (Figure 2).
Quantitative analysis of C-peptide deposition in mouse
glomeruli of ApoE-deficient mice determined increased
deposition of C-peptide in glomeruli in C-peptide treated
mice compared with placebo (unpublished data). Our pre-
vious work illustrated that C-peptide induces proliferation
of mesangial cells, deposition in the intima and media of
the vessel wall in diabetic patients, and C-peptide-induced
proinflammatory effects in vascular cells. This resulted in
increased C-peptide deposition in juxtaglomerular apparatus
in C-peptide-treated mice. Still, the relevance of these results
to human atherosclerosis or diabetic nephropathy remains to
be determined.

4. Conclusion

In this review, we explained several proinflammatory effects
of C-peptide on the inflammatory cells in the vessel wall and
its mitogenic effects on the smooth muscle cells. Based on the
previous results, we demonstrated that C-peptide deposits

in the vessel wall in ApoE-deficient mice and induces local
inflammation that leads to increased lipid deposition in
aortic arch and increased proliferation of smooth muscle
cells, crucial processes in the onset of atherosclerosis. Further,
we explained an effect of C-peptide on the mesangial cell
proliferation that involves Src kinase, PI-3 kinase, and
ERK1/2 MAP kinase, and for the first time the deposition
of C-peptide in mouse kidney juxtaglomerular apparatus.
These results raise the hypothesis that C-peptide may have
a role in glomerular hyperproliferation in patients with
diabetic nephropathy.
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