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Abstract
The sharp rise in anthropogenic activities and climate change has caused the ex-
tensive degradation of grasslands worldwide, jeopardizing ecosystem function, and 
threatening human well-being. Toxic weeds have been constantly spreading in re-
cent decades; indeed, their occurrence is considered to provide an early sign of land 
degeneration. Policymakers and scientific researchers often focus on the negative 
effects of toxic weeds, such as how they inhibit forage growth, kill livestock, and 
cause economic losses. However, toxic weeds can have several potentially positive 
ecological impacts on grasslands, such as promoting soil and water conservation, 
improving nutrient cycling and biodiversity conservation, and protecting pastures 
from excessive damage by livestock. We reviewed the literature to detail the adap-
tive mechanisms underlying toxic weeds and to provide new insight into their roles 
in degraded grassland ecosystems. The findings highlight that the establishment of 
toxic weeds may provide a self-protective strategy of degenerated pastures that do 
not require special interventions. Consequently, policymakers, managers, and other 
personnel responsible for managing grasslands need to take appropriate actions to 
assess the long-term trade-offs between the development of animal husbandry and 
the maintenance of ecological services provided by grasslands.
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1  | FORE WORD

Toxic weeds refer to plants of secondary compounds which are toxic 
to livestock, wild herbivores, and human (James et al., 2005). Some 
toxic weeds accumulate toxins at high levels whose concentration 
can be influence by the inhabiting conditions (Zhao, Gao, Wang, 
He, & Han, 2013). The toxic principles mainly include toxic proteins, 
terpenoids, glycosides, alkaloids, polyphenols, and photosensitive 
substances (Zhao et al., 2013), which can be extracted and used as 
pesticides with remarkable pesticidal and antimicrobial activities 
(Chen et al., 2017; Gao et al., 2013; Zhang, Jin, et al., 2011). As an 
indicator of grassland health, toxic weeds have become increas-
ingly global in their distribution in recent decades indicating that 
the widespread land degradation is a serious issue that threatens 
the sustainable developmental goal of “no poverty, zero hunger” of 
the Food and Agriculture Organization of the United Nations (Sun 
et al., 2009; Wu, Han, Lu, & Zhao, 2016; Zhao et al., 2010, 2013). 
Furthermore, a longer growing season and warming induced by cli-
mate change will intensify the increases in the occurrence and pro-
duction of toxic weeds (Klein, Harte, & Zhao, 2007; Su et al., 2019; 
Ziska, Epstein, & Schlesinger, 2009).

There are approximately 1,300 toxic species in over 140 fam-
ilies covering approximately 33.3 million hm2 in China's natural 
grasslands (Shi & Wang, 2004; Zhao et al., 2010). They have been 
traditionally thought that the wide distribution of toxic weeds leads 
to pasture degeneration and thereby reductions of grassland forage 
availability (Wu et al., 2016; Zhao et al., 2013). Additionally, poi-
sonous weeds not only damage livestock breeding (Panter, James, 
Stegelmeier, Ralphs, & Pfister, 1999) but also poison—or even kill—
domestic animals if they are ingested by accident or if the pollen 
is inadvertently inhaled (Bourke, 2007; Braun, Romero, Liddell, & 
Creamer, 2003; Zhao et al., 2013), potentially resulting in substantial 
economic losses and hindering the sustainable development of the 
livestock industry (Guo et al., 2017). About 300 of the 1,300 spe-
cies of poisonous plants found in China exhibited negative effects 
on livestock (Shi, 1997). It is estimated that toxic weed poisoning re-
sults in direct or indirect economic losses of billions of CNY in China 
each year (Shi, 1997). The reduced grazing capacity and economic 
losses induced by toxic weed lead to lower resilience and increase 
in vulnerability of livelihoods that depend on livestock. Therefore, 
numerous approaches have been employed to control the spread of 
toxic weeds (Lu, Wang, Zhou, Zhao, & Zhao, 2012; Stokstad, 2013). 
However, most techniques have done little to eradicate estab-
lished plants, and some approaches may even have negative envi-
ronmental effects (Boutin, Strandberg, Carpenter, Mathiassen, & 
Thomas, 2014; Stokstad, 2013).

In fact, the spread of toxic weeds is not the reason for grassland 
degradation but a consequence of their strong adaptive capacity. 
Toxic weeds often have long and well-developed root systems to 
facilitate the capture of water and nutrients from deep soil profiles 
(Sun, Wang, Cheng, Chen, & Fan, 2014), inhibit the growth of co-oc-
curring plants via allelopathy (Yan et al., 2016), form intraspecific ag-
gregations that enhance their ability to compete with heterospecific 

competitors (Ren, Zhao, & An, 2015), and are not exposed to selec-
tion by livestock and small rodents (Zhao et al., 2013). From an eco-
logical perspective, the colonization of toxic weeds might be more 
beneficial than harmful by promoting the process of succession in 
degraded grasslands by excluding excessive disturbance from live-
stock (Cheng, Sun, et al., 2014). An improved understanding of the 
potential role of toxic weeds in grassland conservation will challenge 
the traditional view that toxic weeds are uniformly deleterious and 
will enable pasture managers and policymakers to modify and design 
more flexible strategies for addressing global change and promoting 
sustainability. Here, we conduct a review of the literature to detail 
the fitness and potential effects of toxic weeds. These findings pro-
vide novel insight into the adaptive management of weed-dominated 
grasslands.

2  | ADAPTATIONS OF TOXIC WEEDS

In addition to the effects of natural factors, such as soil physiochemi-
cal properties and topographical conditions (Hou, Zhao, Li, Zhang, & 
Ma, 2013; Li et al., 2013), toxic weeds are most commonly a prod-
uct of overgrazing and grassland degeneration. Previous studies 
have revealed that the population gradually increases and becomes 
dominant in plant communities as grassland degradation and graz-
ing intensity increase (Li, Jia, & Dong, 2006; Ricciardi et al., 2017; 
Wang et al., 2016; Zhang, Yue, & Qin, 2004; Zhang, Yue, Qin, & Xue 
bin, 2004). This pattern is mostly due to that toxic weed has various 
strategies including higher genetic variation, well-developed roots, 
allelopathy effect, and poisonous for herbivores adapting to envi-
ronmental stress and anthropogenic disturbance.

2.1 | Adaptive strategies to the environment

A large number of toxic weeds are long-lived perennial species with 
self-incompatible mating systems and therefore generally have high 
genetic variation, which facilitates adaptive evolution to various en-
vironmental conditions and contributes to their wide geographic dis-
tribution (Bruijning, Metcalf, Jongejans, & Ayroles, 2020; Ghalambor, 
Mckay, Carroll, & Reznick, 2007; Zhang, Zhang, Li, & Sun, 2015). For 
example, Stellera chamaejasme inhabits a wide range of altitudes 
from 130 to 4,200 m, including a broad area from southern Russia 
to southwest China and the western Himalayas, which is sugges-
tive of high adaptability (Figure 1). The various morphological and 
physiological traits of toxic weeds promote increases in the fitness 
to harsh environmental conditions, such as drought, cold, or barren 
soils (Kraft et al., 2015; Wang et al., 2016; Wong et al., 2004). As 
shown in Figure 2, leaves of these weeds are often lanceolate with 
thick waxy layers that tolerate prolonged drought conditions (Dou, 
Feng, & Hou, 2013). Moreover, many toxic weeds can capture water 
and nutrients from deeper soil profiles via their long and deeply dis-
tributed roots (Sun et al., 2009). Additionally, rhizobacteria has been 
found to stimulate the growth of these weeds by optimizing nutrient 
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supplies and promoting plant metabolism and systemic resistance 
under unsuitable growth conditions (Cui et al., 2015; Hui et al., 2018; 
Lehmann et al., 2011; Lugtenberg & Kamilova, 2009). Endophytic 
bacteria also make some toxic weeds more tolerant to abiotic stress 
(Hyde & Soytong, 2008; Jin et al., 2014; Sieber, 2007).

Toxic weeds follow the optimal partitioning rule wherein 
plants partition photosynthate among their various organs to 
maximize growth rate in different habitats (Chapin, Bloom, Field, 
& Waring, 1987; Sun et al., 2019). For example, some toxic weeds 
have been observed to allocate more biomass to hydrotropic roots 
under drought stress (Sun et al., 2014). In addition, plant body size 
decreases at higher elevations to reduce nutritional needs in less 
resource-rich environments; however, more photosynthetic prod-
ucts are allocated to flowers at higher elevations to enhance repro-
ductive success (Zhang, Zhao, Ma, Hou, & Li, 2013). High altitudes 
make some toxic weeds produce fewer, but larger, flowers with 
color polymorphisms to attract pollinators in adverse environments 
(Zhang, Zhao, et al., 2015; Zhang et al., 2013) where low tempera-
tures and strong winds discourage insect activity (Zhang, Zhang, 
& Sun, 2011). Also, the number of branches on toxic weeds is re-
duced and plant height is increased in north-facing compared with 
south-facing slopes, suggesting that toxic weeds allocate more pho-
tosynthate to vertical growth than to horizontal growth in response 

to competition for light (Hou, Zhao, Yu, Qian, & Ma, 2014). The phys-
iological responses of toxic weeds also show signatures of adapta-
tion to resource-constrained conditions. For example, toxic weeds 
have higher rates of water use and proline concentrations which 
is conducive to a stronger resistance against adversity stress in 
south-facing slopes with arid environments (Hou, Liu, & Sun, 2017; 
Liu & Ma, 2010). However, those in north-facing slopes with weaker 
light intensities have higher chlorophyll contents and photosynthetic 
efficiencies (Liu, Zhao, Zhang, Li, & Shao, 2017).

2.2 | Interspecific relationships

Owing to their wide niche breadth, toxic weeds can successfully 
coexist with several other plant species (Cheng, Chen, Yang, Xu, 
& Wang, 2014; Ren, Zhao, & An, 2013). Unlike the shallow-rooted 
graminoids whose roots horizontally extend in the surface soil 
(Wang, Wang, Long, Jing, & Shi, 2004), toxic weeds are mostly axial-
root species which deeply root, and thus can absorb water and nu-
trients from much deeper in the soil compared to forages (Li, Niu, 
& Du, 2011; Maguire, Sforza, & Smith, 2011; Sun et al., 2014). Such 
interspecific differentiation in the acquisition of soil resources allevi-
ates competition and permits co-existence with heterospecific plants 

F I G U R E  1   Global distribution of S. chamaejasme based on previously published records (Liu, Long, & Yao, 2004; Wang, 2004; Wang & 
Gilbert, 2007; Zhang, Volis, & Sun, 2010; Zhao et al., 2010), primarily including southern Russia, North Korea, Mongolia, Nepal, and northern 
and southwestern China
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(Fargione & Tilman, 2006; Ryel, 2010; Xin et al., 2012). Nevertheless, 
perennial toxic weeds are usually tall and thus superior competi-
tors for light resources relative to shorter plant species (Craine & 
Dybzinski, 2013; Hautier, Niklaus, & Hector, 2009; Li et al., 2016). In 
addition, individuals often aggregate to form patches that facilitate 
intraspecific cooperation, enhance their competitive ability, and pro-
mote their expansion (Gao & Zhao, 2013; Ren et al., 2015; Sun, Ren, 
& He, 2011). As a consequence, patches of heterospecific plants that 
are separated by toxic weeds often are not able to survive in the 
presence of competitively superior toxic weeds (Zhao, Gao, Wang, 
Sheng, & Shi, 2016).

The allelopathy is an important competitive behavior of some 
toxic weeds that inhibits the growth of their surrounding receptor 
plants (Figure 3). Most studies on allelopathy were done under lab-
oratory conditions which is a serious caveat in allelopathy research. 
Here, we sorted the studies done under both laboratory and field 
conditions, and found that the primary phytotoxic mechanisms were 
regulated via the following two pathways. First, allelochemicals (e.g., 
flavonoids, coumarins, and phenolic compounds) can inhibit mitosis 
(Yan et al., 2016), reduce chlorophyll content (Pan, Li, Yan, Guo, & 
Qin, 2015), disrupt root development (Yan et al., 2014), promote 
the overproduction of proline (Yan et al., 2016), inhibit germina-
tion (Cheng et al., 2011), reduce endogenous auxin content (Yang 
et al., 2011), and promote reactive oxygen species accumulation 
(Pan et al., 2015; Yan, Zeng, Jin, & Qin, 2015).The second pathway is 
the arrest of sexual multiplication by pollen allelopathy (Sun, Luo, & 

Wu, 2010). Interestingly, phytotoxic effects increase with age; that 
is, older plants are superior competitors compared with younger 
plants (Wei, Zhong, Xu, Du, & Sun, 2017).

Notably, the allelopathy effects of toxic weeds exhibit species 
specificity; for example, S. chamaejasme has strong inhibitive ef-
fects on some species including Setaria viridis, Amaranthus retrof-
lexus (Pan et al., 2015), Pedicularis kansuensis (Hou, Chen, Ren, Du, 
& Shang, 2011), Festuca rubra L., Medicago sativa (Guo et al., 2015), 
Melilotus suaveolens Ledeb (Wang, Zhou, & Huang, 2009), and 
Onobrychis viciifolia (Zhou, Huang, Wang, Liu, & Hui-Fang, 2009), 
while other species such as Agropyron mongolicum (Wang, Zhou, 
Huang, Liu, & Hu, 2008), Psathyrostachys juncea (Zhou, Huang, 
Wang, Liu, & Hu, 2009), Elymus dahuricus (Zhou, Wang, Huang, & 
Liu, 2010), and Lolium perenne (Wang, Zhou, et al., 2009) show re-
sistance against the allelopathy effect of S. chamaejasme. Therefore, 
these species can be used to restore degraded grasslands inhabited 
by toxic weeds.

2.3 | Weed-animal interactions

Toxic weeds are more resistant to grazing than grasses favored 
by herbivores, especially when available forage is limited (Ren, Li, 
Ouyang, Ma, & Dai, 2016). They also exhibit superior tolerance to 
physical breakdown because of their tenacious capacity to regen-
erate once damaged (Li et al., 2008). Endophytic fungi can protect 

F I G U R E  2   Plants, flowers, 
and landscapes of the toxic weed 
(S. chamaejasme). (a) plants of 
S. chamaejasme in an alpine grassland; 
(b) plants of S. chamaejasme in a typical 
grassland; (c) S. chamaejasme outside the 
fence; (d) white flower of S. chamaejasme; 
(e) landscape of S. chamaejasme in an 
alpine grassland; (f) landscape pattern of 
S. chamaejasme in a desert grassland taken 
by an unmanned aerial vehicle

(a) (b)

(c) (d)

(e) (f)
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plants from nematodes, insect pests, and fungal pathogens (Barillas, 
Paschke, Ralphs, & Child, 2007; Jin et al., 2013). Furthermore, the 
toxic compounds of these weeds are capable of poisoning or killing 
small rodents and play a vital role in protecting toxic weeds from 
animals and pathogens (Yan et al., 2015). The content of toxic sub-
stances is highest in leaves, which is the vegetative organ most likely 
to be consumed by herbivores. Furthermore, the content of toxic 
substances dramatically increases in response to trampling and con-
sumption by livestock, which reduces the grazing intensity on toxic 
weeds (Zheng & Hu, 2006). The texture and color of toxic weeds are 
also striking (Figure 2), which likely aid the identification, recogni-
tion, and classification of toxic weeds by animals as distasteful and 
indigestible food items.

In response to long-term overgrazing and selective foraging, pal-
atable grasses would exhibit a dwarfing tendency, restricting their 

ability to utilize natural resources (Evju, Austrheim, Halvorsen, & 
Mysterud, 2009). However, the number of reproductive branches 
and individual florets of toxic weeds increase to ensure reproductive 
success under grazing condition (Han, Chen, & G. Y., Sun, J. & li, J. 
P., 2006). The grazing-induced reduction of interspecific competi-
tion also contributes to the dominance of toxic weeds in plant com-
munities (Ren et al., 2016). In addition to grazing duration, grazing 
intensity also affects the distribution of toxic weeds, which often ag-
gregate when grazing is intense but are randomly distributed when 
grazing is especially intense (Xing & Song, 2002; Zhao, Gao, Sheng, 
Dong, & Zhou, 2011). Thus, the intraspecific relationship shifts from 
being mutualistic to competitive depending on the intensity of graz-
ing (Ren & Zhao, 2013).

Reproductive strategies of toxic weeds with high survival 
rates include floral traits, such as the brilliant terminal flower head 

F I G U R E  3   Conceptual graph of the adaptive strategies of toxic weeds for environmental stress (yellow background), competition from 
other plants (blue background), and animal disturbance (orange background). Fine dotted arrow = impacts of environmental conditions; thick 
blue dotted arrow = intraspecific and interspecific relationships; thick orange dotted arrow = interactions between plant and animals
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(Figure 2d). For instance, the flower colors of Iris lacteal, Gentiana 
sino-ornata, Consolida ajacis, Anaphalis sinica are in sequence laven-
der, purple, blue, and while, which increase reproductive success by 
attracting pollinators (James et al., 2005; Zhang, Zhang, et al., 2011). 
Additionally, the seeds are hard and long-lived and the seedlings are 
capable of exploiting grazed areas with reduced competition from 
palatable grasses (Zhao et al., 2013). The proportion of old plants in 
grasslands increases with grazing intensity. In addition, old individ-
uals have a higher fecundity and produce larger quantities of seeds 
compared with younger plants (Xing, Gou, & Wei, 2004). Thus, the 
breadth and density of the soil seed bank increases as the intensity of 
grassland degradation rises, enhancing the ability of the population 
to regenerate (Du, Zhao, Song, & Shi, 2015; Zhao & Zhang, 2010).

3  | POTENTIAL ECOLOGIC AL EFFEC TS OF 
TOXIC WEEDS

Traditionally, toxic weeds are not only thought to cause economic 
losses to livestock production but are also thought to do great harm 
to grasslands and lead to their degradation (James et al., 2005; Lu 
et al., 2012; Zhao et al., 2013). However, this parochial view may 
neglect the manifold ecological roles that toxic weeds can play as im-
portant natural components of grassland ecosystems. For instance, 
toxic weeds can provide a number of ecological, social, and economic 
benefits by improving soil quality, protecting forage resources, and 
promoting the sustainable development of grasslands.

3.1 | Effects on soils

Regarding soil and water conservation, the well-developed root sys-
tems of toxic weeds can fix sand and capture nutrients from soils 
with coarser textures (Wang, 2001; Wong et al., 2004). Grazing and 
grassland degradation induce reversed vegetation succession with 
deterioration of plant community structure from palatable grasses 
to toxic weeds (Wang, Long, Wang, Jing, & Shi, 2009; Wu, Du, Liu, 
& Thirgood, 2009). Even so, compared to bare land, grassland cov-
ered by toxic weeds is more susceptible to erosion from strong wind 
and rain (Zhang et al., 2004). On the other hand, toxic weeds signifi-
cantly increase the water content of the soil surface under drought 
conditions (An et al., 2016). The higher coverage of plants shields 
topsoil from solar radiation and decreases evaporation (Mchunu & 
Chaplot, 2012); moreover, the soil infiltration rate is relatively high 
as a result of a well-developed root system, stimulating rainfall stor-
age (Song, Dong, Liu, & Liu, 2018).

In addition to the physical protection that they provide to 
grasslands, toxic weeds have remarkable effects on soil nutrient 
pools and can create fertile islands (Sun et al., 2009) (Figure 4). 
Toxic weeds produce more litter as a consequence of their in-
creased growth and because they lose less tissue through grazing. 
Toxic weeds are also more labile and have higher tissue nitro-
gen and lower lignin nitrogen compared with other species (An 
et al., 2016). Soil microorganisms also contribute to the turnover 
rate and nutrient availability. Soil microbial biomass and soil en-
zyme activities are higher in toxic weed patches than in areas 

F I G U R E  4   The potential ecological 
effects of toxic weeds on grassland 
ecosystems (purple background), soil 
(yellow background), and co-existing 
plants (green background)
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between these patches (An et al., 2016). Overall, the protection 
and improvement of soil by toxic weeds provide a superior mate-
rial basis for plant growth and benefit the recovery of degraded 
grasslands.

3.2 | Effects on co-occurring plants

It is commonly assumed that toxic weeds have negative effects on 
the quantity of forage via allelopathy, thereby decreasing grassland 
productivity (Pan et al., 2015). However, toxic weeds actually pro-
vide biotic refuges and keep surrounding herbaceous species away 
from livestock in overgrazed grasslands (Figure 4). Cheng, Sun, et al. 
(2014) found that the number of species and the coverage of neigh-
boring plants are noticeably higher in plots with toxic weeds than in 
those in open grasslands. There are two principal means by which 
toxic weeds can facilitate the proliferation of neighboring plants in 
overgrazed pastures. First, the toxic smell could repel livestock and 
thus reduce the ingestion and trampling of edible forage surrounded 
by toxic weeds (Oesterheld & Oyarzabal, 2004). Second, toxic weeds 
alter the surrounding micro-environmental conditions. For example, 
toxic weeds can redistribute soil nutrients, form fertility islands (Sun 
et al., 2009), and create a cool environment that promotes soil mois-
ture retention via the height of the plant canopy (Rebollo, Milchunas, 
& Chapman, 2002). All of these micro-environmental changes 

provide better soil conditions and microclimates for plant growth. 
Additionally, the niche overlap between toxic weeds and fine herb-
age is smaller than that between toxic weeds and unpalatable weeds, 
reflecting the lower degree of competition between toxic weeds and 
edible forage (Ren et al., 2013).

3.3 | Potential ecological roles in 
degraded grasslands

From a successional perspective, the spread of toxic weeds is a con-
sequence of their high adaptability rather than a cause of grassland 
degeneration. As an important part of the grassland ecosystem, 
toxic weeds improve plant community structure in degraded pas-
tures (Tan & Zhou, 1995) and play a crucial role in preventing further 
desertification of degraded grasslands (Wang et al., 2016). Animals 
usually avoid poisonous toxic weeds, which inherently suppresses 
excessive disturbance by livestock when overgrazing occurs. The 
unfounded removal of toxic weeds might lead to ecosystem collapse 
(Figure 5) because grazing pressure on pasture is greater without 
the protection that toxic grasses provide (Holechek, 2002; Wang, 
Wang, Cheng, & Hou, 2014). This hypothesis is potentially consistent 
with previous studies that report that the degree of degradation of 
mowed grasslands was greater than that of grazed grasslands inhab-
ited by toxic weeds (Li et al., 2008; Wang & Gilbert, 2007).

F I G U R E  5   The processes of grassland succession. ① Grassland degrades as a result of climate change and human activities; ② Toxic 
weeds invade as a consequence of their many adaptations to disturbed environments; ③ Degraded grassland recovers under the protection 
of toxic weeds from excessive destruction; ④ Livestock and rats destroy degraded grasslands by the excessive removal of toxic weeds; 
⑤ The grassland ecosystem collapses and desertification occurs as a consequence of the excessive damage. Red solid arrows indicate the 
positive feedback loop with toxic weeds. Yellow dotted arrows indicate the negative feedback direction that occurs in the absence of toxic 
weeds
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Furthermore, the presence of toxic weeds provides an essential 
means by which the coverage of vegetation can be maintained and 
the ecological functions of degraded grassland can be preserved 
(Figure 5), although these should be considered some of their “bet-
ter-than-nothing” effects. Toxic weeds provide an important gene 
pool, and their invasion increases the diversity of insects and inver-
tebrates, facilitating the maintenance of biodiversity (Sun, Chen, 
Zhao, & Long, 2013). Consequently, degraded grassland with toxic 
weeds does not require any special interventions aside from con-
trolling grazing intensity or limiting the overgrowth of toxic weeds 
(Holechek, 2002). In support of these effects, the occurrence of 
toxic weeds is inhibited by the absence of grazing (Ren et al., 2016). 
The potential process and underlying mechanism are as follows: 
First, residual yak dung deposition accelerates the proportional in-
crease in graminoids and promotes the transformation of grasslands 
to gramineous communities following the exclusion of grazing (Mou 
et al., 2013). Moreover, grasses will recolonize and regain prevalence 
due to the maintenance of local genetic variation and because they 
can regenerate rapidly through the production of a large number of 
seeds (Cheng, Sun, et al., 2014; Liu & Ma, 2010). We hypothesize 
that degraded grassland ecosystems will eventually be restored and 
become prosperous again following a long period of self-healing 
(Figure 5).

4  | CONCLUSIONS AND FUTURE 
PROSPEC TS

An improved understanding of toxic weeds is valuable for the sus-
tainable management of grasslands and for meeting the 2030 Global 
Land Degradation Neutrality Target set by the United Nations 
Convention to Combat Desertification (Toth, Hermann, Silva, & 
Montanarella, 2018). This review provides an understanding of the 
adaptive abilities of toxic weeds and presents a new interpretation 
of their role in degenerated grassland ecosystems. Here, we argue 
that toxic weeds can provide self-protective mechanisms of de-
graded pastures and promote their resilience. In some cases, taking 
no action might be cost-effective to taking actions that end up doing 
more harm than good. The blind removal of toxic weeds through the 
promotion of increased grazing will likely expose pastures to exces-
sive damage, jeopardizing ecosystem balance. Thus, robust grassland 
management requires policymakers, managers and other personnel 
to continuously monitor and evaluate the long-term trade-offs be-
tween the development of livestock farming and the maintenance of 
multiple ecological services.

The limitation of this paper is that we focused on the potential 
positive effects of toxic weeds which have been largely neglected 
by conventional wisdom. Notably, an objective justification to treat 
these poisonous species differently must be based on the trade-off 
of their positive and negative effects considering many aspects. 
However, due to the limited availability of studies, we were unable to 
make a quantitative assessment of the negative and positive effects 
of toxic weeds. Subsequent studies should allocate more efforts to 

quantify and assess the trade-off between positive and negative ef-
fects of poisonous species, so as to adopt adaptive grassland man-
agement dealing with the presence of toxic weeds.
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