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A B S T R A C T   

In the mature brain, structural and functional ‘fingerprints’ of brain connectivity can be used to identify the 
uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from 
others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human 
Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to 
assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the 
congruence of the later structural connectome to the initial connectivity matrix derived from the earlier time-
point. In contrast, similarity between functional connectomes of the same subject at different time points was 
low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the 
functional connectome. These results suggest that structural connectivity is more stable in early life and can 
represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears 
to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to 
their new environment.   

1. Introduction 

Advances in neuroimaging technology have provided new means to 
investigate the human brain in vivo. This has enabled characterisation of 
connectomes delineating the structural and functional organisation of 
the brain at a macro-scale. These connectomes can be represented as 
large-scale matrices where each row and column correspond to brain 
subunit indices which may be structural or functional nodes, so that 
each matrix element describes ‘connectivity’ between two neural parts 

(Sporns, 2010; Sporns et al., 2005). The information contained in the 
functional and structural connectome of an individual is highly specific 
to that person and has been compared to a personal ‘fingerprint’ (Finn 
et al., 2015; Yeh et al., 2016). Although, the functional connectome has 
been demonstrated to be highly stable over multiple years after late 
adolescence (Horien et al., 2019), a delay in establishing a distinctive 
functional connectome through adolescence has been linked to mental 
health difficulties (Kaufmann et al., 2017). However, the structural and 
functional connectome of an infant differ from older age groups (Cao 
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et al., 2017b), and the extent to which either is stable (i.e., reproducible 
at the level of the individual) is unknown. A better understanding of the 
extent of malleability of a given property of an individual’s brain and its 
relation to outcomes may guide personalised approaches to optimise 
child neurodevelopmental health. 

The developing brain is governed by dynamic processes that trans-
form an amalgam of a few cells in early gestation into a complex organ 
capable of rapidly processing and integrating information. The foetal 
period is marked by cortical migratory processes, with anomalies at this 
stage frequently leading to neuronal migration disorders and atypical 
brain structure (Kostović et al., 2014; Ten Donkelaar and Van der Vliet, 
2004). A hallmark of the third foetal trimester is a change in the relative 
proportion of short and long range association fibres (Ouyang et al., 
2019). These fast-changing microscopic developmental mechanisms 
quickly lead to reshaping of macrostructural features, which can be 
captured with Magnetic Resonance Imaging (MRI). For example, despite 
ongoing rapid growth, cortical folding features show remarkable high 
similarity between scans of the same subject across the first year 
following birth, suggesting a high self-similarity in cortical macro-
structure between birth and the first 2 postnatal years (Duan et al., 
2020). However, the stability of structural/functional network metrics 
and whether the connectome is ‘individual’ in early life has not been 
previously investigated. This is important to understand because, 
although the structural and functional connectome are highly 
inter-related and complimentary in adults (Sarwar et al., 2021), they 
represent models of brain connectivity with distinct developmental in-
fluences (for a review see Suárez et al., 2020). 

Useful information about the perinatal brain and its subsequent 
maturation has already been acquired. In the perinatal brain, in parallel 
with structural changes, cortical neurons fire specific activity patterns 
which further regulate genetic expression and refine structure into 
functional systems (Kirkby et al., 2013; Tau and Peterson, 2010). Highly 
connected structural and functional nodes/hubs are crucial for infor-
mation flow and further evolve as myelination matures (Morgan et al., 
2018). A striking difference between the neonatal and the adult brain is 
that functional hubs, highly interconnected regions, are more restricted 
to somatosensory, auditory, visual and motor regions, unlike the higher 
order networks seen in adults (Cao et al., 2017a). In childhood, the 
identification accuracy of the functional connectome at rest has been 
estimated to be at 43% (Vanderwal et al., 2021), relative to 92% re-
ported in adults (Finn et al., 2015), suggesting acquiring functional di-
versity and consequent uniqueness is part of the trajectory towards 
adulthood. However, the structural connectome fingerprint has only 
been investigated in adults and been shown to be relatively plastic 
globally but very stable within specific white matter bundles, such as the 
corpus callosum (Yeh et al., 2016). On the contrary, the neonatal brain is 
still immature and differs from the adult one, so it is possible that nature 
and extent of identifiable features of individuals’ structural and func-
tional connectomes that are stable over time also differ. 

Here, we investigate whether a structural and/or functional finger-
print is already established perinatally, by assessing the similarity of the 
structural and functional connectome of preterm born infants, who were 
scanned soon after birth and then again at term equivalent age. Unlike 
adults, the maturing brain is highly dynamic and undergoing rapid 

reorganisation. Therefore, we hypothesised that connectome similarity 
would be lowest when the time between scans was longest. In addition, 
brain activity becomes experience-driven during this early postnatal 
period and experiences increase daily as the infant interacts with the 
world ex-utero (Greenough et al., 1987; Khazipov and Luhmann, 2006). 
Thus, we also hypothesised that this constantly changing functional 
activity leads to experience-dependent changes in the functional con-
nectome upon a (relatively) stable structural connectome. 

2. Methods 

2.1. Subjects 

Research participants were prospectively recruited as part of the 
developing Human Connectome Project (dHCP), an observational, cross- 
sectional Open Science programme approved by the UK National 
Research Ethics Authority (14/LO/1169). Written consent was obtained 
from all participating families prior to imaging. 

As part of the dHCP, a total of 63 subjects were scanned twice and 
had both functional and diffusion MRI data acquired. After pre- 
processing, 18 diffusion datasets were discarded due to poor registra-
tion to template space, resulting in a total of 45 subjects (26 males) with 
good quality diffusion MRI data. All infants were born preterm at a 
median of 32.29 weeks gestational age (GA) [range: 25.57–37], with 
their first scan acquired at a median of 35 weeks post menstrual age 
(PMA) [range: 29.29–37.43] and the second acquired at term equivalent 
age at a median of 41 weeks PMA [range: 38.43–44.86]. From the 
functional data, 18 subjects were discarded due to poor registration to 
template space and additional 14 had to be discarded due to significant 
signal loss during acquisition. Thus, there was a total of 31 subjects (21 
males) with good quality functional connectome data, born at a median 
of 34.57 weeks GA [range: 27.57–37.00], had their first scan at a median 
of 35.57 weeks PMA [range: 30.86–37.43] and had their second scan at 
a median of 40.57 weeks PMA [range: 38.86–44.57]. The final sub- 
group with both good quality structural and functional data consisted 
of 26 subjects (16 males), born at a median age of 34.14 weeks [range: 
28.71–37.00], with their first scan acquired at a median of 35.43 weeks 
PMA [range: 31.43–37.43] and the second acquired at a median of 40.93 
weeks PMA [range: 38.86–44.86] (details described in Table 1). 

2.2. Data acquisition 

All subjects underwent Magnetic Resonance Imaging (MRI) scanning 
at the Evelina Newborn Imaging Centre, St Thomas’ Hospital, London, 
UK. Structural, diffusion and functional data was acquired using a 3 
Tesla Philips Achieva system (Philips Medical Systems, Best, The 
Netherlands) with customised neonatal imaging system including a 32- 
channel phased-array head coil (Rapid Biomedical, Rimpar, Germany) 
(Hughes et al., 2017). Infants were studied during natural sleep 
following feeding and immobilisation in a vacuum evacuated bag 
(Med-Vac, CFI Medical Solutions, Fenton, MI, USA). Hearing protection 
(moulded dental putty in the external auditory meatus (President Putty, 
Coltene Whaledent, Mahwah, NJ, USA) and earmuffs (MiniMuffs, Natus 
Medical Inc., San Carlos, CA, USA)) and physiological monitoring 

Table 1 
Descriptive sample characteristics (median [range]).  

Group GA at birth [weeks] PMA - scan 1 [weeks] PMA - scan 2 [weeks] 

Structural, n=45 (26 males) 32.29 [25.57–37.00] 35.00 [29.29–37.43] 41.00 [38.43–44.86]  

Functional, n=31 (21 males) 34.57 [27.57–37.00] 35.57 [30.86–37.43] 40.57 [38.86–44.57]  

Structural and functional, n=26 (16 males) 34.14 [28.71–37.00] 35.43 [31.43–37.43] 40.93 [38.86–44.86]   
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(oxygen saturations, heart rate, axillary temperature) were applied 
before data acquisition. MR-compatible foam shielding was used for 
further acoustic noise attenuation. All scans were supervised by a 
neonatal nurse and/or paediatrician who monitored heart rate, oxygen 
saturation and temperature throughout the scan. 

A total of 300 volumes of diffusion MRI were acquired over 19 min 
and 20 s with b-values of 400 s/mm2, 1000 s/mm2 and 2600 s/mm2 

spherically distributed in 64, 88 and 128 directions respectively, with 20 
b = 0 s/mm2 images and parameters: Multiband factor 4, SENSE factor 
1.2, partial Fourier 0.86, acquired in-plane resolution 1.5 × 1.5 mm, 3 
mm slices with 1.5 mm overlap, repetition time (TR)/ echo time (TE) of 
3800/90 ms and 4 phase-encoding directions (Hutter et al., 2018). After 
reconstruction, image resolution was 1.5 mm isotropic. 
High-temporal-resolution BOLD fMRI optimised for neonates was ac-
quired over 15 min 3 s (2300 volumes) using a multislice gradient-echo 
echo planar imaging (EPI) sequence with multiband excitation (multi-
band factor 9), TR 392 ms, TE 38 ms, flip angle 34◦, and acquired spatial 
resolution 2.15 mm isotropic (Price et al., 2015). For clinical interpre-
tation and registration purposes, a Turbo spin echo sequence (parame-
ters: TR = 12 s, TE = 156 ms, SENSE factor 2.11 (axial) and 2.54 
(sagittal)) was used to acquire high-resolution T2-weighted (T2w) im-
ages. The T2w axial and sagittal volumes originally acquired at 0.8 ×
0.8 mm, 1.6 mm slices with 0.8 mm overlap were motion corrected and 
super-resolved to a final resolution of 0.8 mm isotropic (Cordero-Grande 
et al., 2018). 

2.3. Image pre-processing and connectome construction 

A neonatal specific segmentation pipeline (Makropoulos et al., 2014) 
was used to obtain tissue segmentation of each subject’s T2w images in 
native space. A neonatal adaptation (Shi et al., 2011) of the AAL atlas 
(Tzourio-Mazoyer et al., 2002) aligned to the dHCP high-resolution 
neonatal template (Schuh et al., 2018) was used to parcellate each 
subject’s brain into 90 cortical and subcortical regions. Previously 
calculated tissue segmentation and T2w images were used as input for a 
non-linear registration based on a diffeomorphic symmetric image 
normalisation method (SyN) available in ANTS software (Avants et al., 
2011) to bring the 90 regions neonatal atlas into the subject’s native 
space (Supplementary Table 1). 

Pre-processing of diffusion MRI data and structural connectome 
construction was performed as previously reported (Taoudi-Ben-
chekroun et al., 2022). Briefly, after hybrid SENSE reconstruction (Zhu 
et al., 2016), diffusion signal was denoised (Cordero-Grande et al., 
2019), and susceptibility distortions were corrected (Andersson et al., 
2003). A spherical harmonics and radial decomposition (SHARD) 
slice-to-volume reconstruction was applied to further correct motion 
effects and other artefacts (Christiaens et al., 2021). The N4 algorithm 
(Tustison et al., 2010) implemented in MRtrix (Tournier et al., 2019) 
was applied for bias field correction. Multi-tissue CSD (Jeurissen et al., 
2014) using restricted anisotropic diffusion for brain tissue and free 
diffusion for fluid like features (Pietsch et al., 2019) was used to estimate 
fibre orientation distribution (FOD) in each brain voxel. Response 
functions for each tissue type were generated as the average from the 
response functions in an independent sub-group of 20 healthy term 
control neonates from the dHCP (Taoudi-Benchekroun et al., 2022). 
Multi-tissue log-domain intensity normalisation (Raffelt et al., 2017) 
was applied to FODs, and normalised brain tissue like FODs were used to 
generate 10 million streamlines with anatomically constrained proba-
bilistic tractography (Smith et al., 2012) with biologically accurate 
weights (SIFT2) (Smith et al., 2015). The fibre density SIFT2 propor-
tionality coefficient (μ) for each subject was obtained to achieve 
inter-subject connection density normalisation. Atlas parcellation and 
tissue maps in T2w native space were registered to diffusion space with a 
rigid registration using b = 0 volumes as target (Schnabel et al., 2001). 
The structural connectome of each infant was constructed in native 
diffusion space, by calculating the μ × SIFT2-weighted sum of 

streamlines connecting each pair of regions into a weighted adjacency 
matrix of size 90 × 90. 

For functional data, all 2300 volumes of fMRI data acquired per 
participant were utilised without undergoing any scrubbing. Mean 
subject-wise framewise displacement (FD) was calculated to character-
ise motion in each time point (Supplementary Fig. 3A). In addition, we 
examined the relationship between global self-similarity and motion to 
take into consideration the potential effect of motion on the functional 
fingerprint (Supplementary Fig. 3B–D). Data were pre-processed using 
the Developing Human Connectome Project pipeline optimised for 
neonatal fMRI, detailed in (Fitzgibbon et al., 2020). In brief, suscepti-
bility dynamic distortion together with intra- and inter-volume motion 
effects were corrected in each subject using a bespoke pipeline including 
slice-to-volume and rigid-body registration (Andersson et al., 2017). In 
order to regress out signal artefacts related to head motion, cardiore-
spiratory fluctuations and multiband acquisition, 24 extended 
rigid-body motion parameters were regressed together with 
single-subject ICA noise bespoke components identified with the FSL FIX 
tool (Oxford Centre for Functional Magnetic Resonance Imaging of the 
Brain’s Software Library, version 5.0) (Salimi-Khorshidi et al., 2014). 
Atlas parcellation and tissue maps were propagated from T2w native 
space using a boundary-based registration (Greve and Fischl, 2009). 
Average timeseries of each of the previously parcelled ROIs intersecting 
with GM regions were calculated in native fMRI space. Functional 
connectivity (FC) was calculated as the Pearson’s correlation of the 
signal between each pair of ROIs resulting in a matrix of size 90 × 90. 
Pearson’s correlation was selected as FC metric for consistency with 
previous fingerprinting literature (Finn et al., 2015; Vanderwal et al., 
2021). In order to account for potential effects due to using different FC 
metrics in FC identifiability, additional functional connectivity matrices 
were also constructed using partial correlation between each pair of 
ROIs, controlling for the signal in the rest of the ROIs. Partial correlation 
was chosen as additional metric because it has been characterised as the 
best performing FC measure compared to Pearson’s correlations, which 
appear highly correlated with motion (Mahadevan et al., 2020). Nega-
tive correlations were not considered and set to zero. 

2.4. Similarity analysis 

2.4.1. Global similarity – identifiability rate quantification 
To identify the optimal network density threshold for structural and 

functional connectome similarity, we tested the percentage of correctly 
identified subjects for all possible thresholds (Supplementary Fig. 1). 
Based on this analysis, highest similarity value was obtained at many 
threshold values between 18% and 34%, which consistently identified 
the same set of subjects. Given there were no differences on similarity, 
we applied a 25% network density threshold to the structural and 
functional connectomes at time-point 1 for each subject. This connec-
tivity matrix was then binarized and used as a mask for the connectivity 
matrix in time-point 2 ensuring that the same inter-regional connections 
were compared between the two time points. Spearman’s correlation 
between each matrix at time-point 1 and time-point 2 was calculated, 
resulting in a similarity matrix of 45 × 45 subjects for structural con-
nectivity and 31 × 31 subjects for functional connectivity. If the self- 
similarity between time-point 1 and time-point 2 (diagonal correla-
tion) was higher than the self-to-other-similarity, this was quantified as 
a successful match (Finn et al., 2015). 

For visualisation purposes, all similarity values were normalised by 
scaling relative to the maximum correlation between time-point 1 and 
all other subjects at time-point 2 dividing by the maximum value in each 
row (i.e., for each row, value of 1 indicated the maximum match be-
tween time-point 1 and time-point 2). As shown in Fig. 1 this scaling 
results in a value of 1 in the diagonal when self-similarity is higher than 
any self-to-other-similarity value. If the value of 1 is not in the diagonal 
it indicates self-to-other-similarity is higher than self-similarity. 

The same analysis was repeated for a sub-group of participants that 
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had both structural and functional connectome data. This resulted in 
two 26 × 26 matrices containing structural and functional data, char-
acterising the identifiability rate for the two modalities in the same in-
dividuals. The diagonal values of these matrices were extracted to 
provide median and range of structural and functional self-similarity. 

2.4.2. Age effect on self-similarity and self-to-other-similarity 
In order to assess the effect of age in the structural and functional 

fingerprint, we first calculated the partial correlation between PMA at 
scan at time-point 1 and self-similarity (controlling for days between 
scans), and then the partial correlation between days between scans and 
self-similarity (controlling for PMA at time-point 1) for the whole group 
in each modality. Then, for the sub-group we converted the self- 
similarity and the self-to-other-similarity into z-scores for better visu-
alisation of the effect of age on self-similarity. If the self-similarity z- 
score of a subject was higher than any of the self-to-other-similarity z- 
score, this would be equivalent to successfully matching a subject be-
tween time-point 1 and time-point 2, as in previous fingerprinting 
studies (Finn et al., 2015). 

To further characterise the effect of age on self-similarity, we ran a 
general linear model analysis with PMA at time-point 1 and days be-
tween scans as independent variables and self-similarity as dependent 
variable. This allowed quantification of the beta coefficients of the age 
effect on self-similarity. To characterise self-to-other-similarity associ-
ation with age difference between time-point 1 and time-point 2, we 
performed a linear mixed-effects model (LME) with days between scans 
as fixed effect and with subject at time-point1 dependent random effect 
for the intercept to account for repeated measures. 

2.4.3. Regional analysis 
Given the distinct trajectories of maturation of subcortical and 

cortical regions, we repeated all the analysis described above in 7 
clusters that represent larger anatomical areas: central, frontal, limbic, 
occipital, parietal, deep grey matter and temporal. These regions were 
composed of 8, 22, 14, 14, 10, 8, and 14 nodes respectively. The central 
cluster was composed of bilateral precentral and postcentral gyrus, 
paracentral lobules and supplementary motor areas. The frontal cluster 
was composed of superior, middle, inferior and orbitofrontal cortices, as 
well as the olfactory lobule and the rectus gyrus. The limbic cluster was 
composed of the insula, anterior and posterior cingulate, hippocampus 
and amygdala. The occipital cluster was composed of the calcarine, 
cuneus, lingual cortices together with superior, inferior and middle oc-
cipital gyrus and the fusiform. The parietal cluster was composed of the 
superior and inferior parietal gyrus, supramarginal, angular and pre-
cuneus gyrus. The deep grey matter cluster was composed of all basal 
ganglia structures and thalami. The temporal cluster was composed of 
the Rolandic operculum, the Heschl gyrus, and superior, middle and 
interior temporal cortices as well as the temporal poles. Supplementary 
Table 1 contains all 90 regions of the atlas and to which cluster they 
belong to. This allowed to calculate similarity identifiability rates, 
similarity z-scores and age linear models for each regional cluster. 

3. Results 

3.1. Whole-brain similarity 

The structural connectome comparison between the scans at preterm 

Fig. 1. Structural and Functional global similarity. The correlation between the connectome of each subject at time-point 1 and 2 normalised by the maximum 
similarity to time-point 2 (each column) is depicted in the similarity matrix for structural connectivity (A) and functional connectivity (C). The correlations are then 
plotted against days between scans with a colour gradient showing the age of the subject at time-point 1 for structural data (B) and functional data (D). The stars 
represent the correlation between the connectome of a subject at time-point 1 with the connectome of the same subject at time-point 2 (i.e., self-similarity), and the 
dots represent the correlation of a subject at time-point 1 with a different subject at time-point 2 (i.e., self-to-other-similarity). 
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and term equivalent ages yielded strong correlations not only among the 
scans of the same subject but also between the scans of different subjects 
(Fig. 1AB). The mean self-similarity was r = 0.90, ranging from r = 0.67 
to r = 0.96, and the mean self-to-other-similarity was r = 0.88, ranging 
from r = 0.65 to r = 0.94. The identifiability rate was 28/45 (62.22%), 
representing the percentage of times self-similarity was higher than the 
self-to-other-similarity. Furthermore, we found a significant correlation 
between PMA at first scan and self-similarity values (i.e., the older a 
subject was at the first scan, the more “self-similar” their structural 
connectome was between scans), controlling for days between scans 
(r = 0.49, p = 0.006). 

The functional connectome comparison showed less consistent re-
sults (Fig. 1CD). The correlation values between scans were lower 
compared to structural connectome similarities. The mean self- 
similarity was r = 0.56, ranging from r = 0.21 to r = 0.70, and the 
mean self-to-other-similarity was r = 0.54, ranging from r = 0.17 to 
r = 0.73. Thus, the identifiability rate for functional connectome simi-
larity was 3/31 (9.68%). We observed no significant correlation be-
tween PMA at first scan and functional self- similarity, but there was a 
significant negative correlation between functional self-similarity and 
days between scans (r = − 0.39, p = 0.03). The same similarity rate was 
observed when testing partial correlation FC, 3/31(9.68%). However, 
mean self-similarity was just r = 0.12, ranging from r = 0.04 to 
r = 0.19, and mean self-to-other-similarity was r = 0.11, ranging from 
r = 0.02 to r = 0.22 (Supplementary Fig. 2 C–D). Similarity rate was 
lower for both Pearson (2/31(6.45%)) and partial correlation (1/31 
(3.24%)) when no thresholding or masking was applied (Supplementary 
Fig. 2 A–B and E–F). 

Closer inspection of the self-similarity for the structural and func-
tional connectivity in a sub-group of participants with data available in 
both modalities confirmed that all subjects had higher similarity be-
tween their structural connectomes than their functional connectomes. 
The median structural self-similarity was r = 0.93, ranging from 
r = 0.89 to r = 0.96, and the median functional self-similarity was 
r = 0.55, ranging from r = 0.21 to r = 0.69. The identifiability rate for 
structural data was 18/26 (69.23%), in contrast with 3/26 (11.54%) for 
functional data (Fig. 2). As the structural and functional data examined 
were from the same individuals, age and time between scans was exactly 
matched. 

Finally, we converted the self-similarity and self-to-other-similarity 
values into z-scores for each subject and sorted them based on age at 
time-point 1 to better visualise whether older subjects have a more 
identifiable whole-brain structural connectome (Fig. 3). Results show 

that the structural connectome was more stable than the functional 
connectome against variations on age or time between scans. 

3.2. Age effect on sub-group similarity 

The general linear model analysis for the sub-group with both 
structural and functional data further showed that age at time-point 1 
has a significant effect on global structural connectome self-similarity 
(β = 0.006, p = 0.008). We observed no significant effect of days be-
tween scans on structural connectome self-similarity; and no effect of 
age at time point 1 or days between scans on global functional con-
nectome self-similarity (Table 2). 

The LME analysis showed age at first scan also has a significant effect 
on global structural connectome self-to-others-similarity (β = 0.006, 
p < 0.001), but there was no significant effect of days between scans. 
Unlike what was observed for self-similarity, both days between scans (β 

Fig. 2. Self-similarity for structural and functional connectivity. The similarity correlation between the structural connectivity (SC) matrices between scans (blue) and 
between the functional connectivity (FC) matrices (red) is plotted against age at first scan (A) and against days between scans (B). 

Fig. 3. Self-similarity and self-to-other-similarity z-scores arranged by PMA. The 
boxplots show the similarity scores between time-point 1 and time-point 2 
converted to z-scores for each participant arranged from left to right (youngest 
to oldest at time-point 1). The stars represent self-similarity and the circles 
represent self-to-other-similarity. The upper row depicts structural connectome 
similarity (A) and the bottom row shows functional connectome similarity (B). 
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= − 0.001, p = 0.003) and age at time-point 1 (β = 0.023, p < 0.001) 
had a significant effect on global functional connectome self-to-others- 
similarity. 

3.3. Regional similarity 

Regional comparison of structural connectomes showed lower 
identifiability rate compared to the global metrics. The limbic cluster 
(insula, cingulate, hippocampus and amygdala) showed highest identi-
fiability rate at 11/45 (24.44%), followed by frontal regions at 10/45 
(22.22%), occipital at 7/45 (15.56%), central at 5/45 (11.11%), both 
parietal and deep GM at 4/45 (8.89%) and temporal at 3/45 (6.67%). 

Functional connectome comparisons yielded similar identifiability 
rates compared to whole-brain metrics. They were still qualitatively 
lower than structural similarity identifiability rates, except for the pa-
rietal cluster. Central and parietal regions showed the highest identifi-
ability rate of 3/31 (9.68%). Limbic regions showed an identifiability 
rate of 2/31 (6.45%) and frontal, occipital, sub-cortical and temporal 
clusters showed an identifiability rate of 1/31 (3.23%) (Fig. 4). 

Closer qualitative inspection of the self-similarity for the structural 

and functional connectivity in the sub-group of participants with both 
structural and functional connectomes showed structural and functional 
self-similarity closer together in the central cluster and more dispersed 
in the frontal cluster (Fig. 5). However, functional similarity identifi-
ability values were always lower than structural identifiability rates in 
this sub-group. 

3.4. Age effect on regional self-similarity 

The generalised linear model run independently for each cluster in 
the sub-group with both structural and functional data showed that age 
at time-point 1 has a significant effect on functional connectome simi-
larity in the parietal region after Bonferroni correction (β = 0.088, 
p = 0.003). We observed no significant effect of age or days between 
scans on any other cluster for functional nor structural self-similarity 
after multiple comparisons correction (Table 2). 

4. Discussion 

In the current study we used a unique set of longitudinal high quality 

Table 2 
Beta coefficients and p-values for the effect of age at scan and days between scans on self-similarity.   

Structural Connectivity (SC) Functional Connectivity (FC)  

PMA at scan (time-point 1) Days between scans PMA at scan (time-point 1) Days between scans  

β p β p β p β p 

global  0.00611  0.01  -0.00058  0.01  0.02413  0.15  -0.00265  0.08 
central  0.00126  0.72  -0.00024  0.44  -0.03211  0.06  -0.00258  0.09 
frontal  0.00031  0.91  -0.00044  0.07  0.02662  0.31  -0.00270  0.25 
limbic  0.00444  0.28  -0.00069  0.07  0.01875  0.28  -0.00187  0.23 
occipital  -0.00107  0.74  -0.00046  0.13  0.06104  0.01  -0.00007  0.97 
parietal  -0.00002  1.00  0.00029  0.60  0.08789  <0.01  0.00174  0.47 
sub-cortical  -0.00150  0.61  -0.00019  0.47  -0.00186  0.91  -0.00069  0.64 
temporal  0.00216  0.44  -0.00015  0.56  0.01117  0.54  -0.00041  0.80  

Fig. 4. Structural and Functional cluster-wise similarity. Normalised similarity matrices together with plots to depict the association of the similarity correlation with 
days between scans underneath are shown for structural connectivity (A, B) and functional connectivity (C, D). These figures are presented in different columns for 
different anatomical clusters: somatosensory-motor or central region, frontal, limbic, occipital, parietal, deep grey matter, and temporal. 
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Fig. 5. Regional self-similarity for structural and functional connectivity 
cluster-wise. The structural self-similarity (blue) and the functional 
self-similarity (red) is plotted against age at first scan (PMA at time- 
point 1) in the first column and against days between scans in the 
second column for central (A), frontal (B), limbic (C), occipital (D), 
parietal (E), deep grey matter (F) and temporal (G) cluster. Grey lines 
provide visual guidance to match structural and functional similarity 
values of the same subject.   
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structural and functional neonatal brain MRI data from the Developing 
Human Connectome Project to investigate the status of the connectome 
fingerprint at an early stage of neurodevelopment. To do so, we selected 
data from preterm born infants that were scanned soon after birth and 
then again at term equivalent age. Our results show that the whole-brain 
structural connectome can already identify an older individual at birth. 
In contrast, the whole-brain functional connectome changes more 
noticeably between scan timepoints, so individual identification is less 
stable based on their functional connectome regardless of their age at 
birth or time between scans. 

4.1. A structural connectivity fingerprint is present during the perinatal 
period 

During the perinatal period, the brain undergoes marked micro and 
macrostructural changes (Batalle et al., 2017; Kunz et al., 2014; Pietsch 
et al., 2019). Nevertheless, our observations suggest that by the normal 
time of birth, an individual’s brain structural connectome is relatively 
stable. This suggests that the individual template of structural connec-
tivity is predominately genetically determined, in the absence of an 
external insult. Consistent with this, macroscale structural white matter 
tractography has been shown to be highly heritable with axial diffu-
sivity, radial diffusivity and fractional anisotropy of commissural fibres 
found to have the highest genetic influence and association fibres the 
least (Lee et al., 2015). By term equivalent age, the neonatal brain has an 
established framework of thalamocortical fibres, a large abundance of 
u-shaped cortico-cortical fibres, and visible long range association 
pathways such as the cingulum bundle and callosal fibres (Takahashi 
et al., 2012). The abundance of u-shaped cortico-cortical fibres at term is 
in line with an early establishment of cortical folding patterns that 
remain individually unique throughout the first two postnatal years 
(Duan et al., 2020). Thus, the acquisition of a stable structural con-
nectome appears to coincide with the attainment of more mature brain 
structural appearance and may therefore be a marker of maturity. This 
fits with the observed relationship between higher structural con-
nectome self-similarity and an older age at the time of the first scan. 
Alongside self-similarity, we also observed high self-to-other-similarity 
values in the structural connectome which likely represents the devel-
opment of common macroscale features (structural connectivity 
backbone). 

4.2. Functional connectivity fingerprints are immature in preterm born 
infants 

Task-based fMRI studies in neonates have demonstrated that the 
primary sensory cortices (e.g. somatosensory, auditory, olfactory and 
visual) are capable of processing external stimuli and are undergoing 
activity-dependent maturation during the perinatal period (Adam-dar-
que et al., 2018; Allievi et al., 2016; Anderson et al., 2001; Arichi et al., 
2010; Baldoli et al., 2015; Dall’Orso et al., 2018; Lee et al., 2012; Perani 
et al., 2010). Resting state studies have reported significant 
age-dependent increases in functional short-range connectivity in the 
somatosensory, visual, auditory and language networks throughout the 
perinatal time window, further suggesting rapid functional plasticity 
and maturation within these systems (Cao et al., 2017a). These changes 
in local degree centrality may represent functional reshaping of primary 
resting state networks that resemble adult networks by term equivalent 
age, while higher-order association networks appear immature (Eyre 
et al., 2021). Such fast reorganisation across multiple functional systems 
during the perinatal time window may explain why we observed such 
few cases where self-similarity was higher than self-to-others-similarity. 

Our results markedly contrast with those of previously reported work 
in children. To our knowledge, the youngest previously investigated 
population for connectome similarity analysis to date has been a sample 
of 6-year-old children, where they reported an identification rate of 43% 
between resting state functional connectomes (Vanderwal et al., 2021). 

Another study in children aged 7–15 years reported high correlation 
coefficients between functional connectivity matrices of the same 
participant, almost on par with adult similarity values (Horien et al., 
2019). A potential argument for these differences could be the metric 
used, given that using partial correlations for FC in adults have yielded 
higher identifiability rates in comparison to Pearson’s correlation or 
dynamic connectivity (Menon and Krishnamurthy, 2019). However, we 
observed no differences in similarity rates between partial correlations 
and Pearson’s correlation. While our results indicate that a functional 
connectome fingerprint is barely present in preterm born infants in the 
perinatal period, future studies should investigate whether identifi-
ability differs in term born infants and when this starts to increase be-
tween infancy and childhood. 

An additional factor that should be considered is the impact of mo-
tion artefacts on functional connectivity (Mahadevan et al., 2020; Parkes 
et al., 2018). Adult studies have reported low identifiability based on 
motion parameters relative to functional connectivity self-similarity, 
suggesting motion is not contributing to high identifiability (Finn 
et al., 2015). However, we observed a negative correlation of mean FD 
with global functional self-similarity (Supplementary Fig. 3C–D). This 
correlation was absent when we selected a subgroup of subjects with 
mean FD lower than 0.3 at both timepoints (Supplementary Fig. 4B–D). 
These observations suggest motion may be an additional factor 
contributing to low functional fingerprinting capacity observed in our 
sample. The functional connectome might thus appear more stable in a 
sample with low motion estimates. Nevertheless, we have shown func-
tional connectivity self-similarity is consistently lower than structural 
connectivity self-similarity in this population (Fig. 2), even for subjects 
with low mean FD motion estimates (Supplementary Fig. 4E–F) sup-
porting our hypothesis that functional fingerprint is immature in pre-
term babies. 

4.3. Impact of age at first scan and days between scans on similarity 

To disentangle the impact of inter-scan interval and age at first scan 
on similarity of the structural and functional connectome, we examined 
a sub-group of 26 neonates who had both data types. We observed a 
significant effect of age at time-point 1 on the global structural self- 
similarity. This effect might be determined by the individual-specific 
developmental trajectory of white matter microstructure and not 
necessarily indicative of an adult-like unique structural connectome 
(Ouyang et al., 2019). 

The absence of any significant effect of age on global functional self- 
similarity at this early stage of development might be explained by the 
reshaping of long-range functional connectivity, which matures within 
the first postnatal year (Damaraju et al., 2014). However, we cannot 
exclude the possibility that the low functional connectome 
self-similarity in the perinatal period is a false negative. For example, 
there may be a non-linear effect that cannot be captured with a linear 
model or an anatomical parcellation might not be optimal to charac-
terise the stability of the functional connectome in early development. 
Future studies focusing in functional connectome similarity should 
investigate if an appropriate parcellation derived from functional data 
or multi-modal information based parcellations (Glasser et al., 2016) 
yields higher self-similarity rates. 

Interestingly, we observed the same age effect on global structural 
connectome self-to-other-similarity. This suggests certain age dependent 
organisation patterns are also common across subjects. The same was 
observed for functional self-to-other-similarity, which significantly 
decreased with longer intervals between scans being compared and 
increased with older age at time point 1. The low self-similarity, com-
bined with strong self-similarity-to others and its age dependency roots 
for time constrained functional changes at a developmental time where 
there is a strong mixture of finely tuned spontaneous neural activity 
patterns and sensory experience dependent mechanisms (Hang-
anu-Opatz, 2010; Toyoizumi et al., 2013). The strong dependency of age 
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and similarity patterns across subjects may also be related to genetic 
expression patterns that are highly dynamic and fast changing during 
this time of development (Silbereis et al., 2015). 

4.4. Regional fingerprinting of the connectome 

Brain development broadly follows a posterior to anterior matura-
tional trajectory (Huttenlocher and Dabholkar, 1997) with sensory 
systems developing before higher order networks (Cao et al., 2017b). 
Structural connectome identifiability rate was lower when investigating 
regions separately, suggesting global metrics with more data points are 
more informative as a fingerprint when using structural data. Later 
developing networks such as frontal and limbic cortices had the highest 
structural self-similarity. Given the late maturation of these regions, we 
speculate the high self-similarity might be driven by the fact that these 
regions are undergoing the least amount of structural change during the 
interval between scans. 

We saw the highest identifiability rate in the central cluster of the 
functional connectome. This suggests that functional sensory-motor 
networks can provide higher identifiability rates in babies, while in 
comparison frontal-parietal structures appear more unique in adults 
(Finn et al., 2015). However, it will require a larger sample of data 
specifically comparing somatosensory and frontal regions in infants and 
adults to test this hypothesis. In addition, structural and functional 
coupling is a sign of maturation which appears more robust after 
adolescence (Baum et al., 2020; Sarwar et al., 2021). Thus, the closer 
resemblance between structure and function self-similarity in the central 
cluster might be indicative of the relatively mature state of somatosen-
sory and motor cortices in the perinatal time window. 

4.5. Limitations 

The main limitation of this study is that to assess the connectome 
fingerprint across weeks in the perinatal period ex-utero there is no 
other option but to investigate a preterm born population. Hence, to 
what extent the fingerprint is affected by preterm birth or is represen-
tative of normal development will have to be investigated in older infant 
cohorts or using foetal MRI. Another limitation pertains the multiple 
developmental factors which may influence the acquired signal in 
different ways and consequently the connectome. Despite the robustness 
of SIFT to characterise structural connections (Smith et al., 2015), using 
the most advanced pipelines available for neonatal fMRI data processing 
(Fitzgibbon et al., 2020), and being very stringent on data quality 
measures, the potential influence of developmental factors on the signal 
is out of our control. For diffusion data, developmental changes such as 
cortical folding or tissue water content reduction among others can 
affect the signal differently at different ages. Similarly, developmental 
effects which may influence the BOLD signal in different ways might 
relate to vascular density or neurovascular coupling, which can affect 
the sensitivity and specificity at different ages. Therefore, MR signal 
changes on the similarity values reported might be beyond differences in 
the neural “fingerprint”. On this line, it is also important to note we used 
anatomical parcellations to characterise the functional nodes and future 
studies should investigate whether diverse functional parcellation 
methods mimic or differ from the findings reported in this study. In 
addition, we suggest future studies should further investigate how to 
disentangle potential effects of motion when investigating the immature 
functional connectome, given that motion effects are likely to differ from 
effects reported with adults. 

5. Conclusion 

The brain structural connectome fingerprint is already present in the 
perinatal period: it is relatively stable and individually unique at this 
stage of development. The identification features of functional connec-
tivity are more complex to interpret, potentially being too dynamic or 

immature to provide a fingerprint. Region-wise analysis suggested that 
the functional fingerprint in early development might be more stable 
within regional clusters, although identifiability rates were still higher 
for structural data. Future studies should investigate regional differences 
throughout development, the association of the global structural 
fingerprint to developmental outcome, and whether genetic or envi-
ronmental risk impact the stability of the fingerprint. 
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