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Most population dynamics studies assume that individuals use space

uniformly, and thus mix well spatially. In numerous species, however, indi-

viduals do not move randomly, but use spatial memory to visit renewable

resource patches repeatedly. To understand the extent to which memory-

based foraging movement may affect density-dependent population

dynamics through its impact on competition, we developed a spatially expli-

cit, individual-based movement model where reproduction and death are

functions of foraging efficiency. We compared the dynamics of populations

of with- and without-memory individuals. We showed that memory-based

movement leads to a higher population size at equilibrium, to a higher

depletion of the environment, to a marked discrepancy between the global

(i.e. measured at the population level) and local (i.e. measured at the individ-

ual level) intensities of competition, and to a nonlinear density dependence.

These results call for a deeper investigation of the impact of individual

movement strategies and cognitive abilities on population dynamics.
1. Introduction
Density dependence is a major feature of population dynamics and its

pervasiveness in wild populations has been demonstrated repeatedly (meta-

analysis in [1]). As it determines population growth and variability of

population size through intra-specific competition, it affects the resilience

of populations and their probability to go extinct [2]. Thus, a good understand-

ing of processes by which density dependence occurs is required to predict

population dynamics in both fundamental and applied research [3,4]. Follow-

ing the early publication of the logistic population growth model [5], many

other phenomenological models (e.g. Beverton–Holt [6]; Ricker [7,8]; Gompertz

[9]; theta-logistic [10]; density-threshold [11]) were proposed to describe the

relationship between the population growth rate and the overall population

density. This diversity of models partly stemmed from the need to describe

the wide variety of shapes of density dependence curves revealed by empirical

studies (review in [12]; meta-analysis in [13]).

The different shapes of density dependence observed in empirical data have

often been assumed to emerge from the way the demographic parameters of

age- or stage-structured populations are functions of the density and combine

to determine population growth rates [14,15]. For instance, in large mammals,

juvenile survival starts decreasing at lower densities than adult survival

does [16,17], resulting in a dropping curve rather than a linear relationship

between the per capita growth rate and population density [18]. Most models

of density dependence also assume that (i) the environment defines a (possibly
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time-varying) potential for competition (the so-called ‘carry-

ing capacity’) around which the population density will

fluctuate more or less widely, depending on the shape of den-

sity dependence, and (ii) the overall density, as measured by

the ratio of the total population size over the area accessible to

the animals, is a relevant index of the intensity of conspecific

competition [14,19,20] (reviewed in [21]). When considering

a population of mobile animals, this latter assumption

implicitly means that individuals mix well spatially, i.e. that

any individual encounters others with the same rate, and

therefore that the intensity of conspecific competition experi-

enced by individuals is homogeneous over the population

spatial range [21,22].

Behavioural interference can break these assumptions.

For instance, population dynamics can be impacted by

deleterious interactions and spatial segregation promoted by

non-parental female infanticide [23], reproductive suppres-

sion [24], and territoriality [25–27]. Such behaviours involve

agonistic interactions that can negatively impact population

growth rates [28], in a density- and environment-dependent

way [29]. However, animals can reduce competition pressure

without aggressive behaviour simply by using personal infor-

mation when their environment is partly predictable. The

ability to memorize the location of high-quality patches of

depletable but renewable resources, by using a reference

(i.e. long-term) memory, and to keep track of the time elapsed

since the last visit to a patch, by using a working (i.e. short-

term) memory, has been hypothesized to be a major

determinant of resource use efficiency [30,31]. Memory-

based foraging improves foraging efficiency by decreasing

the time spent travelling by focusing on the best known

patches and by improving the timing of revisits to these

patches [32–34]. Recently, it was shown that memory-based

foraging leads individuals to display recursive movement

patterns (home ranges), and to segregate as they passively

avoid areas that seem of lower quality because they are

depleted by competitors [33]. Such spatial effects of

memory-based foraging thus invalidate common implicit

assumptions of density-dependence models, such as perfect

spatial mixing of individuals. Moreover, the better foraging

efficiency induced by spatial memory-based foraging

should increase demographic performance, unless it is

counterbalanced by more resource depletion.

Memory-based foraging movement is therefore likely to

affect how population density translates into competition

intensity and thereby the shape of density dependence and

ultimately the dynamics of populations. To the best of

our knowledge, no study has tried to clarify the expected

link between memory-driven resource use and population

dynamics. Here, we addressed this long-overdue challenge

[21] by exploring how memory-based foraging may shape

resource and population dynamics. We developed an indi-

vidual-based model integrating simple movement rules and

their consequences on life histories to compare the population

dynamics of populations of with- and without-memory

individuals separately, to answer three key questions:

(1) As memory use improves the foraging efficiency of indi-

viduals, does it result in a larger carrying capacity of the

environment and/or in stronger resource depletion for

a given population size?

(2) As memory use leads to restricted space use and to some

degree of spatial segregation, does it lead to a discrepancy
between the actual intensity of competition experienced

by a given individual and the one expected when using

the overall population density (the ratio of the total popu-

lation size over the area accessible to the animals) as an

index of competition?

(3) As memory use enables individuals to dynamically adapt

their exploitation of resources to local conditions and to

segregate, but probably only up to some population den-

sity [33], can it lead to a nonlinear density dependence of

the population growth rate?

2. Modelling
(a) Environmental make-up and resource dynamics
We extended a mechanistic movement model initially devel-

oped in [33] to investigate how spatial memory affects the

way animals share space and resources. The environment

is a 100 � 100 u2 (where u is an arbitrary length unit)

continuous-space square with reflective boundaries. It con-

tains Np ¼ 400 resource patches that can each contain the

same maximum amount Qmax of resources. Patch centres

are randomly distributed in space (i.e. the x, y coordinates

of any patch centre are drawn at random from a uniform dis-

tribution, independently of each other and independently of

the locations of other patches). This results in a Poisson distri-

bution of the number of patches per unit area. We checked,

however, that our results were not affected by spatial cluster-

ing in the distribution of patches (electronic supplementary

material, S1). We deliberately ignored intra-patch move-

ments, by assuming that they were performed in the same

way by animals with or without memory. Indeed, at this

small spatial scale, a reference memory should become irrele-

vant, items within patches being assumed to be directly

detected at a distance, or found using area-concentrated

search, which requires either no memory at all, or only an

ephemeral spatial working memory [35]. Consequently, all

patches were simulated as points in space. This is a

common assumption made in movement models focusing

on larger-scale processes and memory-based movements [36].

When an individual reaches a patch, it consumes almost

all available resources in one time unit, lowering their

amount to Qmax/1 000. This is a simplifying assumption, as

an individual could leave a patch after consuming only a

fraction of the resources available, for instance because of

trade-offs between foraging longer and predation risk or

other nutritional needs. However, complete patch depletion

in one visit has been reported in some real systems (e.g. nec-

tarivores [37]), and it can be assumed here because the

important point in our study is that energy is a limiting

factor. The amount of resources within any patch p is

renewed over discrete time steps according to a logistic

growth function with the renewal rate set to 0.03 in all simu-

lations: P[p]tþ1 ¼ P[p]t þ 0.03 P[p]t(1–P[p]t), where P[p]t is

the proportion (with respect to maximum content Qmax) of

resources that the patch p contains at time t.

(b) Movement strategies
All individuals move independently of each other, with a

constant speed of 1 u per time step whatever their movement

strategy, and detect a patch when they come within 2 u of it.

We considered two types of populations separately, one

composed of memoryless individuals, and the other of
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with-memory individuals. Memoryless individuals simply

search for food by performing a correlated random walk

characterized by unit step lengths and a zero-centred

wrapped normal distribution of turns with a mean cosine

equal to 0.8, but ignore patches visited in the previous 10

time steps to prevent systematic backtracking to the same

close patches. With-memory individuals store the location

of any detected patch and its expected quality (see below)

in a reference memory. If the patch is not revisited before

TR ¼ 1 000 time steps, this information (patch location and

expected quality) is forgotten. These individuals also rely

on a working memory that retains for a duration TW ¼ 200

time steps that they have recently visited the patch, prevent-

ing them from returning to it until a time longer than TW has

elapsed (TW ¼ 200 allows for a minimal replenishment of the

patch at 30% if no other individual visits it in the meantime).

When a with-memory individual visits a patch p for the first

time (or revisits it after more than TR time steps), the patch

quality it expects, Q[p]t, is set to the quantity of food it

finds at this time: Q[p]t ¼ P[p]t Qmax. When the individual

revisits this patch later at time t þ t with TW , t , TR, the

memory time counter is reset to 0 and the expected patch

quality is updated to the arithmetic mean between the

amount of resources expected, which reflects its previous

experience, and the amount of resources actually found,

which reflects its current experience: Q[p]tþt ¼ (Q[p]t þ
P[p]tþt Qmax)/2, and remains at this value until it revisits

the patch. This simple rule allows individuals to adapt the

timing of patch revisits to patch renewal dynamics by trial

and error [33]. The behaviour of an individual leaving a

patch depends on the attractiveness (ratio Q[ p]/D[ p] where

D[ p] is the current distance to patch p) of every known

patch that was exploited at least TW time steps ago. If at

least one patch presents an attractiveness higher than a

threshold set to 0.01 for all simulations, the individual

chooses the patch with the highest attractiveness and travels

to it along a straight line. Otherwise, it will rely on the same

random search as memoryless individuals until an unknown

patch is perceived or a known patch’s attractiveness becomes

larger than 0.01.

(c) Linking foraging movement behaviour to survival
and reproduction

Hereafter, we express energy levels, gains, and costs with

respect to Qmax, the maximum amount of resources a patch

can contain (i.e. Qmax is considered the energy unit and can

therefore be removed from these expressions). Survival and

reproduction of an individual i depend on its energy level

at time t, E[i]t. At each time step, it either decreases by 0.05

(corresponding to the energetic cost of movement per unit

time) for an individual that is travelling, or increases by

P[p]t 2 0.001 for an individual that is exploiting the resource

patch p. The individual dies when E[i]t reaches 0, and asexu-

ally reproduces when E[i]t reaches 500, but reproduction

costs a random value uniformly drawn between 240 and

260. The offspring is born at the location where its parent’s

state reached 500 and gets a random initial energy level uni-

formly drawn between 90 and 110. All individuals are born

naive, but while the offspring of a memoryless individual

will remain naive for its lifetime, the offspring of a with-

memory individual will immediately start to learn patch

locations and qualities as explained above.
(d) Local versus global intensity of competition
We ran 1 000 simulations for 200 000 time steps for each move-

ment strategy separately. A new environment was drawn for

every simulation run, which started with the introduction of

a single naive individual at a random location in the land-

scape, with E[i]0 randomly drawn between 240 and 260. We

deleted simulations for which the population went extinct.

This never happened for populations of with-memory indi-

viduals, and happened in less than 4% of simulations of

populations of memoryless individuals. We divided each

simulation run into 5 000 time-step-long contiguous windows

at the beginning and end of which we recorded the number of

individuals alive and the resource level in the environment

expressed as the mean standing crop (mean current amount

of resources) in a patch. For each individual i alive at the begin-

ning of a time window j, we recorded the number of offspring

it produced during this window, and, if it was still alive at the

end of the window, we computed a measure of the local inten-

sity of competition Iloc[i]j it experienced during this window

as: Iloc[i]j ¼ Nv[i]k=i,j/(Nv[i]i,j Ni,j), where Ni,j is the number

of patches visited at least once by individual i during the

time window j, and Nv[i]i,j and Nv[i]k=i,j are the total numbers

of times any of the Ni,j patches was visited by individual i
and by any individual other than i, respectively, during this

same time window j. For example, if these Ni,j patches were

equally exploited by k individuals including individual i,
one gets Iloc[i]j ¼ (k–1)/Ni,j, which reduces to 0 if i was the

only individual (k ¼ 1) to exploit them.

For each type of movement strategy, we investigated the

relationship between the local and global competition inten-

sities. The local intensity of competition corresponds to the

average, over all individuals, of Iloc[i]j. The global intensity

of competition was computed as the ratio (n 2 1)/Np,

where n is the population size (n 2 1 thus corresponds to

the number of competitors faced by any given focal individ-

ual i) present in the environment at the beginning of the time

window j and Np is the number of patches. As Np was kept

constant (Np ¼ 400), the global competition intensity is thus

proportional to the traditional measure of population density

used in population dynamics studies, expressed as the

number of individuals (the total population size) divided

by the area accessible to the individuals.
(e) Characterization of density dependence
at the population level

To determine the shape of density dependence, we looked at

the mean per capita growth rate as a function of the popu-

lation size. We computed the per capita growth rate of the

populations as r ¼ ln (ntþ1/nt) (which is the discrete time

counterpart of the continuous time expression r ¼ dn/(ndt)),
where nt is the population size at time t. We averaged the var-

ious values of r obtained per simulation and per population

size to retain only one point per simulation and population

size. We first fitted the Ricker model [7,8] as our baseline

linear model of density dependence. As the growth rates of

populations of with-memory individuals appeared to

decrease nonlinearly with population size (see the Results

section), we then investigated nonlinearity by fitting the

Beverton–Holt model [6,38], the theta-logistic model, where

the shape parameter u was estimated from the data, and a

second-order polynomial regression. The Beverton–Holt
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model is not linear (although it may approach linearity for

small intrinsic growth rates) and is a discrete-time analogue

of the logistic growth in continuous time [38]. The theta-logistic

model is one of the most widely used phenomenological

models to describe nonlinear density dependence [13,38]. It

corresponds to r ¼ rmax (1 2 (n/K)u), where rmax is the intrin-

sic growth rate (i.e. when the population is not limited by

density dependence), K is the carrying capacity and u

describes the curvature of the relationship [39]. For u ¼ 1,

the theta-logistic model reduces to the Ricker model [7,8].

Because the nonlinearity in populations of with-memory

individuals visually appeared to be mainly caused by an

abrupt break point, we also fitted a piecewise second-order

polynomial regression with a break point estimated from

the data. We compared the fits of those models for both

types of population using the Akaike information criterion

(AIC, [40]).

( f ) Sensitivity analyses
We ran additional simulations (100 for each parameter set-

ting) to investigate the sensitivity of the carrying capacity

and of the occurrence, location, and abruptness of the break

point in the density-dependence curves of populations of

with-memory individuals to variations in the values of key

parameters. We varied the duration of the working memory

TW between 200 (the default value) and 1 000, and the

duration of the reference memory TR between TW þ 100

and 1 200 (as TR needs to be higher than TW; see [33] for

details; electronic supplementary material, S2). We also simu-

lated populations with TW ¼ 100, but all went extinct. Setting

all other parameters to default values, we investigated the

effect of the attractiveness threshold used by individuals to

determine valuable patches (electronic supplementary

material, S3), and of the energetic cost of movement (elec-

tronic supplementary material, S4), by halving or doubling

their default values (0.01 and 0.05, respectively). We varied

the difference between the energy threshold that an individ-

ual must reach to reproduce and the value to which its state is

lowered following a reproduction event by modifying the

former such that the default difference (250) was halved

or doubled (electronic supplementary material, S5).

All simulations and analyses were performed using Julia

v. 0.3.9 [41] and R [42], respectively.
3. Results
(a) Memory use entails a higher carrying capacity
The carrying capacity of the environment for populations of

with-memory individuals is 45% larger than that of popu-

lations of memoryless individuals (mean+ s.d.: 16.3+ 0.3

versus 11.3+0.5; figure 1a). For each type of population,

the value of the carrying capacity of the environment is

only slightly affected by changes in the values of the

parameters we tested except the cost of movement (electronic

supplementary material, S2–S5). Most populations of with-

out- (100%) or with-memory (76%) individuals go extinct

when the cost of movement is set to twice the default

value, whereas the carrying capacities are increased when

the cost of movement is halved and become almost

equal between the two types of populations (electronic

supplementary material, S4).
(b) Memory use entails a stronger environmental
depletion

The standing crop, i.e. the mean amount of resources present

in the patches at any time, is on average smaller in popu-

lations of with- than in populations of without-memory

individuals, and the difference increases with the population

size (figure 2). In particular, the mean standing crop in popu-

lations of with-memory individuals is 78% smaller than the

one observed in populations of memoryless individuals

when these populations are at their equilibrium. A large

variability of the standing crop between patches within

simulations occurs, due to the highly dynamic nature of

our system, where patches regrow progressively with time

but are depleted episodically.

(c) Memory use entails a difference between local
and global levels of competition

In populations of without-memory individuals, the local

(i.e. individually experienced) and global intensities of com-

petition are always similar, whereas in populations of

with-memory individuals, this holds true only at low density

(less than 0.025; figure 3). At higher density, the local inten-

sity of competition increases much slower than the global

one. It is also worth noting that there is a higher level of het-

erogeneity of local intensities of competition in populations

of with- than in populations of without-memory individuals.

(d) Memory use entails a nonlinear density dependence
The shape of density dependence differs between popu-

lations of with- and without-memory individuals (figure 4).

The population growth rate decreases with the size of the

population almost linearly for memoryless individuals but

clearly nonlinearly for with-memory individuals. This nonli-

nearity results from a sudden increase in the strength of

density dependence, i.e. a break point. As a consequence, a

piecewise second-order polynomial regression describes the

data much better than a simple second-order polynomial

regression, or the Ricker, Beverton–Holt, or theta-logistic

models (all DAIC . 1 000; electronic supplementary material,

S6 for a graphical comparison of the model fits and the par-

ameter estimates). With the parameters set to default values,

the break point is estimated to occur at a population size of

about n ¼ 15, and at this population size, the slope of density

dependence is multiplied by 10.8 (calculated as the ratio of

the slopes of the fitted model right before and right after the

break point). For populations of memoryless individuals,

the fitting procedure of the piecewise second-order poly-

nomial regression does not converge, and the best fitting

model is the theta-logistic model with shape parameter u

close to 1 (u ¼ 0.88; DAIC: 45 with the Ricker (i.e. linear)

model, 22 with the Beverton–Holt model, and 11 with the

second-order polynomial regression). Overall, all models

correspond to a similar, linear, or near-linear, relationship

(electronic supplementary material, figure S15).

For populations smaller than 15 individuals (i.e. before

the break point that occurs for populations of with-memory

individuals), density dependence is stronger for without- than

for with-memory populations, as indicated by the steeper

slope of the density-dependence curve for the former than

for the latter (figure 4). After the break point, with-memory
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populations experience the highest levels of density

dependence (figure 4).

The sensitivity analyses revealed that the occurrence and

location of the break point for populations of with-memory

individuals are little affected by changes in the length of

working or reference memories (electronic supplementary

material, S2). However, the magnitude of the change in the

slope of the density dependence at the break point decreases

when TW increases (electronic supplementary material, figure

S8), leading to almost linear density-dependence curves for

TW � 500 (electronic supplementary material, figure S9).

The occurrence of the break point and its location for popu-

lations of with-memory individuals are little affected by

changes in the difference between the energy threshold that

an individual must reach to reproduce and the value to

which its state is lowered following a reproduction event.

In both cases, the change of slope before and after the

break point is abrupt (electronic supplementary material,

S5). When the threshold used by individuals to select
valuable patches is doubled, there is no break point (elec-

tronic supplementary material, S3), and when the energetic

cost of locomotion is halved, density-dependence curves of

with- and without-memory populations become very similar

(electronic supplementary material, S4).
4. Discussion
Memory-based foraging is very common among mobile

organisms, at least in vertebrates [31]. It affects how animals

use and share resources, resulting in recursive movement

patterns (home ranges) and spatial segregation between indi-

viduals [33]. By linking foraging behaviour with life histories,

our study demonstrates, for the first time, that the use of

memory is at variance with the implicit assumption of perfect

spatial mixing of individuals made in classical models of
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density-dependent population dynamics and can have sig-

nificant consequences for the interpretation of population

dynamics patterns.

Differences in population growth rates and how these

rates relate to density are most commonly attributed to

environmental resource availability, age structure of popu-

lations, and/or interactions between life-history traits

[13–15,43,44]. For instance, in large mammals, the reduction

in the population growth rate is expected to become stronger

as the population size increases, leading to a dropping curve,

because the life-history traits with the greatest impact on

population growth (e.g. adult survival) become affected by

population density only at larger population sizes [2].

In our model, however, both with- and without-memory

individuals face the same initial environment and have life

histories driven similarly by their energy state. The differ-

ences in the shapes of density dependence between our two

population types therefore only emerge because of the abil-

ity/inability of individuals to memorize the locations and

quality of resources patches. As expected, populations of

memoryless individuals, which mix well spatially because

of the randomness of their movements, experience scramble

competition and display near-linear density dependence

[45]. By contrast, populations of with-memory individuals

display nonlinear density dependence that could not be ade-

quately described by any of the classical models of density

dependence we fitted. This result is, however, sensitive to

the cost of movement and to the working memory. With a

long working memory, the density-dependence curve

approaches linearity (electronic supplementary material, S2),

probably because a long working memory leads to larger

and more overlapping home ranges [33]. With a small cost

of movement, both types of populations experience a high

carrying capacity and a similar density-dependence shape

(electronic supplementary material, S4). This convergence

occurs because at the very high population density reached

in this situation, with-memory individuals do not tend to

perform home range behaviour (and thereby to spatially seg-

regate), and therefore forage with an efficiency similar to that

of memoryless individuals (see electronic supplementary

material, S4 for examples). By contrast, with a high cost of

movement, almost all populations go extinct.

Despite its flexibility and its wide use in population

dynamics studies [19,20], the theta-logistic model poorly fits
the shape of the density dependence we obtained for popu-

lations of with-memory individuals. More generally, all the

standard models of density dependence we considered

poorly fitted this shape, as they are unable to account for

the break point occurring at a population size lower than

the carrying capacity and beyond which density dependence

sharply strengthens. At this population size, the mean stand-

ing crop reaches its asymptotic lowest level. Interestingly,

this break point occurs at a population size that is very

close or equivalent to the maximum population size reached

by populations of without-memory individuals. Thus,

beyond this population size, no additional individual with-

out memory can survive, because the environment becomes

too depleted for them. As with-memory individuals give

birth to naive offspring, very few of them can compete for

resources with older individuals and thus survive in such a

severely crowded and depleted environment. Consequently,

the per capita growth rate drops sharply beyond the break

point population size.

Most studies of density dependence use the total popu-

lation size or the mean density over the study area to index

the intensity of competition for food resources within the

population (reviewed in [21]). The only demographic studies

that quantified local population densities at a relevant scale

and that accounted for local heterogeneities focused on non-

mobile organisms [46], territorial animals [47], or animals

living in environments that are heterogeneous at a large spatial

scale [48–50] (but see [51]). In our study, the environment was

heterogeneous at very small scale (smaller than the smallest

scale of individuals’ movement considered here) but homo-

geneous at larger scale (equal or larger than inter-patch

movements). Even so, memory-based movement led to hetero-

geneous individually experienced intensities of competition

and, for a wide range of population sizes, to much smaller

than expected mean intensities of individually experienced

competition. This highlights the importance of the spatial

scale considered when measuring the intensity of competition

for studying its influence on demographic rates: the total

population size may not accurately reflect the intensity of com-

petition experienced at the individual level, even when the

environment is homogeneous.

Our conclusions obtained in an environment where

resources are aggregated in randomly distributed patches

(single level of heterogeneity) remain valid in an environment

where the patches themselves are clustered in super-patches

(two levels of heterogeneity; electronic supplementary

material, S1). This occurs because memoryless individuals

remain intrinsically unable to establish home ranges, and

therefore continue to form well-mixed populations (no spatial

segregation), whereas with-memory individuals can effi-

ciently navigate within and between super-patches. This

suggests that our results are likely to apply to a wide array

of situations. Therefore, we trust that whenever studied indi-

viduals commonly perform recursive movements, a likely

indicator of the use of memory [31], the assumption of

well-mixing of individuals within a population is also prob-

ably invalid, and further investigations of the link between

space use and demography are necessary. Beyond this, our

study highlights that a shift from pattern-oriented (i.e. phe-

nomenological) studies to process-oriented studies [52]

seems critical to limit the risk of false inference about the

underlying biological processes generating specific shapes

of density dependence.
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Our model also leads to carrying capacities that are larger

for populations of with- than of without-memory individ-

uals, even though memory users deplete their environment

more than memoryless individuals. This result is very

robust to changes in model parameters, and clearly demon-

strates that the carrying capacity does not just result from

the interaction between the environment and species’ demo-

graphic traits, but also depends on the way individuals

exploit their environment. With-memory individuals prob-

ably maintain high levels of resource intakes in highly

depleted environments because (i) they time their revisits to

known patches better, thereby increasing the amount of

food found at each visit, and (ii) they limit the time spent tra-

velling, thereby decreasing the overall cost of visiting a patch

[33]. To the best of our knowledge, no study has previously

investigated the effect of foraging strategies on the carrying

capacity, except for territorial animals [21]. Our result goes

against the historical but recently challenged assumption

that a gain in fitness is compensated for by a strong negative

density dependence due to environment deterioration, e.g.

that the selection for a behavioural trait will not change the

carrying capacity [53] (reviewed and discussed in [54–56]).

For this reason, but also for mathematical convenience,

many evolutionary models set population sizes to a constant

value [57,58] (but see [59]). Our results question this practice.

The evolutionary emergence and improvement of memory-
based foraging behaviour should be selected positively in

environments that are at least partially predictable, as it

brings important fitness benefits [31,33,60]. Our work

suggests that the selection for better memory capacities

should alter consumer-resource dynamics by increasing

resource depletion while increasing the carrying capacity of

the environment. In turn, these effects should reinforce the

evolutionary processes selecting for improved cognitive

capacities, because the relative advantage of having a better

memory increases with the depletion of the environment.

Our results have thus connections with the fast-growing

field of eco-evolutionary dynamics [61] and urge investi-

gation of how the strength of natural selection can be

impacted by the selection of cognitive traits that modify

carrying capacity [56].
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