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Compound heterozygous (CH) variants occur when two recessive alleles are inherited
and the variants are located at different loci within the same gene in a given individual.
CH variants are important contributors to many different types of recessively inherited
diseases. However, many studies overlook CH variants because identification of this
type of variant requires knowing the parent of origin for each nucleotide. Using
computational methods, haplotypes can be inferred using a process called “phasing,”
which estimates the chromosomal origin of most nucleotides. In this paper, we used
germline, phased, whole-genome sequencing (WGS) data to identify CH variants
across seven pediatric diseases (adolescent idiopathic scoliosis: n = 16, congenital
heart defects: n = 709, disorders of sex development: n = 79, ewing sarcoma:
n = 287, neuroblastoma: n = 259, orofacial cleft: n = 107, and syndromic cranial
dysinnervation: n = 172), available as parent-child trios in the Gabriella Miller Kids First
Data Resource Center. Relatively little is understood about the genetic underpinnings of
these diseases. We classified CH variants as “potentially damaging” based on minor
allele frequencies (MAF), Combined Annotation Dependent Depletion scores, variant
impact on transcription or translation, and gene-level frequencies in the disease group
compared to a healthy population. For comparison, we also identified homozygous
alternate (HA) variants, which affect both gene copies at a single locus; HA variants
represent an alternative mechanism of recessive disease development and do not
require phasing. Across all diseases, 2.6% of the samples had a potentially damaging
CH variant and 16.2% had a potentially damaging HA variant. Of these samples with
potentially damaging variants, the average number of genes per sample was 1 with a
CH variant and 1.25 with a HA variant. Across all samples, 5.1 genes per disease had
a CH variant, while 35.6 genes per disease had a HA variant; on average, only 4.3% of
these variants affected common genes. Therefore, when seeking to identify potentially
damaging variants of a putatively recessive disease, CH variants should be considered
as potential contributors to disease development. If CH variants are excluded from
analysis, important candidate genes may be overlooked.

Keywords: pediatric cancer, structural birth defect, germline variants, compound heterozygous variants, genetic
analysis of complex diseases, trios
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INTRODUCTION

Each year in the United States, ∼3.0% of babies are born with
a structural defect, and ∼11,050 children under the age of 15
are diagnosed with pediatric cancer (Lupo et al., 2019; American
Cancer Society, 2020). Researchers are working to understand
the genetic causes of these diseases, now often via whole-genome
sequencing (WGS) (Zhang et al., 2015; Gröbner et al., 2018;
Lupo et al., 2019). When researchers analyze DNA sequencing
data, the parent of origin for each nucleotide is often unknown
(Choi et al., 2018). While this is not an issue when looking at
heterozygous variants in dominantly inherited diseases or when
identifying homozygous alternate (HA) variants in recessively
inherited diseases, it is problematic when looking at more
complex inheritance patterns, such as compound heterozygous
(CH) variants (Sanjak et al., 2017). Under the assumptions of
recessive disease inheritance, in the majority of cases, a single
heterozygous variant in a gene does not result in decreased
fitness of an organism (Morrill and Amon, 2019). However, CH
variants—which consist of alternate alleles positioned at different
loci within a gene on opposite homologous chromosomes—may
result in no functional copies of the associated proteins and a
decrease in overall fitness. CH variants have been observed in
many pediatric diseases. For example, pathogenic CH variants
in the ASXL3 gene can lead to a disruption in ASXL3 protein
expression, potentially contributing to the development of
congenital heart disease (Fu et al., 2020). Additionally, potentially
damaging CH variants have been identified in many cancer
predisposition genes, across various pediatric cancer types (Miller
and Piccolo, 2020a). Although the importance of assessing CH
variants in pediatric diseases has been established, researchers
may ignore these types of variants in genome-wide studies due
to additional steps required to identify and interpret them; one
of these steps is haplotype estimation via computational phasing.
It has been shown that using a population-based, haplotype
reference panel and/or trio-based samples can improve phasing
as much as 10-fold (Choi et al., 2018); however, this process
is computationally expensive, and current phasing algorithms
require specific file formats or that reads be aligned to a specific
reference genome and be free of multi-allelic positions. These
requirements may deter some researchers from performing
phasing—and thus identifying CH variants.

Prior studies involving CH variant identification have focused
primarily on individual diseases, one or a few samples, or specific
genes (Miller and Piccolo, 2020a). Furthermore, little is known
about how to filter and classify CH variants in genome-wide
studies. Common practice in genetic studies is to filter variants
based on population-level MAF; however, it is unclear how this
applies to CH variants because it would be infeasible to compile a
database that estimates the frequency of all possible combinations
of in trans alleles in a control population. Many combinations
are extremely rare, and others are private to a single individual.
Furthermore, the number of possible combinations will differ
by gene—many more combinations can occur in longer genes
than shorter ones.

In this study, we surveyed germline CH variants in a total
of 1,629 affected samples across 7 pediatric diseases: adolescent

idiopathic scoliosis, congenital heart defects, disorders of sex
development, ewing sarcoma, neuroblastoma, orofacial cleft, and
syndromic cranial dysinnervation. Little is understood about
the genetic underpinnings of these diseases (Beaty et al., 2016;
Eggers et al., 2016; Grauers et al., 2016; Brohl et al., 2017; Singh
et al., 2017; Tolbert et al., 2017; Pierpont et al., 2018). We used
WGS data from the Gabriella Miller Kids First initiative, which
has a mission of generating high-quality sequencing data for
large cohorts of pediatric-disease patients and making those data
available for broad use (Heath et al., 2019). For most probands,
sequencing data were available for the affected child and both of
her/his parents. Thus, we were able to estimate haplotypes using
the best-available computational-phasing approach (Delaneau
et al., 2013; Choi et al., 2018). We used computational tools to
estimate pathogenicity of individual alleles within a given gene
and then identified genes with multiple, potentially pathogenic
alleles on homologous chromosomes. To better understand
the frequency of CH variants in the general population, we
estimated gene-level frequencies of CH variants in healthy
controls and used these as a comparison group against our
probands. Finally, we compared the observed frequencies of CH
variants in each disease against the frequencies of HA variants.
The resulting observations yielded novel insights about how often
CH variants occur in diverse pediatric diseases, how one disease
compares to another, and genes that may play a role in recessive
inheritance of these pediatric diseases. This study is the first to
report multi-cohort, genome-wide evaluations of CH variants in
pediatric diseases.

MATERIALS AND METHODS

Disease Cohorts
We analyzed trio data stored in the Gabriella Miller Kids
First Data Resource Center (Heath et al., 2019). These data
were generated via Illumina-based, WGS of non-disease cells
(Gabriella Miller Kids First Pediatric Research Program, 2019)
from each proband and their parents. The diseases we studied are
adolescent idiopathic scoliosis (16 trios), congenital heart defects
(709 trios), disorders of sex development (79 trios), Ewing’s
sarcoma (287 trios), neuroblastoma (259 trios), orofacial cleft
(107 trios), and syndromic cranial dysinnervation (172 trios).
Specific diagnoses for each disease are in Supplementary Table 1.
Trios were selected based on whether or not they were labeled as
a trio in the database and DNA variant data were available for
all three members of the trio. In addition, we filtered patients
based on research use consent status. For all diseases except
syndromic cranial dysinnervation, we used trios that had been
consented for general research use or health/medical/biomedical
use. For syndromic cranial dysinnervation, we used trios that
were consented for disease-specific use (in accordance with data-
use restrictions).

Variant Identification for Disease Cohorts
In the Gabriella Miller Kids First Data Resource Center, germline
variant data are provided as gVCF files (Poplin et al., 2017).
Using these files as input, we identified CH and HA variants
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in a series of steps including file aggregation, liftover, phasing,
annotation, and filtering (described below and in Figure 1).
We completed these steps using scripts adapted from the
CompoundHetVIP pipeline (Miller and Piccolo, 2020b). These
and other scripts are available in an open-source repository at
https://github.com/dmiller903/CompoundHetVIP-GMKF. This
repository contains Python scripts1 with custom code for parsing
metadata and handling the gVCF files in a way that is specific
to the Gabriella Miller Kids First Data Resource Center. All
of these scripts are stored within a Docker image, which is
available at: https://hub.docker.com/r/dmill903/compound-het-
vip-gmkf. A detailed example of how data from each disease
was processed can be viewed at: https://github.com/dmiller903/
CompoundHetVIP-GMKF/blob/master/usage_example.pdf.

For each disease, gVCF, clinical, and manifest files were
downloaded from the Gabriella Miller Kids First Data Resource
Center. These files were downloaded in September 2019
(adolescent idiopathic scoliosis), January 2020 (disorders sex
development), February 2020 (Ewing’s sarcoma), March 2020
(congenital heart defects, orofacial cleft, syndromic cranial
dysinnervation), and April 2020 (orofacial cleft). The clinical
and manifest files contain information about file names, sample
ID’s, family relationships, disease status, etc. The information
from the clinical and manifest files were combined using the
“kids_first_meta.py” script. The resulting combined file was used
as input to many of the subsequent scripts to keep track of
file names, family relationships, probands, etc. Unlike VCF files
(Danecek et al., 2011), gVCF files contain information for variant
sites as well as non-variant positions (Poplin et al., 2017). These
files are large and would take much longer to process if non-
variant positions were included throughout the whole pipeline.
Therefore, using the “keep_variant_sites.py” script, we removed
all non-variant positions for each proband (Figure 1). Using the
variant positions of the proband as a reference, the script then
retained the same positions in each parent’s gVCF file (regardless
of whether the position was variant or non-variant).

The “combine_trios.py” script was used for each trio to
combine data from all family members into a single file; we
used Genome Analysis Toolkit (GATK) (version 4.0.5.1) for this
step (Poplin et al., 2017; Figure 1). In addition, the script
created a “.fam” file to be used later in processing. As part
of its data-processing pipeline, the KFDRC had aligned reads
to build GRCh38 of the human reference genome (Schneider
et al., 2016). Alignment to this build was an issue because
subsequent tools in our pipeline required the files to be
aligned to GRCh37. Therefore, our “liftover.py” script joint-
genotyped the combined trio files using GATK and converted
the coordinates to GRCh37 using Picard’s (Picard Tools, 2019)
Liftover tool. During liftover, some sites with unknown positions
in the GRCh37 build were included in the VCF file; we
created a “remove_unplaced_multiallelic.py” script to remove
these positions. In addition, the script removed multiallelic or
duplicate positions because programs such as PLINK2 (Purcell
and Chang, 2020; Chang et al., 2015) (used next) and SHAPEIT2
(Delaneau et al., 2013) (used later) cannot handle these types

1https://python.org

FIGURE 1 | Flow diagram of the gVCF processing steps. These steps were
taken prior to HA and CH variant identification.

of sites. For each trio, sites containing missing genotype
information (i.e., “./.”) for both parents were removed to improve
phasing accuracy.

SHAPEIT2 requires chromosomes to be phased separately.
PLINK files are also needed by SHAPEIT2 during phasing.
Our “separate_chr_generate_plink.py” script separated the data
for each trio file into chromosome files (autosomes only)
and executed PLINK to generate the files needed for phasing
(.bed,.bim,.fam). Next, we used “phase_with_shapeit.py” to phase
each chromosome. The parameters for phasing were set so that
SHAPEIT2 used family relationship genotype information and
also used the 1000 Genomes Project (1000GP) phase 3 haplotype
reference panel. Default parameters were used. The files used for
phasing can be found at https://mathgen.stats.ox.ac.uk/impute/
1000GP_Phase3.html and through the 1000GP online database
(1000 Genomes Project Consortium, Auton et al., 2015).

In some cases, SHAPEIT2 switches the REF and ALT alleles
during phasing. Our “alt_ref_revert.py” script ensured that the
REF/ALT alleles of the phased VCF files were congruent with
the REF/ALT order of the reference genome. In addition, it
removed sites with Mendelian errors. To make subsequent
analysis of the phased files easier, “concat_merge_phased_vcf.py”
executed bcftools (Li, 2011) (version 1.9) to concatenate all phased
chromosomes for each trio into a single trio file. Finally, using
bcftools, each concatenated trio file was merged into a single VCF
file containing all trios for a particular disease, and a.fam file was
created for this merged file.

As a preprocessing step, GEMINI (Paila et al., 2013)
recommends left trimming and normalizing VCF files using vt
tools (Tan et al., 2015). Our “vt_split_trim_left_align.py” script
used vt tools (version 2015.11.10) to trim and normalize the
phased VCF file. Next, “annotate.py” executed snpEff (Cingolani
et al., 2012) to annotate the variants with information about
whether or not a variant is in a gene, the type of variant, the
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predicted effect the variant may have on protein coding (i.e.,
variant impact severity, and whether or not the variant causes loss
of protein function), etc.

GEMINI (version 0.30.2) allowed us to provide additional
annotations and then filter and summarize the annotated
genetic variants. The “gemini_load.py” script loaded the VCF
file into a GEMINI database, which provided information
such as Combined Annotation Dependent Depletion (CADD)
scores (Rentzsch et al., 2019) and MAF from the 1000GP
(1000 Genomes Project Consortium, Auton et al., 2015)
or gnomAD (Karczewski et al., 2020) (version 2.1). The
“identify_CH_variants.py” script first exports the GEMINI
database to a.tsv file and then uses that file to identify CH
variants. CH variants were identified based on five criteria: (1)
whether snpEff classified each of the alleles contributing to the
CH variant as “HIGH” impact, (2) whether each allele had a
CADD score ≥ 15, (3) neither parent was HA at either allele as
a HA allele would unlikely be damaging given that it is present
in a healthy parent, (4) neither parent had the exact same alleles
making up a CH variant as found in the child, and (5) at least
one allele of the CH variant had a MAF ≤ 5% (gnomAD MAF
used as priority over 1000GP). We allowed one of the alleles to
have a MAF > 5% to include scenarios where a single, damaging,
common allele does not have a phenotypic effect when found to
be heterozygously inherited, but may have a phenotypic effect
when paired with a different, damaging, rare allele found on the
opposite chromosome at a different position within the same
gene. The genes in the final output are referred to as having
“potentially damaging” variants.

To identify HA variants, the “identify_HA_variants.py” script
was used. This script used the same GEMINI database and
selected variants that were of “HIGH” impact, had a MAF ≤ 5%,
and a CADD score ≥ 15. HA variants for which either parent had
a HA variant at the same position as the child were excluded from
the final output file.

Identification of CH and HA Variants in
1000 Genomes Samples
Data from the 1000GP (1000 Genomes Project Consortium,
Auton et al., 2015) were used as a baseline to better
understand the frequency of potentially damaging CH and
HA variants in the general population. Phased VCF data
for the 1000GP were obtained from ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/. This repository contains
genotypes/haplotypes for 2,504 unrelated individuals. Because
these files had previously been phased using a combination of
Beagle (Browning and Browning, 2007) and SHAPEIT2, many
of the steps required for the GMKF data were unnecessary.
We processed chromosome-level VCF files (autosomes only)
starting with the “concat_merge_phased_vcf.py” script and
progressing until the “add_GDI_and_gene_lengths.py” script
in the CompoundHetVIP pipeline (Miller and Piccolo, 2020b),
a generalized version of the pipeline that was used to
identify variants in the GMKF data. Because the 1000GP
data does not contain trios or other family relationships, the
“identify_CH_variants.py” script was not able to exclude variants

based on observations in parents. However, we used the same
CADD, MAF, and impact filtering criteria for the 1000 Genomes
data as what we used for the GMKF variants.

Filtering CH Variants Using 1000
Genomes Data as Reference
Using RStudio RStudio Team (2020) (version 1.2.5042), R (R Core
Team, 2020) (version 3.6.3) and the tidyverse package (Wickham
et al., 2019) (version 1.3.0), we further filtered the genes using
potentially damaging CH variants from 1000GP as a reference.
We identified genes in which a CH variant was present in more
than 1% of the 1000 Genome samples and excluded these genes
from the GMKF analysis. This same logic was used to filter
the HA variants.

Known Tumor Suppressor and
Developmental Genes
Because inherited DNA variations in germline tissue can
contribute to the inactivation of tumor suppressor genes and
result in subsequent cancer development (Wang et al., 2018), we
used R to identify which of the genes with potentially damaging
CH and HA variants were in known tumor suppressor genes. In
addition, given that both structural birth defects and pediatric
cancers tend to occur at an early age, we identified which of the
potentially damaged genes were in known developmental biology
genes. During the identification process, a list of known tumor
suppressor genes from Cancer Gene Census and a list of known
developmental genes from Reactome (Reactome Developmental
Biology pathway: R-HSA-1266738) were used (Sondka et al.,
2018; Jassal et al., 2020). For these genes and all genes identified
with potentially damaging CH variants, we used DisGeNET
to determine whether any gene-disease associations had been
identified in previous studies (Piñero et al., 2020). DisGeNET
uses many different databases (e.g., UniProt, ClinVar, etc.)
to establish gene-disease associations. One metric DisGeNET
provides is a gene-disease association (GDA) score which ranges
from 0 to 1. The more sources and publications that support
a gene-disease association, the higher the value. We considered
GDA values greater than or equal to 0.5 as strong evidence
for a gene-disease association. In addition to GDA scores, we
used DisGeNET to produce variant-disease association (VDA)
scores for each potentially damaging variant contributing to a CH
variant. VDA scores follow the same scale as GDA scores.

Pathway Analysis of Genes Containing
Potentially Pathogenic CH Variants
Pathway enrichment analysis can help determine whether specific
biological pathways are significantly enriched based on a list
of candidate genes (Reimand et al., 2019). We used the R and
the ReactomePA (Yu and He, 2016) package (version 1.30.0),
to perform a pathway enrichment analysis for each disease.
Default parameters were used. For each disease, the genes with
CH variants that were retained after 1000GP data filtering were
used as input. Pathways that had an adjusted p-value (adjusted
using the Benjamini-Hochberg False Discovery Rate method;
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Benjamini and Hochberg, 1995) less than or equal to 0.05 and
a q-value less than or equal to 0.2 were retained.

RESULTS

In this study, we focus on scenarios in which at least two
alternate alleles occurred on different chromosomes in the same
gene and/or locus; thus, we assume the diseases follow an
autosomal-recessive inheritance pattern in some cases and that
these traits are subject to Mendelian inheritance. Autosomal-
recessive and Mendelian inheritance have been associated with
some pediatric cancer types and structural birth defects (Webber
et al., 2015; Zhang et al., 2015; Miller and Piccolo, 2020a). For
recessively inherited diseases, CH or HA variants may play a
role if both alleles lead to loss of protein function. Therefore, we
also identified HA variants, in which two non-reference alleles
occurred at the same locus within a gene. We included these
variants in the analysis as a way to show how the number
of samples and genes with potentially damaging HA variants
compares to the number of samples and genes with potentially
damaging CH variants.

Across all analyzed pediatric diseases, the median number
of unphased variants per sample was 5,509,545 prior to any
data processing and variant-type classifications (Figure 2).
After joint-genotyping, liftover, removing unplaced and
multiallelic sites, phasing, and removing sites with Mendelian
errors, the median number of unphased variants per
sample was 3,894,315 (Figure 2). Therefore, on average,
70.7% of the original variants were available for CH and
HA identification after these preprocessing steps. Joint-
genotyping (which includes quality filtering) and phasing
led to the greatest reductions in the number of unphased
variants: 613,225 and 602,443 variants removed on average,
respectively (Figure 2). Of the variants available for phasing,
∼86.7% were successfully phased on average. Unphased sites

included those that were incompatible with the reference
panel (e.g., SNP missing in reference haplotype panel),
monomorphic or singleton SNPs (these sites are uninformative
for phasing), and those with Mendelian inheritance errors
(Delaneau et al., 2013).

Across all disease types, the initial query for CH variants
resulted in 146 probands and 41 unique genes with potentially
damaging CH variants that met our minimum CADD, MAF,
and gene-impact thresholds during variant identification (see
section “Materials and Methods”). Across all diseases, based on
our initial query, an average of 9.5% of the samples had at least
one CH variant and there were an average of 10.9 genes per
disease with potentially damaging CH variants. To further filter
these potentially damaging variants, we used 1000GP data as
a baseline of what to expect, in terms of CH variation, in a
seemingly healthy population. Potentially damaging CH variants
were identified in 151 genes and 883 samples. Of the samples
with a potentially damaging CH variant, 26 of the genes were
present in more than 1% of the samples (Figure 3). For each
disease population, we retained genes in which a CH variant
occurred in less than 1% of the 883 1000GP samples. After this
filtering step, the number of samples and genes with potentially
damaging CH variants was reduced (Table 1); across all diseases,
the average percentage of samples with potentially damaging CH
variants decreased to 3.3% and the average number of genes per
disease with potentially damaging CH variants was 5.1 (25 total
unique genes, 17 of which were not identified as having HA
variants). We observed similar results for HA variants before and
after 1000GP filtering (Table 2). For example, across all diseases,
the average number of samples with potentially damaging HA
variants was 22.2% per disease and there were an average of
45 genes per disease with potentially damaging HA variants.
After 1000GP filtering, the average percentage of samples with
potentially damaging HA variants was 17.2% per disease, and the
average number of genes with potentially damaging HA variants
was 35.6 per disease.

FIGURE 2 | The median number of variants per sample, across all disease types, after each processing step where variants were excluded. The original gVCF files
had a median of 5,509,545 unphased variants across all samples and diseases. Approximately 70.7% of the variants were available for CH and HA identification
after processing the original gVCF files. Of the available variants, ∼86.7% were phased on average.
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FIGURE 3 | Percentage of 1000GP samples with a CH variant in a gene.
Frequency represents the number of genes that were observed at a specific
percentage.

CH variants and HA variants sometimes affect common genes,
generally they occur in different genes. When researchers do
not consider CH variants in genotype-phenotype studies, they

may overlook important candidate genes. In turn, overlooking
candidate genes may cause the investigator to overlook some
samples by assuming that they have no potentially pathogenic
variants when, in fact, they do. Although not our focus, this is
an important factor to consider when a clinician is trying to
understand what genes have contributed to a patient’s disease.
Using the genes retained after filtering with 1000GP data,
potentially damaging CH variants are observed in samples and
genes that HA variants are not identified in. For example, all
diseases showed a percent increase in the number of samples with
potentially damaging CH variants that did not have potentially
damaging HA variants (Table 3). In addition, all diseases
experienced a percent increase in the number of genes with
potentially damaging CH variants that did not have potentially
damaging HA variants (Table 4).

Given that non-functional tumor suppressor genes can
lead to tumor development and given that pediatric cancers
and structural birth defects occur early in a child’s life, we
sought to determine whether any of the potentially damaged
genes (after 1000GP filtering) occurred in tumor suppressor
or developmental biology genes (see section “Materials and
Methods”). Congenital heart defects was the only disease where
a CH variant was identified in a developmental biology gene
(KRTAP4-7: n = 1) (Figures 4, 5). However, KRTAP4-7 and the
variants contributing to the CH variant identified in this gene

TABLE 1 | The number of genes and samples with potentially damaging CH variants before and after filtering with the 1000GP data.

Disease Number of genes
with CH variants
based on initial

query

Number of genes
with CH variants

after filtering with
1000GP data

Number of
samples with CH
variants based on

initial query

Number of
samples with CH

variants after
filtering with
1000GP data

Adolescent idiopathic scoliosis 3 1 2 (12.5%) 1 (6.3%)

Congenital heart defects 29 15 63 (8.9%) 18 (2.5%)

Disorders of sex development 6 2 9 (11.4%) 2 (2.5%)

Ewing sarcoma 12 6 24 (8.4%) 7 (2.4%)

Neuroblastoma 14 5 26 (10%) 5 (1.9%)

Orofacial cleft 4 3 7 (6.5%) 4 (3.7%)

Syndromic cranial dysinnervation 8 4 15 (8.7%) 6 (3.5%)

For each disease dataset, genes that contained CH variants in less than or equal to 1% of the 1000GP samples were kept.

TABLE 2 | The number of genes and samples with potentially damaging HA variants before and after filtering with the 1000GP data.

Disease Number of genes
with HA variants
based on initial

query

Number of genes
with HA variants
aftering filtering

with 1000GP data

Number of
samples with HA
variants based on

initial query

Number of
samples with HA

variants after
filtering with
1000GP data

Adolescent idiopathic scoliosis 7 5 4 (25%) 4 (25%)

Congenital heart defects 134 102 193 (27.2%) 129 (18.2%)

Disorders of sex development 33 24 20 (25.3%) 18 (22.8%)

Ewing sarcoma 47 39 54 (18.8%) 37 (12.9%)

Neuroblastoma 43 35 53 (20.5%) 36 (13.9%)

Orofacial cleft 19 16 19 (17.8%) 13 (12.1%)

Syndromic cranial dysinnervation 32 28 36 (20.9%) 27 (15.7%)

For each disease dataset, genes that contained HA variants in less than or equal to 1% of the 1000GP samples were kept.
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TABLE 3 | The number of samples with potentially damaging HA variants and the number of unique samples (not seen with potentially damaging HA variants) with
potentially damaging CH variants after filtering with 1000GP data.

Disease Total samples in
study

Total samples
with HA variants

after filtering with
1000GP data

Unique samples
with CH variants

after filtering with
1000GP data

Percent increase
in the number of

samples

Adolescent idiopathic scoliosis 16 4 1 25

Congenital heart defects 709 129 11 8.5

Disorders of sex development 79 18 2 11.1

Ewing sarcoma 287 37 7 18.9

Neuroblastoma 259 36 5 13.9

Orofacial cleft 105 13 3 23.1

Syndromic cranial dysinnervation 172 27 6 22.2

TABLE 4 | The number of genes with potentially damaging HA variants and the number of unique genes (potentially damaging HA variants not identified in gene) with
potentially damaging CH variants after filtering with 1000GP data.

Disease Total number of genes
with potentially

damaging HA variants
after 1000GP filtering

Number of unique genes
with CH variants after

1000GP filtering

Percent increase in the
number of potentially

damaging genes

Adolescent idiopathic scoliosis 5 1 20

Congenital heart defects 102 11 10.8

Disorders of sex development 24 2 8.3

Ewing sarcoma 39 5 12.8

Neuroblastoma 35 4 11.4

Orofacial cleft 16 3 18.8

Syndromic cranial dysinnervation 28 3 10.7

were not associated with congenital heart defects or any of the
other diseases in this study based on a GDA or VDA score greater
than or equal to 0.5 (Piñero et al., 2020). All diseases except

FIGURE 4 | Number of samples with potentially damaging CH or HA variants
in genes involved in developmental biology. No potentially damaging CH or
HA variants were identified in tumor suppressor genes.

adolescent idiopathic scoliosis and orofacial cleft had at least
one sample with a HA variant in a gene known to be involved
in developmental biology (Figure 4). No genes associated with
tumor suppression were identified for either disease. Variants
in the developmental biology genes ACTG1, CCND3, COL9A2,
KRTAP4-7, and KRTAP4-8 were seen in more than one disease.
However, using DisGeNET, we did not identify any previous
gene-disease associations between the developmental biology
genes and the disease(s) they were identified in. To expand the
list of candidate genes for gene-disease associations, we also
analyzed all genes that contained CH variants after 1000GP
filtering (Figure 5). These genes and the CH variants identified
in these genes also resulted in no GDA or VDA scores greater
than or equal to 0.5 for the diseases that they were identified in.
Supplementary Table 2 provides a complete list of heterozygous
variants that were identified as part of a CH variant, the genes
and disease(s) they were identified in, and the number of samples
with each heterozygous variant. Supplementary Table 3 provides
a complete list of HA variants, the genes and disease(s) they were
identified in, and the number of samples with each HA variant.

For each disease, we performed a pathway analysis to
determine if any disease pathways were enriched with genes
containing potentially damaging CH variants. Using the genes
retained after 1000GP filtering of the CH variant gene data, we
identified three diseases as having enriched pathways based on
an adjusted p-value less than or equal to 0.05 and a q-value less
than or equal to 0.2 (Table 5): Ewing sarcoma, neuroblastoma,
and orofacial cleft. Each of the enriched pathways, across all
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FIGURE 5 | The landscape of potentially damaging CH variants. Each colored-box represents a gene type (see legend). The values within each colored-box indicate
how many samples for that disease had a CH variant in that gene.

diseases, had a single gene identified as being part of the
pathway. All three diseases had two pathways in common: the
inactivation, recovery and regulation of the phototransduction

cascade, and the phototransduction cascade. These two pathways
involve the GUCA1C gene. However, no diseases were found to
have a strong association with GUCA1C based on a GDA search
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TABLE 5 | Pathways enriched with genes containing potentially damaging CH variants.

Disease Enriched pathway Adjusted p-value q-value

Ewing sarcoma ABO blood group biosynthesis (FUT2) 0.014 0.006

Lewis blood group biosynthesis (FUT2) 0.028 0.013

Blood group systems biosynthesis (FUT2) 0.028 0.013

Inactivation, recovery and regulation of the phototransduction cascade (GUCA1C) 0.028 0.013

The phototransduction cascade (GUCA1C) 0.028 0.013

Activation of Matrix Metalloproteinases (MMP10) 0.028 0.013

Collagen degradation (MMP10) 0.041 0.019

Neuroblastoma Inactivation, recovery and regulation of the phototransduction cascade (GUCA1C) 0.018 0.008

The phototransduction cascade (GUCA1C) 0.018 0.008

Visual phototransduction (GUCA1C) 0.038 0.018

NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 (IFIH1) 0.018 0.008

TRAF3-dependent IRF activation pathway (IFIH1) 0.018 0.008

TRAF6 mediated NF-kB activation (IFIH1) 0.018 0.008

TRAF6 mediated IRF7 activation (IFIH1) 0.018 0.008

Negative regulators of DDX58/IFIH1 signaling (IFIH1) 0.018 0.008

Ovarian tumor domain proteases (IFIH1) 0.018 0.008

DDX58/IFIH1-mediated induction of interferon-alpha/beta (IFIH1) 0.032 0.015

Orofacial cleft Inactivation, recovery and regulation of the phototransduction cascade (GUCA1C) 0.012 0.005

The phototransduction cascade (GUCA1C) 0.012 0.005

Visual phototransduction (GUCA1C) 0.023 0.010

Genes used in Pathway Enrichment Analyses are those that were retained after filtering with 1000GP data. Ewing sarcoma, neuroblastoma, and orofacial cleft were the
only diseases with significantly enriched pathways (FDR adjusted p-value = 0.05 and q-value = 0.2). The gene that was identified in each pathway is in parentheses.

through DisGeNET. Other genes identified as being part of an
enriched pathway included FUT2, MMP10, and IFIH1. These
genes are not found in the Cancer Gene Census, nor are they
part of a developmental biology pathway. Supplementary Table 4
provides all pathways identified for each disease, regardless of
adjusted p- and q-values.

DISCUSSION

The importance of studying CH variants in pediatric diseases
has been established, but to date, the number and scope of
studies that have focused on CH variants are limited. For
example, most studies on CH variants in pediatric cancers
have focused on a single disease type, one or a few different
gene targets, and have not accounted for background rates
of CH variation in diverse, healthy populations (Miller and
Piccolo, 2020a). A systematic review showed that since the
advent of next-generation sequencing (NGS) approximately
20 years ago, only 10 studies have used NGS to identify CH
variants in pediatric cancers (Miller and Piccolo, 2020a). Of
these 10 studies, seven used trios and patterns of Mendelian
inheritance to infer CH variants (Valentine et al., 2014;
Spinella et al., 2015; Diets et al., 2018; Diness et al., 2018;
Zhang et al., 2018; Maciaszek et al., 2019; Schieffer et al., 2019),
two used computational phasing without the use of trio data
(Gröbner et al., 2018; Waszak et al., 2018), and one used patient
RNA-seq data to confirm the presence of a single CH variant
(Zhang et al., 2015). In total, these 10 prior studies examined
1,279 samples across nine different cancer types, and identified
CH variants in 23 unique genes. While no comprehensive

review has been published on the role of CH variation in
structural birth defects to date, a search on Google Scholar for
“‘structural birth defect’ AND ‘compound heterozygous’ AND
‘next generation,”’ limited to the last 20 years, uncovered four
studies that used trio data and Mendelian inheritance to infer
CH variants (Li et al., 2015, 2020; Takeda et al., 2017; Aarabi
et al., 2018), and one study that used computational phasing
without trio data (Jiang et al., 2018). These five studies included
1,192 samples across numerous structural birth defect types, and
identified CH variants in eight genes likely playing a role in
the formation of a defect. The computational pipelines used in
these studies were inconsistent with each other, and none took
background rates of CH variation in healthy populations into
consideration. In this study, we analyzed two pediatric cancer
types and five structural birth defect diseases for CH variants
across 1,629 affected individuals using a consistent, reproducible,
computational pipeline. WGS data for these individuals were
phased using trio data and a haplotype reference panel. After
accounting for background rates of CH variation in the 1000GP
control population, we identified 25 unique genes with at least
one potentially damaging CH variant.

During the variant-identification process for both CH and
HA variants, we focused on variants in which both alleles were
classified as having “HIGH” impact severity and thus were
among the most likely to be pathogenic. Across all diseases,
we identified high-impact variants that included splice-acceptor,
splice-donor, start-loss, stop-gain, stop-loss, and structural-
interaction variants. We focused on variants of high impact to
help control for false positives. However, by excluding alleles of
lower impact (which may have included missense variants, in-
frame insertions or deletions, transcription-factor binding site
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variants, etc.), we likely excluded some true positives. Using a
healthy population as a baseline may help reduce the number
of false positives, as well as the number of candidate genes that
must be considered in genotype-phenotype studies. Therefore,
in addition to variant-level filtering, we performed gene-level
filtering using 1000GP data. We observed potentially damaging
CH variants in 883 out of 2,504 of these seemingly healthy
individuals. For each disease that we studied, we identified genes
affected with CH variants in more than 1% of 1000GP individuals
and excluded these from consideration as candidate disease genes
because it is unlikely that these genes are disease-causing, given
their prevalence in this seemingly healthy population.

Due to the stringent variant-level and gene-level filtering
that we used, this study erred on the side of specificity rather
than sensitivity. However, one of our goals was to estimate
a lower bound on the number of biallelic gene variants
that would be missed or mischaracterized without genome
phasing. Future efforts will be necessary to refine the ability
to estimate pathogenicity of varying combinations of “HIGH,”
“MODERATE,” and “LOW” impact alleles in the context of
CH variant identification. Although we expect that the genes
presented in this paper as having potentially pathogenic CH
variants are among the most likely to play a role in these
diseases, we likely missed other genes that should be considered.
Among the genes that our filtering process excluded are MUC19
and multiple HLA genes (HLA-DRB5, HLA-B, and HLA-DRB1).
Mucin genes are known to be highly variant and HLA genes are
among the most polymorphic genes (Akle et al., 2015; Wu et al.,
2019).

Across all diseases, our analyses revealed potentially damaging
CH variants in genes involved in developmental biology
(Figures 4, 5), but no statistically significant gene-disease
associations were identified. That is not to say that these genes
have no effect on disease development. For example, IFIH1, for
which a potentially pathogenic CH variant was identified in a
single neuroblastoma patient, has been associated with lupus
erythematosus (GDA score: 0.7), Aicardi-Goutieres syndrome
(GDA score: 0.7), and Singleton-Merten syndrome (GDA score:
0.69) (Piñero et al., 2020). Of the genes identified in this
study, further investigation into their biological role through wet
lab experiments, such as gene knockdown, could reveal novel
possible mechanisms of disease development.

Phasing is computationally expensive and requires additional
analysis steps. However, our analysis shows that it is common to
observe CH variants in diverse diseases, thus providing evidence
that phasing is justified. Our CH variant identification process
enabled us to identify a considerable number of potentially
disease-causing variants that would not have been identified
without phasing. For example, for the pediatric diseases that
we studied, the number of samples with potentially damaging
CH variants increased by 8.5–25.0%, and the number of
genes in which these variants occurred increased by 8.3–20.0%
when compared to assessing HA variants alone (Tables 3, 4).
Without phased data, across all studies, 17 genes with
potentially damaging variants would have been overlooked and
35 samples would have been overlooked as having potentially
damaging variants.

The process that we used to identify CH variants in
these cohorts has various limitations. Despite using the best
available methods and tools throughout the CH variant
identification process, many variant positions were removed
during preprocessing steps (Figure 2). Because of this loss,
additional high impact alleles may be unaccounted for, so our
results may underestimate the number of genes with potentially
damaging CH variants for these pediatric diseases. Much of the
data loss is due to current limitations of software programs
or due to data-quality issues. For example, when converting
chromosomal positions from one genome build to another, the
exact position must be known in the target genome (Lowy-
Gallego et al., 2019). If the position is unknown in the target
genome, the position will be excluded in the final output.
Another software limitation that leads to data loss occurs during
phasing. Phasing relies on several factors, such as the number
of high-quality variant calls and completeness of a haplotype
reference panel (Choi et al., 2018). Phasing completeness is also
not guaranteed when using family information during phasing.
For example, if both parents and the child are heterozygous
at a position, or inheritance of a variant does not follow
Mendelian inheritance patterns, phase may be undetermined due
to these ambiguities. Across all diseases, on average, there were
14,130 variant positions per sample removed due to Mendelian
inheritance inconsistencies (Figure 2). Despite these limitations,
we identified many CH variants that could be explored further.

In addition to the software limitations that are part of
the phasing process, phasing can be time consuming and
computationally demanding. For example, phasing a single trio
can take ∼4 h if only one CPU core is being used. However, using
22 CPU cores simultaneously, we reduced the duration of this
process to ∼21 min per trio. Our recently developed program,
CompoundHetVIP, can help facilitate the phasing process and
assist in CH variant identification; it uses commonly used
programs such as SHAPEIT2 (for phasing) and GEMINI (to assist
with CH variant identification) (Delaneau et al., 2013; Paila et al.,
2013; Miller and Piccolo, 2020b). CompoundHetVIP requires
minimal command-line experience. This is one example in which
phasing and CH variant identification is becoming more easily
accessible to researchers of all computational skill levels.

CONCLUSION

Although much insight has been gained from recent studies
focusing on the role of germline variants in pediatric cancer
and structural birth defect diseases, many studies overlook
CH variants because identification of these variants requires
sequencing data from parents as well as additional time and
computational resources. However, embracing these limitations
is worth the additional knowledge that is gained when studying
diseases that are putatively inherited in a recessive manner. Using
trio data from the GMKF, across seven pediatric diseases with
unknown etiologies, we showed that the number of samples
and genes with potentially damaging variants increases when
compared to the number of samples and genes with HA variants,
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alone. We used 1000GP data as a baseline of what to expect
in terms of CH variation across a genome and then used this
information as a filter to reduce the number of candidate genes
with potentially damaging CH variants in each disease dataset.
Across all seven diseases, we observed 17 genes with potentially
damaging CH variants that would have been overlooked if
CH variants were not considered. In addition to research
applications, the identification of CH variants may be beneficial
to clinicians when trying to understand what genes may be
contributing to a patient’s disease.
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