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As a novel target in pharmacy, microRNA (miRNA) can regulate gene expression under
specific disease conditions to produce specific proteins. To date, many researchers
leveraged miRNA to reveal drug efficacy and pathogenesis at the molecular level. As we all
know that conventional wet experiments suffer from many problems, including time-
consuming, labor-intensity, and high cost. Thus, there is an urgent need to develop a novel
computational model to facilitate the identification of miRNA–drug interactions (MDIs). In
this work, we propose a novel bipartite network embedding-based method called
BNEMDI to predict MDIs. First, the Bipartite Network Embedding (BiNE) algorithm is
employed to learn the topological features from the network. Then, the inherent attributes
of drugs and miRNAs are expressed as attribute features by MACCS fingerprints and
k-mers. Finally, we feed these features into deep neural network (DNN) for training the
prediction model. To validate the prediction ability of the BNEMDI model, we apply it to five
different benchmark datasets under five-fold cross-validation, and the proposed model
obtained excellent AUC values of 0.9568, 0.9420, 0.8489, 0.8774, and 0.9005 in ncDR,
RNAInter, SM2miR1, SM2miR2, and SM2miR MDI datasets, respectively. To further verify
the prediction performance of the BNEMDI model, we compare it with some existing
powerful methods. We also compare the BiNE algorithm with several different network
embedding methods. Furthermore, we carry out a case study on a common drug named
5-fluorouracil. Among the top 50miRNAs predicted by the proposedmodel, there were 38
verified by the experimental literature. The comprehensive experiment results
demonstrated that our method is effective and robust for predicting MDIs. In the future
work, we hope that the BNEMDI model can be a reliable supplement method for the
development of pharmacology and miRNA therapeutics.
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INTRODUCTION

As many previous studies have shown, RNA plays a vital role in
encoding, decoding, regulation, and expression of genes (Fu,
2014). Global transcriptional analyses of the human genome
proved that the quantity of non-coding RNAs (ncRNA) is
much larger than protein in human cells and ncRNA is
involved in the regulation of stem cell pluripotency and cell
division (Cawley et al., 2004; Iyer et al., 2015). In the human
genome project, the newly discovered RNA genes are far more
abundant than protein genes (Bentwich et al., 2005). RNA can be
divided into two classes based on the length of the RNA chain,
mainly including long RNA of more than 200 nucleotides and
small RNA of fewer than 200 nucleotides. MicroRNAs (miRNAs)
are a kind of short endogenous non-coding RNAs with 20–25
nucleotides, which may modulate the expression of genes in post-
transcription (Ambros, 2001; Bartel, 2004). MiRNAs will
incompletely bind to the target genes for inhibiting the
transcripts, which may truncate mRNAs but does not affect
the stability of mRNAs (Jiang et al., 2009).

Despite great advances in miRNA therapeutics and the
theoretical knowledge between miRNAs and diseases, most of
the drug targets are proteins. In human cells, less than 15% of
disease-related proteins are targets of drugs (Dixon and
Stockwell, 2009). This means that drug targets, which are
designed through proteins, can only act on a small proportion
of the human genome. In brief, most proteins are not “druggable.”
As a result, ncRNAs are increasingly considered by researchers as
a potential drug target. Among them, miRNA is considered a
valuable drug target because it can play a key role in gene
regulation when the disease occurs. Increasing number of
experiments prove that there is a strong relationship between
the abnormal regulation of miRNA and human diseases. For
example, the expression level of miR-205 and miR-393 are
potential biomarkers of mucinous colorectal cancer and colon
cancers, which will be increased when cancer occurs (Eyking
et al., 2016). Bommer et al. (2007) discovered that the expression
level of miR-34 will be lessened in non-small cell lung cancers
(Bommer et al., 2007). If miRNA can be used as drug targets, it
will be conducive to the development of drug discovery and drug
repositioning (Zhang et al., 2021b).

Therefore, many recent studies focus on the miRNA-based
approach as a therapeutic, one of which is targeting over-
expressed miRNAs (Ishida and Selaru, 2013; Bayraktar et al.,
2018; Zhang et al., 2021). Kota et al. (2009) reported that miR-26a
transported by adeno-associated virus (AAV) inhibits the spread
of cancer cells and activates the apoptosis of cancer cells. In the
previous study, Esquela-Kerscher et al. suggested that the active
expression of let-7 could suppress the proliferation of tumor cells
in the mice model (Fu et al., 2021). Matboli et al. (2017)
demonstrated that caffeic can effectively attenuate diabetic
kidney disease in rats by downregulating the expression level
of miR-133b, miR-342, and miR30a (Matboli et al., 2017).

However, detecting MDI based on the experiment is a labor-
intensive and time-consuming process. In silico, some of the
prediction methods have been proposed to infer the potential
interaction between miRNAs and drugs. For example, Huang

et al. proposed a computational method named GCMDR, which
is based on a graph convolution neural network and explores the
link between miRNA and drug resistance (Ya et al., 2020). In
detail, they constructed a bipartite graph integrating the
fingerprint of drug compounds and miRNA functional
similarity. Moreover, they learned from the idea of auto-
encoder, in which they built a graph convolution-based
encoder to generate the embeddings of nods and a decoder to
complete the prediction task. Lv et al. (2015)constructed two
homogeneous networks of miRNAs and small molecular drugs.
Multiple similarity measurements (i.e., side effect, functional
consistency, indication phenotype, and chemical structure) are
fused to represent the node feature of miRNAs and drugs, and
they implemented the improved random walk restart algorithm
on the heterogeneous network, which is fused by two
homogeneous networks. Thus, this method can infer the
potential MDI without having to resort to the information of
known MDI. But there are too many parameters required to
adjust in this method. Recently, Deepthi and Jereesh, (2021)
developed an ensemble approach of the convolutional neural
network based on deep architecture-based classification for
identifying the association between miRNAs and drugs. They
treated the similarities of miRNAs and drug compounds as the
biological features and reduced the dimensions of features by the
PCA algorithm. Then, they constructed a convolutional deep
neural network for the purpose of feature extraction. Finally, they
employed SVM to predict the potential MDIs. Anyway, the
aforementioned methods rely heavily on side information
calculated by functional similarities such as gene functional
similarity and disease phenotype similarity. Abuse of
functional similarity carries the risk of label leakage. However,
due to the incomplete database, a lot of side information about
miRNA and drugs is missing. Inmost cases, researchers only have
the sequence profile and phenotypic profile of biological
molecules and chemical compound. Therefore, we think that
an MDI prediction method based on the sequence profile rather
than functional similarity should be designed.

The information on how miRNAs affect drug effects in the
literature can also provide rich information (Fleuren and Alkema,
2015). Hence, Xie et al. (2017) proposed a novel text mining
approach named EmDL to infer the MDIs by extracting the
explicit information in the literature. They began by splitting
substantial articles, which were collected from PubMed and
MEDLINE, into individual sentences. For each miRNA–drug
pair, the word distance between miRNA and drug appearing in
the sentence was calculated to extract the representation features.
Last, they leveraged the principal component analysis (PCA)
algorithm to reduce the dimension of representation features
and was carried out using the support vector machine (SVM) to
predict whether the miRNA–drug pair was interactive (Deepthi
and Jereesh, 2021). Moreover, Guo et al. (2020) creatively
introduced natural language processing (NLP) to the field of
biological information. For the purpose of mining the
information from the chemical structure of biological entities,
they regarded the miRNA sequences and drug SMILES sequences
as sentences and implemented the word2vec algorithm for them.
However, implementation of NLP methods required a large
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corpus, and the performance of text mining-based methods will
be affected by different corpora and different semantic
statements.

In this work, we propose a novel computational method, named
BNEMDI, which predicts miRNA–drug interactions using drug
substructure fingerprint, miRNA sequence, and MDIs bipartite
graph. We have collected known MDI from three databases (e.g.,
ncDR, RNAInter, and SM2miR) and split them into five datasets. In
datasets, theMDI pairs were treated as positive samples, and the same
number of unconfirmed miRNA–drug pairs was selected randomly
as negative samples. The knownMDIs in datasets were constructed as
the bipartite graph, and the miRNAs and drug compounds are
regarded as the nodes of the graph. The graph embedding
methods are pervasive to reveal the complex traits of each entity
(Li et al., 2021; Yue and He, 2021). Thus, a graph embedding
technique called BiNE was implemented on the bipartite graph
for learning the topological features of nodes (Gao et al., 2018),
and BNEMDI considers not only the topological information ofMDI
but also the inherent attribute information of the biological entities.
Specifically, the attribute features of drug compounds are denoted by
MACCS substructure fingerprints, and the attribute features of
miRNAs are calculated by k-mers (Kurtz et al., 2008; Cereto-
Massagué et al., 2015). Finally, we constructed a neural network
model based on DNN to fuse two kinds of features mentioned earlier
and infer the potential miRNA–drug interaction pairs. The flowchart
of BNEMDI is shown in Figure 1.

MATERIALS AND METHODS

Dataset
There are several databases about MDIs, for example, the RNA
interaction dataset (RNAInter) (Kang et al., 2021), the database

for non-coding RNAs involved in drug resistance (ncDR) (Dai
et al., 2017), and the database of validated small molecules’ effects
on miRNA expression (SM2miR) (Liu X. et al., 2013).

We downloaded a total of 8,053 different experimentally
verified miRNA–drug interactions from the three databases
mentioned earlier. One thing is to note that the SM2miR
database was created on 10 June 2012 and upgraded twice on
28 August 2013 and 27 April 2015. Thus, the SM2miR database
was divided into three sub-datasets, according to three versions,
named SM2miR1, SM2miR2, and SM2miR3 for convenience,
respectively. Therefore, we obtained a total of five datasets and
pre-processed them, such as de-redundancy and de-duplication.
The details of the three databases are shown in Table 1. We only
collected the miRNA–drug interaction pairs of Homo sapiens in
three databases. The miRNA sequences and drug SMILES are
collected from miRBase (Kozomara et al., 2019) and PubChem
(Kim et al., 2021a). The drug SMILES is a specification that
explicitly describes the molecular structure in ASCII strings
(Weininger and sciences, 1988). The drug SMILES are
transformed into MACCS fingerprints by the RDKit library.

Represent MicroRNA With k-mer
For obtaining genomic information on miRNA, the sequence of
miRNA is represented by k-mer (Liu B. et al., 2013). k-mer is a

FIGURE 1 | Flowchart of the BNEMDI model for predicting potential MDIs.

TABLE 1 | Statistics of miRNAs, drugs, and miRNA–drug interactions in five
datasets.

Dataset ncDR RNAInter SM2miR1 SM2miR2 SM2miR3

Drug 95 281 86 113 142
miRNA 624 1,009 358 536 645
Interaction 4,457 5,739 1,110 1,697 1,940
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feature representation method, which is widely used in the field of
bioinformatics. Yousef et al. (2017) used k-mer to construct
simple sequence-based features to describe miRNAs for
miRNA categorization (Yousef et al., 2017; Erten-Ela et al.,
2018). In addition, Yi et al. (2020) also used k-mer to
represent molecules such as lncRNA, miRNA, and protein in
the molecule association network (Yi et al., 2020; Pan et al., 2022).
k-mer is a substring of biological sequence with a length of k. For
the miRNA sequences, we define the 3-mer of miRNA as the
subsequence, such as “AGG” and “AAA.” Then we sequentially
extract three nucleotides from the first nucleotides, using the
form of a sliding window (step length is one). Since miRNA
consists of four types of bases, there are 64 (43) possible 3-mer
patterns in a sequence. After that, we count the normalized
frequencies of all 3-mer patterns. Finally, we obtained miRNA
representation vectors with a length of 64 and containing miRNA
sequence information. Figure 2 shows the principle of k-mer.

Represent Drug Molecules With MACCS
Fingerprint
In the past research, numerous kinds of descriptors have been
established to portray the chemical structure of pharmaceutical
compounds such as geometrical, topological constitutional, and
quantum chemical properties (Cao et al., 2012). The substructure
keys-based fingerprint is customarily adopted as the descriptor to
represent the chemical structure. Substructure fingerprints
encode molecular structure to a bit-string with a fixed length,
according to the substructure of the drug instead of using 3D
structural information. Plenty of previous research works have
demonstrated that substructure fingerprint is effective and
feasible to represent drugs. Specifically, we incorporated a
dictionary that includes a list of substructure features

represented as SMART strings. SMART is a system to identify
substructures by the expanding rule of SMILES. After the first
step of composing the dictionary, we compare each item of the
dictionary to the given molecular substructures, if the SMART
pattern is included in the given molecular substructure, the
corresponding bit of fingerprint is set to one, and zero
otherwise. An example of the substructure fingerprint
determined by the given molecular substructure is displayed in
Figure 3. Herein, we used MACCS fingerprint to compose the
dictionary, which contained 166 types of general molecular
substructures and covered most of the interesting chemical
structures of drugs. Finally, we represented Boolean vectors of
molecular drug for the length of 166.

Topological Features Extraction Based on
Graph Representation Method
In this study, the graph representation learning method may
encode each node by topological information and embed nodes in
a low-dimension space. It is different from previous studies, in
which it can extract underlying information from the network.

The challenge of MDI prediction may be formulated as a link
prediction problem with a heterogeneous graph. The MDIs
network is employed to construct a heterogeneous graph
G � (D,M, E), and there are two types of nodes, drug D �
{d1, d2, . . . , di} (i is the index of drugs in the dataset) and
miRNA M � {m1, m2, . . . , mj} (j is the index of miRNA in the
dataset). E ⊂ D × M denotes the set of edges between D and M.
The edges represent the known interactions between drugs and
miRNAs. If di and mj have interaction, the weight of the edge is
set to one, and zero otherwise. The matrixW � [wij] denotes the
weight of the edges between drug di and miRNA mj in graph G.
The graph embedding aims to look for a map function

FIGURE 2 | Diagram of k-mer for extracting attribute sequences from miRNA sequences.
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f: D ∪ M → Rt, where t< < |m| ∪|d|. In other words, the low-
dimensional presentation vectors of each node in the graph will
be learned by the graph embedding method, and maintain the
graph topology information and node properties (Cai et al.,
2018). To achieve this aim, we utilized a graph embedding
method called BiNE, which has great performance in
reconstructing the original bipartite network, proposed by Gao
et al. (2018). Previous research on graph embedding has raised
the question of extracting explicit relations between the nodes of
different types and implicit relationships among the nodes of
sample types. BiNE contributed an innovative idea to solve this
problem by constructing a jointly optimizing framework,
consisting of three objection functions and variable weight.
These three objective functions include an explicit relation and
two implicit relations.

To model the explicit relations, we calculated the local
proximity between two different vertices in the bipartite
network, which is based on local proximity in LINE (Tang
et al., 2015). We define the joint probability between two
connected nodes as:

P(i, j) � wij∑eij∈Ewij
(1)

where wij is the weight of the edge between two types of nodes.
Drawing on the principle of word2vec, BiNE estimates the

local proximity between two nodes by inner product (Church,
2017), and the sigmoid function is used to map the interaction
value to the probability space. The joint probability of two
different types of nodes in embedding space is defined as follows:

P
∧ (i, j) � 1

1 + exp(−dTi mj), (2)

where �di ∈ Rt and �mj ∈ Rt are the embedding vectors of drugs di
and miRNAs mj, respectively.

To get the knowledge of observed edges and learn the
embedding vectors, we need to minimize the difference
between empirical distribution and the reconstructed

distribution. KL-divergence is used to measure the difference
between the previously two joint probabilities mentioned. The
first part of the joint optimizing framework can be defined as:

minimize O1 � KL(P∣∣∣∣∣∣∣∣∣∣∣∣P�) � ∑
eij∈E

P(i, j)log⎛⎝P(i, j)
P
�(i, j)⎞⎠. (3)

Studies of recommendation systems demonstrated that
implicit relations are also helpful to discover potential
information in the heterogeneous graph as explicit relations
(Jiang et al., 2016; Yu et al., 2018). This means that nodes of
the same type are not connected in the bipartite network, but still
contain a wealth of information, that is, crucial to model the
implicit relationship between the nodes of the same type. BiNE
constructs two homogeneous networks in accordance with the
interaction profile between two types of nodes and performs the
random walk on two homogeneous networks to encode the high-
order proximity of the origin network.

To reveal the 2nd proximity of the heterogeneous graph, BiNE
utilizes co-HITS (Deng et al., 2009) to generate two weighted
homogeneous networks (drug–drug network and
miRNA–miRNA network). In accordance with co-HITS, the
correlation coefficient between two nodes can be defined as:

wM
ij � ∑

k∈D

wikwjk;w
D
ij � ∑

k∈M

wkiwkj (4)

wherewij is the weight of the edge eij. Intuitively, suppose an i × j
MDI bipartite matrix Gb, the drug–drug network can be denoted
by a i × i matrix GbGT

b , and the miRNA–miRNA network can be
represented by a j × j matrix GT

bGb.
Truncated random walks are employed on two homogeneous

networks previously generated to obtain the corpus of node
sequences. Therefore, the biased and self-adaptive random
walk generator, which may maintain the vertex distribution, is
introduced to produce the corpus of node sequences with true
validity and effectiveness. Its core design can be described as
“richer get richer.” Specifically, the greater centrality of a node,

FIGURE 3 | Diagram of MACCS fingerprint-represented drug substructures.
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the more likely that node will be the starting point for the random
walk to begin. The centrality of nodes in the homogeneous
network is measured by HITS (Kleinberg, 1999). Compared
with other random walk-based measures, a probability is
specified to stop the random walk in each step. Therefore, the
node sequence generated by our method does not have a fixed
length because the variable-length sequences are more simulated
to natural language.

The skip-gram model is carried out to process the samples
of two corpora obtained from truncated random walk. If two
nodes frequently appear in the same context of a node
sequence, the skip-gram model will assign them similar
embedding vectors.

In order to learn the implicit relations, two objection functions
are defined to maintain the high-order proximity by maximizing
the conditional probability. The symbols of CS(di) and CS(mj)
represent the context of node di and mj in a sequence S,
respectively. For the corpus of the drug homogeneous network
PD, the objection function is as follows:

maximize O2 � ∏
di∈S∧PD

∏
dc∈CS(di)

P(dc|di) (5)

Then, the corpus of the miRNA homogeneous network PM is
treated in the same way, and the objection function is
expressed as:

maximize O3 � ∏
mj∈S∧PM

∏
mc∈CS(mj)

P(mc|mi) (6)

Similar to the LINE (Tang et al., 2015), the conditional probability
P(dc|di) and P(mc|mi) are defined using the inter product kernel
and softmax function:

P(dc|di) �
exp( �d

T

i
�θc)

∑|D|
k�1( �d

T

i
�θk), P(mc|mi) �

exp( �mT
j
�ϑc)∑|M|

k�1( �mT
j
�ϑk) (7)

where |D| and |M| represent the number of drug compounds and
miRNAs, respectively. The context vectors corresponding to two
types of nodes are denoted as �θc and �ϑc.

Finally, the three components of the objective function are
combined into the joint optimization framework for learning the
low-dimension embedding vectors of the bipartite network. The
overall jointly optimizing function is defined as follows:

maximize L � α logO2 + β logO3 − γO1 (8)
where α, β, and γ are parameters of explicit relation and implicit
relation.

To improve computational efficiency, a negative sampling
method is adopted to approach the complicated denominator
of the sigmoid function. In particular, nodes are divided into
different buckets by locality-sensitive hashing (LSH) (Wang et al.,
2013) and randomly selected as the negative samples. Finally, the
joint framework is optimized by the stochastic gradient ascent
(SGA) algorithm. The first part of the optimizing framework L1 �
−γO1 is maximized to update embedding vectors �di and �mj, and

the updated rules of embedding vectors �di and �mj are expressed
as follows:

�di � �di + λ{γwij[1 − σ( �d
T

i �mj)] · �mj} (9)

�mj � �mj + λ{γwij[1 − σ( �d
T

i �mj)] · �di} (10)

where λ represents the learning rate, and σ represents the sigmoid
function. Then, the part of α logO2 and β logO3 are also
maximized to update embedding vectors �di and �mj to follow
the rules:

�di � �di + λ
⎧⎪⎨⎪⎩ ∑

z∈{dc}∪Nns
S (di)

α[I(z, di) − σ( �dT

i
�θz)]• �θz}, (11)

�mj � �mj + λ
⎧⎪⎨⎪⎩ ∑

z∈{mc}∪Nns
S (mj)

β[I(z,mj) − σ( �mT
j
�ϑz)]• �ϑz}, (12)

where I(z, di) and I(z,mj) is an indicator function that confirms
whether the node z belongs to the context of di and mj,
respectively. The context of nodes is updated as:

�θz � �θz + λ{α[I(z, di) − σ( �d
T

i
�θz)]• �di} (13)

�ϑz � �ϑz + λ{β[I(z,mj) − σ( �mT
j
�ϑz)]• �mj} (14)

Building Predictor
In this section, we will introduce how to predict whether the
miRNA–drug pairs have underlying interaction. After feature
extraction, the attribute and topological features of miRNAs and
drugs were concatenated and fed into the DNN model for fusing as
unified dimension representation vectors. Finally, a dense layer with
256 neurons is used to complete the classification task. Specifically,
suppose that the nodes miRNA and nodes drug are di and mj, and
the representation features of them are fi and fj, respectively. The
possibility of interaction between di and mj can be defined as:

Pij � σ(fT
i ⊕ fj) (15)

where σ means the sigmoid function and ⊕means the concatenation.
Pij represent the prediction score between di and mj, if the Pij is
greater than 0.5 means, di is to interact withmj, and vice versa. The
binary cross-entropy was used as the loss function, and the “Adam”
algorithm was used to optimize the model.

RESULTS AND DISCUSSION

Evaluation Criteria
As MDI prediction is a binary classification problem for each pair of
miRNA and drugs, we used some evaluation criteria to measure the
performance of the proposed model, including accuracy (Acc.),
sensitivity (Sen), specificity (Spec.), also precision (Prec.), and
Matthews correlation coefficient (MCC). They are defined as:
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Acc. � TN + TP

TN + TP + FN + FP
(16)

Sen. � TP

FP + FN
, (17)

Spec. � TN

TN + FP
, (18)

Prec. � TP

TP + FP
(19)

MCC � TP × TN − FP × FN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (20)

Here, TP and TN are signs of the number of correct positive
samples and correct negative samples predicted by the model,
respectively. Correspondingly, FP and FN are signs of the number
of false positive samples and false negative samples predicted by
the model, respectively (Pan et al., 2020). Following previous
studies, the receiver-operating characteristic (ROC) and
precision-recall (PR) are implemented to visually display the
result of the experiment, and the area under ROC (AUC) and
PR (AUPR) are used to assess the comprehensive performance of
the proposed model.

Prediction Performance on Different
Datasets
To systematically evaluate the performance of the BNEMDI
model, our proposed model is implemented to predict
potential MDI pairs on five different datasets, and five-fold
cross-validations are implemented for obtaining a more
accurate assessment. In detail, the dataset will be divided into
five parts, each part will serve as the testing set in turn, and the
rest as training sets. Afterward, Table 2 lists various evaluation
values to illustrate the prediction performance of BNEMDI. As
can be seen in Table 2, we get the result of the experiment with
the accuracy of 88.75% (ncDR), 87.23% (RNAInter), 77.24%
(SM2miR1), 79.92% (SM2miR2), and 81.86% (SM2miR3). The
standard deviations of accuracy are 0.1, 0.34, 0.39, 0.21, and
0.65%, respectively. To directly illustrate the prediction
performance of BNEMDI on each dataset, Figure 4 presents
the ROC and PR curves of the result of five-fold cross-validations
on five datasets. The proposed model BNEMDI achieves average
AUCs of 0.9568 (ncDR), 0.9420 (RNAInter), 0.8489 (SM2miR1),
0.8774 (SM2miR2), and 0.9005 (SM2miR3). The standard
deviations of five-fold cross-validations are 0.001, 0.0016,
0.0021, 0.0023, and 0.0026, respectively. It is apparent from
these criteria values that our proposed model BNEMDI is
stable and effective.

Previously, some studies have conducted MDI prediction
experiments on the ncDR dataset (Huang et al., 2018; Huang
et al., 2020). Herein, we compared our proposed model with these
models and some classical methods like collaborative filtering
(CF) and matrix factorization (MF) (Boutsidis and Gallopoulos,
2008; Su and Khoshgoftaar, 2009). The evaluation criteria are
AUC and the results are shown in Table 3. In GCMDR and
HMDPI, the attribute features of miRNAs and drugs were
constructed using miRNA expression profile, drug
substructure fingerprints, gene ontology, and disease ontology.
Huang et al. constructed the GCMDRmodel by combining graph
convolution and auto-encoder to learn deep features. In the
GCMDR model, the dimensional latent factor, units in hidden
layer, maximum Chebyshev polynomial degree, and training
epochs are set to 25, 100, 3, and 200, respectively. In EPLMI,
they implemented a two-way diffusion method on the weighted
network to generate resource vectors which can be defined as:

Rln cRNA � ∑nm

m�1
Aw

a,m · Ap,m∑nl
i�1A

w
i,m

(21)

RmiRNA � ∑nl

l�1
Aw

l,b · Al,p∑nm
i�1A

w
l,i

(22)

where Aw is the weighted adjacency matrixes constructed by
similarity, and A is the adjacency matrixes. Other experimental
parameters are set to default.

In the methods based on CF, the self-similarities of miRNA
and drug are calculated by the Pearson correlation coefficient
(PCC), which is defined as:

Pp(a, b) �
∑N

i�1(fai − fa)(fbi − fb)!!!!!!!!!!!!!!!!!!!!!!!!!!!∑N
i�1(fai − fa)2∑N

i�1(fbi − fb)2
√ , (23)

where fa and fb represent the features of two same types of
elements (miRNA or drug). Based on the PCC, self-similarity
matrixes and adjacency matrixes M for miRNA and drug, the
predicted score matrix of drug-based CF can be defined as:

Mdrug
′ (di, mj) � ∑nd

k�1Pdrug(di, dk) ·Mk,j

nd
(24)

whereM′ is the predicted matrix and nd is the number of drugs in
the dataset.

Correspondingly, the predicted score matrix of miRNA-based
CF can be defined as:

TABLE 2 | Performance of the proposed method on five datasets.

Fold AUC AUPR (%) Acc (%) Sen (%) Spec (%) Prec (%) MCC (%)

ncDR 0.9568 ± 0.0010 95.65 ± 0.13 88.75 ± 0.10 89.13 ± 0.19 88.39 ± 0.13 88.47 ± 0.11 77.51 ± 0.20
RNAInter 0.9420 ± 0.0016 93.88 ± 0.16 87.23 ± 0.34 88.99 ± 1.05 85.47 ± 1.30 85.98 ± 0.94 74.52 ± 0.65
SM2miR1 0.8489 ± 0.0021 84.61 ± 0.25 77.24 ± 0.39 80.82 ± 0.33 73.66 ± 0.68 75.42 ± 0.49 54.62 ± 0.78
SM2miR2 0.8774 ± 0.0023 87.04 ± 0.17 79.92 ± 0.21 81.12 ± 0.33 78.73 ± 0.23 79.22 ± 0.19 59.86 ± 0.42
SM2miR3 0.9005 ± 0.0026 89.34 ± 0.20 81.86 ± 0.65 79.47 ± 1.42 84.24 ± 2.05 83.49 ± 1.62 63.81 ± 1.37
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FIGURE 4 | Prediction performance of BNEMDI based on ROC and PR curves. (A) Five-fold cross-validation ROC and PR curves on the ncDR dataset. (B) Five-
fold cross-validation ROC and PR curves on the RNAInter dataset. (C) Five-fold cross-validation ROC and PR curves on the SM2miR1 dataset. (D) Five-fold cross-
validation ROC and PR curves on the SM2miR2 dataset. (E) Five-fold cross-validation ROC and PR curves on the SM2miR3 dataset.

TABLE 3 | Comparison of the prediction performance based on the ncDR dataset (N/A means not available).

Method ncDR RNAInter SM2miR1 SM2miR2 SM2miR3

GCMDR 0.9359 ± 0.0006 N/A N/A N/A N/A
EPLMI 0.8971 ± 0.0009 N/A N/A N/A N/A
Neighbor-based CF 0.8644 ± 0.0009 0.8532 ± 0.0007 0.6289 ± 0.0017 0.7346 ± 0.0027 0.8654 ± 0.0015
Drug-based CF 0.7313 ± 0.0008 0.7120 ± 0.0010 0.6982 ± 0.0026 0.6993 ± 0.0013 0.7030 ± 0.0016
miRNA-based CF 0.8235 ± 0.0015 0.8364 ± 0.0022 0.6325 ± 0.0019 0.6534 ± 0.0014 0.7644 ± 0.0009
SVD-based MF 0.6007 ± 0.0052 0.6189 ± 0.0044 0.5978 ± 0.0050 0.6039 ± 0.0051 0.6045 ± 0.0045
BNEMDI 0.9568 ± 0.0010 0.9420 ± 0.0016 0.8489 ± 0.0021 0.8774 ± 0.0023 0.9005 ± 0.0026

FIGURE 5 | Prediction performance of different features on different datasets.
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MmiRNA
′ (di, mj) � ∑nm

k�1PmiRNA(mi,mk) ·Mi,k

nm
s (25)

Neighbor-based CF takes into account both drug-based CF
and miRNA-based CF and is defined as:

Mneighbor
′ (di, mj) � Mdrug

′ (di, mj) +MmiRNA
′ (di, mj)

2
(26)

Several studies on drug target interaction prediction or drug
repositioning have used similarity-related information to construct
the prediction models. Although they gain optimistic results on
datasets, it seems difficult for the model to work in real-world
scenarios. However, the similarity itself is related to interactions of
biological entities, and the abuse of similarity will potentially lead to
label leakage. The prediction ability of label leaking models is easily
overestimated when it implements on a known dataset. In this
experiment, after dividing the dataset into training sets and test
sets, only the training set was extracted topological features and used
to construct the prediction model for avoiding label leakage. For
instance, there are 4,457 MDI pairs in the ncDR dataset, of which
only 3,565 MDI pairs will be extracted as features and used to
construct the prediction model. But there are no such issues in the
attribute features.

Ablation Experiment
To better construct representation vectors, we considered
attribute features and topological features of nodes in the
miRNA–drug bipartite network. In this section, we are going
to discuss the impact of different features on the performance of

BNEMDI. We consider three kinds of features: attribute feature,
topological feature, and the combination of them to separately
construct the representation vectors and the corresponding
prediction model. The accuracy is used as the standard to
compare the influence of various features on the model.

Figure 5 shows the prediction performance of models based
on different features. In general, the topological features are more
effective than the attribute features. Therefore, we concluded that
the topological features make a great contribution to the proposed
model. Although attribute features do not perform as well as the
topological feature, the production of attribute features only
requires sequence information like SMILES and miRNA
sequences. Thus, the attribute features are suitable as the
representation vectors for the new samples.

The attribute features are constructed by the sequence profile
information of nodes in the relationship network and contain
chemical structure information of the miRNAs and drugs. The
topological features consider high-order implicit transition
relationships and explicit relations, which provide distinct
similarity information of homologous nodes. This makes it
easier for miRNA and drug relationship pairs with similar
structures to known MDI to be considered interacting, and
vice versa. In principle, the combination of topological features
and attribute features will make the effect more pronounced.

Compare With Other Embedding Methods
and Classifiers
The topological feature extracted by BiNE is important for
building the BNEMDI model. To highlight the advantages of

FIGURE 6 | AUC and AUPR of four network embedding methods in different dimensions.

TABLE 4 | Average performance of the different classifiers on ncDR datasets.

Classifier AUC AUPR (%) Acc (%) Sen (%) Spec (%) Prec (%) MCC (%)

NB 0.9166 ± 0.0035 90.16 ± 0.53 86.49 ± 0.54 81.69 ± 1.22 91.30 ± 0.87 90.38 ± 0.81 73.34 ± 1.05
SVM 0.9415 ± 0.0033 92.93 ± 0.57 86.84 ± 0.63 85.91 ± 0.38 87.77 ± 1.21 87.55 ± 1.08 73.70 ± 1.28
LR 0.9473 ± 0.0029 94.27 ± 0.48 87.56 ± 0.77 86.56 ± 0.32 88.56 ± 1.45 88.34 ± 1.32 75.14 ± 1.56
RF 0.9502 ± 0.0036 94.42 ± 0.56 88.38 ± 0.87 88.18 ± 0.88 88.58 ± 1.79 88.56 ± 1.58 76.77 ± 1.76
BNEMDI 0.9573 ± 0.0009 95.65 ± 0.13 88.75 ± 0.10 89.13 ± 0.19 88.39 ± 0.13 88.47 ± 1.11 77.51 ± 0.20
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BiNE, we compare BiNE to three state-of-the-art graph
representation methods and discuss their performance in
different dimensions. In a similar way to BiNE, several state-
of-the-art network embedding methods (i.e., DeepWalk (Perozzi
et al., 2014), LINE (Tang et al., 2015), and node2vec (Grover and
Leskovec, 2016)) are used to learn the embedding vectors of each
node and compare to BiNE. DeepWalk carries out the random
walk on the graph to generate node sequences, and the node
sequences are regarded as sentences to learn embedding vectors
by word2vec (Church, 2017). LINE combines the first-order and
second-order proximities and optimizes them using the
asynchronous stochastic gradient algorithm (ASGD) (Recht

et al., 2011). Node2vec is an extension of DeepWalk. It
introduces depth-first search (DFS) and breadth-first search
(DFS) to the process of the random walk. BFS may explore
the structural properties of the graph, and DFS may reflect the
homogeneity between similar nodes. Based on the experiment,
the best result may be obtained when hyper-parameters p and q
are set to 0.5 (Gao et al., 2018). Moreover, the parameters of other
embedding methods are set to their default settings except for the
dimension of the node embedding vector.

Here, we analyze the performance of models in different
dimensions of the node embedding vector. We have carried
on the experiment to each embedding method separately in

FIGURE 7 | Comparison of BNEMDI with different classifiers under five-fold cross-validation. (A) ROC curve on the ncDR MDI dataset. (B) PR curve on the ncDR
MDI dataset.

TABLE 5 | Top 30 potential MDIs predicted by BNEMDI.

Drug (CID) miRNA Evidence Drug (CID) miRNA Evidence

60750 hsa-miR-24-3p Unconfirmed 60750 hsa-miR-29c-3p 29807360
60750 hsa-miR-205-5p 31602229 2767 hsa-miR-1236-3p 30805558
2767 hsa-miR-193b-3p 27918099 5310940 hsa-miR-660-5p Unconfirmed
3385 hsa-miR-10a-5p Unconfirmed 60750 hsa-miR-532-5p Unconfirmed
3385 hsa-miR-33b-5p Unconfirmed 31703 hsa-miR-18a-5p Unconfirmed
3385 hsa-miR-376a-3p Unconfirmed 3385 hsa-miR-431-5p Unconfirmed
2520 hsa-miR-126-3p Unconfirmed 5310940 hsa-miR-196a-5p Unconfirmed
60750 hsa-miR-124-3p 35127724 5310940 hsa-miR-101-3p 31934027
3385 hsa-miR-93-5p 30573973 60750 hsa-miR-1908-5p Unconfirmed
31703 hsa-miR-19b-3p 30343695 6857599 hsa-miR-200c-3p 25757925
3385 hsa-miR-32-5p 29530052 36314 hsa-miR-141-3p 26025631
2767 hsa-miR-363-3p 25416050 119307 hsa-miR-181d-5p Unconfirmed
5310940 hsa-miR-373-3p Unconfirmed 3385 hsa-miR-620 Unconfirmed
3385 hsa-miR-576-5p Unconfirmed 3385 hsa-miR-9-3p Unconfirmed
36462 hsa-miR-21-5p 23834154 5310940 hsa-miR-128-3p 30890168
60750 hsa-miR-24-3p Unconfirmed 60750 hsa-miR-29c-3p 29807360
60750 hsa-miR-205-5p 31602229 2767 hsa-miR-1236-3p 30805558
2767 hsa-miR-193b-3p 27918099 5310940 hsa-miR-660-5p Unconfirmed
3385 hsa-miR-10a-5p Unconfirmed 60750 hsa-miR-532-5p Unconfirmed
3385 hsa-miR-33b-5p Unconfirmed 31703 hsa-miR-18a-5p Unconfirmed
3385 hsa-miR-376a-3p Unconfirmed 3385 hsa-miR-431-5p Unconfirmed
2520 hsa-miR-126-3p Unconfirmed 5310940 hsa-miR-196a-5p Unconfirmed

The CID of PubChem is used to indicate knownMDIs in the RNAInter dataset. The first column records the top 1–25MDIs. The second column records the top 26–50MDIs. The evidence
is indicated by the PubMed ID of the experimental literature.
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five different dimensions, 32, 64, 128, 256, and 512. We also
employed these embedding approaches to learn the topological
features from the bipartite network and combine the attribute
features of drug compounds and miRNAs to construct this
prediction model. Figure 6 shows the results of each model
that was applied to the ncDR dataset. The y axis of Figure 6
depicts the AUC and AUPR of each prediction model, and the
x-axis depicts five kinds of node-embedding dimensions.
According to Figure 6, we can draw a conclusion that the
model with the BiNE embedding method gets the best result
among these methods. The main reason for the outstanding
performance of BiNE is that it considers unique information
of drug and miRNA nodes while processing the relations in the
miRNA–drug bipartite network. BiNE calculates the second-
order proximity of nodes in the miRNA–drug bipartite
network to learn the implicit relation between drugs and
miRNAs, which can get more efficient similarity compared
with the similarities based on domain knowledge (Yue and
He, 2021).

When the dimension of embedding vectors is 64, the BiNE
model achieves the lowest AUC and PR values of 0.957 and 0.956,
respectively. To avoid overfitting, the dimension of embedding
vectors generated by the BiNE model was set to 64 in the
subsequent experiments.

We further evaluate the impact of the classifier on the overall
model by comparing it with several popular machine learning
classifiers, including random forest (RF), naive Bayes (NB),
logistics regress (LR), and SVM classifiers (Gui et al., 2015).
The features extracted by the samemethod of the proposedmodel

were used as the input of the aforementioned classifiers for five-
fold cross-validations on the ncDR dataset.

Table 4 exhibits the average performance of the five-fold
cross-validations of each classifier on the ncDR dataset. As
shown in Table 4, NB, SVM, LR, and RF obtained an average
accuracy of 86.49, 86.84, 87.56, and 88.38%, respectively. The
BNEMDI achieved the highest accuracy of 88.75%. We gained an
average AUC score of 0.9167, 0.9416, 0.9473, 0.9505, and 0.9573,
and an average PR score of 94.27, 90.16, 94.40, 92.93, and 95.65%
for NB, LR, RF, and BNEMDI. For a more intuitive comparison,
Figure 7 depicts the corresponding ROC and PR curves. The
proposed model leads in most evaluation metrics with the highest
AUC of 0.9573 and the highest AURR of 0.9565 and has a
relatively low standard deviation. Synthetically, BNEMDI not
only has an excellent performance in various evaluation criteria
but also is more stable than other classifiers.

CASE STUDY

In this subsection, we carried out a case study on the RNAInter
dataset. All of the known MDIs were used to construct
representation vectors to predict all candidate miRNA–drug
pairs in the dataset. Then, we ranked these candidate
miRNA–drug pairs according to the predicted scores in the
descending order. The top 30 predicted relationships are
shown in Table 5. Among the top 10, 20, and 30 predicted
relationships, 7, 12, and 18 relationships are verified by the
previous literature in PubMed, respectively.

TABLE 6 | Top 50 associated miRNA of drug 5-FU predicted by BNEMDI.

Drug (CID) miRNA Evidence Drug (CID) miRNA Evidence

3385 hsa-miR-21-5p 31918721 3385 hsa-miR-181b-5p Unconfirmed
3385 hsa-miR-221-3p 27726102 3385 hsa-miR-26b-5p 30662808
3385 hsa-miR-126-3p Unconfirmed 3385 hsa-miR-194-5p 30451820
3385 hsa-miR-200c-3p 28411308 3385 hsa-miR-103a-3p 27247088
3385 hsa-miR-222-3p 19956872 3385 hsa-miR-208a-3p Unconfirmed
3385 hsa-let-7c-5p 33051247 3385 hsa-miR-18a-5p 32884453
3385 hsa-miR-214-3p Unconfirmed 3385 hsa-miR-20b-5p 27878272
3385 hsa-miR-155-5p 30741544 3385 hsa-miR-663a confirmed
3385 hsa-miR-93-5p 32426273 3385 hsa-miR-145-5p 32801865
3385 hsa-miR-18b-5p 25990502 3385 hsa-miR-24-3p 31646794
3385 hsa-miR-143-3p 19843160 3385 hsa-miR-19a-3p 24460313
3385 hsa-miR-181a-3p 29795190 3385 hsa-let-7a-5p 35071455
3385 hsa-miR-16-5p 18449891 3385 hsa-miR-4661-3p Unconfirmed
3385 hsa-miR-27b-3p 24401318 3385 hsa-miR-27a-3p 24401318
3385 hsa-miR-107 26636340 3385 hsa-miR-200b-3p 32714549
3385 hsa-miR-34c-5p Unconfirmed 3385 hsa-miR-9-5p Unconfirmed
3385 hsa-miR-17-5p 32426273 3385 hsa-miR-101-3p 34086111
3385 hsa-miR-34a-5p 31802650 3385 hsa-miR-196a-5p Unconfirmed
3385 hsa-miR-125b-5p 28176874 3385 hsa-miR-200a-3p 28496200
3385 hsa-miR-497-5p 26673620 3385 hsa-miR-802 Unconfirmed
3385 hsa-miR-29b-3p 34155879 3385 hsa-miR-197-3p 26055341
3385 hsa-miR-20a-5p 31760170 3385 hsa-miR-30b-5p miR-30b
3385 hsa-miR-1915-3p Unconfirmed 3385 hsa-miR-181b-2-3p Unconfirmed
3385 hsa-miR-210-3p 31468617 3385 hsa-miR-100-5p Unconfirmed
3385 hsa-miR-25-3p 35014676 3385 hsa-miR-153-3p Unconfirmed

The CID of PubChem is used to indicate knownMDIs in the RNAInter dataset. The first column records the top 1–25MDIs. The second column records the top 26–50MDIs. The evidence
is indicated by the PubMed ID of the experimental literature.
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Furthermore, to demonstrate the prediction ability for new
drugs, we selected 5-fluorouracil (5-FU, CID:3385) as the
investigated drug of the case study, which is a chemotherapy
drug widely used in digestive system cancer and breast cancer
(Wigmore et al., 2010). The MDIs related to 5-FU were removed
from the dataset and the rest of MDIs were used to train the
prediction model. Then we implemented the BNEMDI model to
identify potential miRNAs that may interact with 5-FU. The top
50 predicted miRNAs are shown in Table 6. Among the top 10,
20, and 50 predicted miRNAs, there were 9, 17, and 37 miRNAs,
which confirmed that they may interact with 5-FU by the
previous literature.

For instance, Valeri et al. discovered that miRNA-21-5p,
which ranks first in the top 50 predicted miRNAs can
downregulate the expression level of human DNA MutS
homolog 2 leading to 5-FU resistance in colon cancer
patients (Liang et al., 2020). Moreover, the study proposed
by Zhao et al. (2016) confirmed the overexpression of hsa-
miR-221-3p will reduce the sensitivity of 5-FU and proved it
can be a potential drug target for pancreatic cancer (Zhao
et al., 2016). Moreover, through functional analysis, Jilek et al.
(2020) demonstrated that has-let-7c-5p can elevate the
exposure of 5-FU. They suggested that has-let-7c-5p and 5-
FU can attenuate thymidylate synthase, which indicates that
5-FU can cooperate with has-let-7c-5p against hepatocellular
carcinoma (Jilek et al., 2020). As stated before, this case study
shows that BNEMDI can effectively find out the miRNAs
interacting with given drugs.

CONCLUSION

MDI prediction plays an important role in new drug target research.
In this article, we proposed a novel computational model to predict
unknownMDIs, namely, BNEMDI.We adopted a bipartite network
embedding method BiNE to extract the topological feature from the
MDI network. The chemical structure of drugs and the base
sequence information of miRNAs are represented as the attribute
feature byMACCS fingerprints and k-mer.When performed on five
datasets (ncDR, RNAInter, SM2miR1, SM2miR2, and SM2miR3),
BNEMDI gained average AUC values of 88.75, 87.23, 77.24, 79.92,
and 81.86% under five-fold cross-validation, respectively. In
addition, we experimented with other popular network
embedding methods in different dimensions. Moreover, the case
study on a common drug for cancer and all of the candidate

miRNA–drug pairs demonstrated that the proposed model could
be an effective tool for predicting MDI in real scenarios. The
comprehensive results indicated that BNEMDI is a reliable and
stable MDI predictor, economizing time and labor for drug target
studies. Even so, the BNEMDI model possesses drawbacks. For new
drugs and miRNAs, they are independent nodes in the bipartite
network. The network embedding methods cannot learn any
information from these independent nodes. Only attribute
features can represent these nodes, and then the new interaction
network can be updated according to thewet experimental results. In
the future, we expect to seek more efficient network embedding
methods and feature descriptors formining the relationship between
drugs and miRNAs.
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