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Cardiovascular disease is the leading cause of death globally among

non-communicable diseases, which imposes a serious socioeconomic burden

on patients and the healthcare system. Therefore, finding new strategies

for preventing and treating cardiovascular diseases is of great significance

in reducing the number of deaths and disabilities worldwide. Dipeptidyl

peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs,

mainly distributes within the cytoplasm. With the unique HEXXGH catalytic

sequence, it is associated with the degradation of oligopeptides with 4 to 10

amino acids residues. Accumulating evidences have demonstrated that DPP3

plays a significant role in almost all cellular activities and pathophysiological

mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is

currently mainly used as a biomarker for poor prognosis in patients with

cardiovascular diseases, suggesting that the level of DPP3 concentration in

plasma is closely linked to the mortality of diseases such as cardiogenic

shock and heart failure. Interestingly, it has been reported recently that

DPP3 regulates blood pressure by interacting with the renin-angiotensin

system. In addition, DPP3 also participates in the processes of pain signaling,

inflammation, and oxidative stress. But the exact mechanism by which DPP3

a�ects cardiovascular function is not clear. Hence, this review summarizes the

recent advances in the structure and catalytic activity of DPP3 and its extensive

biological functions, especially its role as a therapeutic target in cardiovascular

diseases. It will provide a theoretical basis for exploring the potential value of

DPP3 as a therapeutic target for cardiovascular diseases.

KEYWORDS

dipeptidyl peptidase 3, cardiovascular diseases, biomarker, therapeutic target, renin-

angiotensin system

Introduction

Cardiovascular disease is a major cause of disability and premature death worldwide,

taking the lives of 17.9 million people in 2019, of which 81% occur in developing

countries, and over one-third are premature deaths (1–3). Meanwhile, they impose a

tremendous socioeconomic burden on patients and the healthcare system, especially
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in low-income and middle-income countries (4). Although

health consciousness and medical practices have been improved

gradually, the treatment and prognosis of cardiovascular

diseases remain unsatisfactory (5). Therefore, finding new

strategies for preventing and treating cardiovascular disease is

of great significance in reducing the number of deaths and

disabilities worldwide.

Dipeptidyl peptidases (DPPs) are a class of proteolytic

enzyme family involved in nearly all aspects of cellular activities

and physiological functions (6). They play a crucial role in a

variety of physiological and pathological processes. There are

eight distinct subtypes in this family, including DPP1 (7, 8),

DPP2 (9, 10), DPP3 (11–13), DPP4 (14–16), DPP6 (17), DPP8

(18, 19), DPP9 (20, 21), and DPP10 (22, 23) (Table 1). DPPs

are involved in a variety of physiological processes, including

oligopeptide N-terminus processing, bio-active peptide

degradation, cell cycle regulation, protein maturation, and viral

infection (24–26). Contemporary studies have shown that DPPs

inhibitors can be effective in treating several diseases, such

as diabetes, tumors, and hematological diseases (27). Among

them, DPP4 inhibitors, such as vildagliptin and sitagliptin, can

reduce the level of blood glucose by enhancing the effects of the

insulin-stimulating peptides glucagon-like peptide-1 (GLP-1)

and glucose-dependent insulin-stimulating polypeptide (GIP).

Furthermore, this class of drugs is used to treat type 2 diabetes

and improve glycemic control (28). Similarly, a non-selective

inhibitor of DPP, Val-boroPro (talabostat), can also treat

prostate cancer by affecting fibroblast activation protein via

reducing angiogenesis and inhibiting tumor proliferation

and invasion (29). And the activity of DPP2 and the ratio

of DPP2/DPP4 in serum may be diagnostic indicators for

rheumatoid arthritis, systemic lupus erythematosus, cancer,

Parkinson’s disease, and other diseases (30, 31).

Dipeptidyl peptidase 3 (DPP3), one of the main members

of the DPPs family, is highly conserved among animals. Its

hydrolysis of 4–10 amino acid residues plays an important

part in metabolism (32). The molecular weight of the purified

DPP3 homologs is between 69 and 89 kDa (33), with the D.

TABLE 1 DPPs family and functions.

Name Peptidase activity Physiologic function References

Dipeptidyl peptidase 1-DPP1 Cysteine hydrolase Immune responses to bacterial infections and sepsis (7, 8)

Dipeptidyl peptidase 2-DPP2 Serine peptidase Oligopeptide hydrolysis (9, 10)

Dipeptidyl peptidase 3-DPP3 Metal aminopeptidase Regelation of pain, blood pressure, and oxidative stress (11–13)

Dipeptidyl peptidase 4-DPP4 Serine peptidase Glucose homeostasis (14–16)

Dipeptidyl peptidase 6-DPP6 Serine peptidase Regulating the expression and activation of potassium ion voltage-gated channel D2 isoforms (17)

Dipeptidyl peptidase 8-DPP8 Serine peptidase Immune responses (18, 19)

Dipeptidyl peptidase 9-DPP9 Serine peptidase Dipeptide hydrolysis (20, 21)

Dipeptidyl peptidase 10-DPP10 Serine peptidase Not clear (22, 23)

melanogaster DPP3 isoform (82–89 kDa) and cockroach DPP3

isoform (76–80 kDa) also found and verified (34). And DPP3

has multiple isoforms, including the classical DPP3 variant

1 (UniProtKB Q9NY33-1), variant 2 (UniProtKB Q9NY33-

2), and variant 4 (UniProtKB Q9NY33-4). Variant 2 has no

peptidase activity due to the lack of a catalytic sequence, while

variant 4 lacks amino acids 91–120 from variant 1, but still has

a catalytic function (35). Since the discovery of DPP3, its role

in various physiological and pathological processes has attracted

widespread attention from scientists. Studies have found that

DPP3 can participate in protein turnover (32), oxidative stress

(35, 36), pain (37), ovarian cancer tissue invasiveness (38),

colorectal cancer progression (39), the maintenance of bone

homeostasis (40) and inflammation (41, 42). Moreover, DPP3

is also closely related to high mortality in patients with sepsis

(43, 44), cardiogenic shock (45), and acute kidney injury (46).

Especially in cardiovascular diseases, DPP3 is regarded as a

marker of more severe disease with higher activity of renin-

angiotensin system (RAS) (47). However, there is still a lack

of unified understanding of the role of DPP3 in diagnosing

and treating cardiovascular diseases. Therefore, this review

will summarize the biological characteristics of DPP3 and its

research progresses in cardiovascular diseases, which aims to

provide a theoretical basis for exploring potential value of DPP3

as a therapeutic target for cardiovascular diseases.

Biological properties

Distribution of DPP3

DPP3 is widely distributed among organisms. It was firstly

identified in the bovine pituitary in 1967 (48). And this

enzyme is the third to be found in the DPPs family, hence

naming it DPP3. It can hydrolyze the terminal dipeptidyl amino

residue from polypeptides containing at least four residues (49).

According to a rat RNA-Seq transcriptomic results across 11

organs and four developmental stages (50, 51), DPP3 can highly

expresses in the cardiovascular organs including heart and blood
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vessels. Moreover, accumulating studies have demonstrated that

DPP3 exists in the other cardiovascular related organs, such

as the adrenal gland, brain (52), and liver (53). Of course, the

expression of DPP3 has also been reported in other organs that

are not closely related to cardiovascular function, for instance,

red blood cells (54), and cataractous lens (55). In addition, DPP3

has been found to be expressed not only in rats and humans, but

also in yeast cells (56) and Drosophila (57). In 2000, Abramić

et al. (58) found a high similarity and conservation of DPP3

between human erythrocytes and rat liver by mass spectrometry.

Similar conclusions have been drawn in other studies (59–61).

DPPs are widely distributed among different tissues and

were detected in the blood plasma (62), cerebrospinal fluid (26)

and other body fluid (63). However, DPP3 is originally thought

to be a cytoplasmic peptidase at the sub-cellular level, because

it can be purified from the soluble fraction of most mammalian

tissue homogenates (64). After that, DPP3 was extracted from

the cell membrane of the Alzheimer’s disease mouse model

and detected by mass spectrometry, which confirmed that the

peptidase is also distributed in mammalian cell membranes (65).

Furthermore, DPP3 has also been found in extracellular fluids

such as postplacental serum, human seminal, and cerebrospinal

fluid, except in cells (66, 67). However, the mechanism of DPP3

targeting cell membranes or secretion into extracellular fluids

is unclear. Recently, DPP3 activity was detected in human HK-

2 cell culture medium (68), suggesting that intracellular DPP3

may be secreted or released into the extracellular fluids (69).

Meanwhile, after cell death mediated by the anti-Fas receptor

(CD95) antibody, DPP3 activity was significantly increased

in the medium due to disrupting the cytoplasmic membrane

(70). As cell death is a significant pathological change in a

disease state, intracellular DPP3 can enter the circulation due

to massive cell death (71). A recent clinical trial also found

a close relationship between progressive cell death and the

high level of DPP3 in plasma during the shock of various

etiologies (72). It is precisely the wide distribution of DPP3

inside and outside cells that make it participating in various

physiological and pathological processes, such as oxidative stress

(73–75), RAS over-activation (45, 76), and inflammation (77,

78). Therefore, the above evidence fully indicates that DPP3 is

widely distributed in multiple organisms and tissues and may

have a broader range of biological functions.

Catalytic specificity of DPP3

Although DPP3 is widely distributed, its substrate and

catalytic mode have strong specificity (79). DPP3 consists of

two lobes separated by a wide clef, one is a α-helix-rich upper

lobe, and the other is a lower lobe that mixes α-helices and β

sheets (80, 81). Regardless of the fact that enzyme specificity

exists between species, additional helical loops of amino acid

residues are commonly observed in loops and the surface of both

structures (82). In 1999, for the first time (83), it was verified

that the DPP3 family (M49 family) has a unique HEXXGH

conserved motif, and the catalytic motif (HEXXGH) and the

secondary motif (EECRAR/D) are part of the upper lobe, while

there are substrate binding sites between the upper and lower

lobes. Two histidine residues on this motif contribute to the

binding of divalent metal ions (mainly Zn2+, partly Mn2+,

Co2+, Ni2+, and Cu2+). Among them, the Zn2+is located

at the conserved binding site in the upper part of the two

structures. And it is crucial for the catalytic activity of DPP3,

where the glutamine acid provides the catalytic base with the

histidine residue coordinating Zn2+ (84). In addition, DPP3

has a series of conserved arginine called “arginine anchors”,

which are located at different positions from the catalytic Zn2+

(85). This allows substrates of different lengths to form a salt

bridge between their C-terminus and the guanidine group of the

positioned arginine anchor, thereby ensuring that the peptide

bond cleaved by DPP3 is in the correct position, making DPP3-

substrate binding easier (82). DPP3 has a wide range of active

sites and flexible conformations, and the binding sites can be

adjusted to different lengths and substrate binding, while 4–8

peptides are the most suitable hydrolysis substrates for DPP3.

Among many polypeptides, angiotensin II (Ang II), endorphins

and enkephalins can be efficiently cleaved by DPP3 (86).

DPP3 and enkephalin

Methionine-enkephalin (YGGFM) and leucine-enkephalin

(YGGFL) are endogenous opioid neurotransmitters in the

brain and spinal cord of many animals, including humans.

And G. G. HADDAD and colleagues (87) found enkephalin

analogs given intravenously or intra-arterially induce a biphasic

response in MAP. While Li et al. (88) demonstrated that

increased enkephalin in the rostral ventrolateral medulla after

electro acupuncture decreases blood pressure. N terminal of

both enkephalin are anchored to DPP3 via hydrogen bonding

and electrostatic interactions of the tyrosine-318, glutamate-

316, and asparagine-394 side chains and cleaved by DPP3

(89). Furthermore, leucine-enkephalin binds to inactive DPP3

isoform, but the difference in the C-terminal residue between

the two structures of enkephalin is not significant. According

to the results above, DPP3 may play a significant role in the

regulation of cardiovascular function through its relationship

with enkephalin.

DPP3 and endorphin 2

Endorphins are opioid peptides that play an essential role

as neurotransmitters or neuromodulators in mammals (90),

whose main functions include analgesia and endothelial cell-

dependent vasodilation. Endorphins can be divided into two

types according to their amino acid composition: Endorphin

1 (YPWF-NH2) and endorphin 2 (YPFF-NH2), both of which
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have amidated C-terminal (91). Kassab et al. (92) found

endorphin is involved in the responses of blood pressure

and heart rate to pain in sleep-deprived rats. In the sino-

aortic denervated rat, the content of beta-endorphin and

leu-enkephalin were decreased in hypothalamus and medulla

oblongata (93). As DPP3 has now turned out to be a post-

proline peptidase (38), substrates containing proline are more

easily cleaved by peptidases. The binding mode of endorphin 2

to DPP3 was demonstrated, which mainly binds and interacts

with the conserved residues aspartate-316, asparagine-391, and

asparagine-394 of peptidase through the N-terminus with

micromolar affinity (94). However, whether DPP3 is involved

in the regulation of endorphins on cardiovascular function is

still unclear.

DPP3 and synthetic morphorphins

Tyrosine (valine-valine-tyrosine-proline-tryptophan), a

derivative of rotorphanin (95), has been shown to inhibit the

activity of purified DPP3 in the brain of monkey (96). By

synthesizing orphanoid pentapeptides containing aliphatic or

aromatic amino acids at the N-terminus, such as VVYPW,

LVYPW, IVYPW, YVYPW, FVYPW, and WVYPW, it was

found that among these pentapeptides, IVYPW is a stronger

inhibitor than casomorphin agent, and inhibits the activity of

rat DPP3 with nanomolar affinity (42, 97).

DPP3 and RAS

Ang II is a potent vasoconstrictor of octapeptides, primarily

involved in the humoral regulation of cardiovascular activity. In

the treatment of hypertension, angiotensin-converting enzyme

(ACE) inhibitors, Ang II type 1 receptor (AT1R) antagonists,

and mineralocorticoid receptor antagonists are cornerstones in

blocking RAS. Although Ang II is not an opioid peptide, DPP3

can cleave Ang II in vitro. Zhang et al. (98) demonstrated that

Arg421-Lys423 of DPP3 could form an α-helix with the presence

of Ang II. Thus, like other opioid peptides, the binding of Ang II

to DPP3 is an endothermic process driven by entropy changes.

Ang II forms a cis-peptide in a wheel-like conformation between

histidine-6 and proline-7 during hydrolysis (99), meanwhile the

binding site of DPP3 can bend to fully accommodate upon

binding to Ang II and catalytic substrate. It was found that

purified angiotensin-(1–7) [Ang-(1–7)] peptidase and DPP3

exhibited the same Ang-(1–7) hydrolysis profile, and both

enzymatic activities were inhibited by the metallopeptidase

inhibitor JMV-390 (100). DPP3 can sequentially hydrolyze Ang-

(1–7) to Ang-(3–7) and rapidly convert Ang-(3–7) to Ang-

(5–7) (101). At the same time, the kinetic analysis showed

that the hydrolysis rate of Ang-(3–7) was higher than that of

Ang-(1–7), and the Km value of Ang-(3–7) was lower than

that of Ang-(1–7). Finally, it was found that chronic treatment

of HK-2 cells with 20 nM of JMV-390 decreased intracellular

DPP3 activity and increased cellular levels of Ang-(1–7) (69).

Therefore, DPP3 can not only cleave Ang II but also participate

in the hydrolysis of Ang-(1–7) and Ang-(3–7), thereby affecting

the balance between Ang II and Ang-(1–7) in RAS.

General functions of DPP3

As DPP3 cleaves dipeptides sequentially from the N-

terminus of various bioactive peptide substrates, it has a very

wide range of biological functions. In 2001, Zhan et al. (32)

have found DPP3 participates in the intracellular turnover

of proteins. In the same year, DPP3 was found to be able

to remove the N-terminal dipeptide from the myotropic

neuropeptide proctolin in vitro (34). On the basis of DPP3’s

substrate specificity, recent research indicates that it plays a

role in the regulation of blood pressure and pain (102). Since

studies identified the DPP3 expression and activity in cells

of the innate immune system, such as polymorphonuclear

granulocytes and neutrophils, it has been reported that DPP3

involves in regulating the body’s immune function (103). What’s

more, accumulating evidences have demonstrated that the high

expression of DPP3 was associated with the pathogenesis of

cancers such as multiple myeloma, colorectal cancer, and ER-

positive breast cancer (12, 39, 104–106).

DPP3 and cardiovascular diseases

DPP3 and hypertension

Current studies have confirmed that abnormally increased

Ang II can lead to elevated blood pressure by directly

causing vasoconstriction, sympathetic hyperexcitation, and

increased aldosterone release (107, 108). Additionally, the rostral

ventrolateral medulla and paraventricular nucleus can also

produce Ang II that stimulates the Ang II type 1 receptor

(AT1R), thereby causing sympathetic excitation to increase

blood pressure (109, 110). Not only in the brain, circulatory

Ang II can enter the peri-ventricular organs such as subfornical

organ and endplate vascular nodes to inhibit the baroreflex

activity, resulting in increased vascular tone. And Ang II can

also promote a wide range of tissue responses, such as apoptosis,

inflammation, and fibrosis through activation of AT1R (111,

112). Therefore, angiotensin-converting enzyme inhibitors and

AT1R antagonists, which target Ang II, are currently the first-

line treatments for hypertension, especially in patients with

hypertension complicated by diabetes or renal function failure

(113, 114).

Based on the theory that DPP3, as a highly efficient hydrolase

of angiotensin, can participate in the regulation of RAS (115),

Xiaoling Pang and colleagues (11) in 2016 found that injecting

DPP3 into Ang II-induced hypertensive mice through the tail
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vein significantly reduced blood pressure. A novel function of

DPP3 and its potential therapeutic use in hypertension were

revealed for the first time. However, Kumar et al. (86) found

that DPP3 knockout mice showed no change in blood pressure

using the tail artery cuff method in the same year. Although

this study has some limitations due to the use of the tail artery

cuff method to measure blood pressure (for example, the effect

of stress on blood pressure in mice), the unchanged blood

pressure also suggests that there may be other cardiovascular

compensatory mechanisms after DPP3 knockout. Angiotensin

II, III, and IV can be rapidly removed by exogenous intravenous

injection of DPP3, and the dipeptide released by the substrate

also has an inhibitory effect on ACE. Therefore, theoretically,

DPP3 can lower levels of functional angiotensin, ultimately

lowering blood pressure (33, 81). However, further studies

are still required to verify whether DPP3 can be used as a

biomarker of hypertension or participate in the occurrence and

development of hypertension.

DPP3 and cardiogenic shock

Recent studies have reported that known biomarkers such

as brain natriuretic peptide (BNP) (116), N-terminal pro-brain

natriuretic peptide (NT-proBNP) (117), growth stimulation

expressed gene 2 (ST2) (118), and troponin (119) are not of

high value in the prediction of cardiogenic shock, while DPP3

as a recently discovered biomarker is attracting researchers’

attention (77, 120). To elucidate the effects of circulating DPP3

on cardiac function and renal hemodynamics, Benjamin Deniau

and colleagues (121) measured the circulatory level of DPP3

of 174 patients with acute heart failure and found that a

high level of circulatory DPP3 was associated with short-term

mortality risk and severe organ dysfunction. Additionally, a

rapid decline in the level of DPP3 within 24 h after acute heart

failure correlated with a better outcome. In 2020, Dépret et al.

(122) also found that the concentration of DPP3 in plasma on

admission was closely associated with an increased risk of death

and circulatory collapse in severely burned patients. Later, in

2021, Boorsma et al. (47) measured the level of DPP3 in the

serum samples of 2,156 patients with acute heart failure using

luminescence immunoassay and found that the concentration

of DPP3 was increased in patients with worsening heart failure,

which may exacerbate acute heart failure. On the contrary,

prilizumab, as a specific antibody against DPP3, has a certain

potential therapeutic value in patients with acute heart failure.

In 2022, Pavo et al. (45) found that the level of circulatory

DPP3 was elevated only in patients with advanced heart failure

with reduced ejection fraction (HFrEF), which could not only

serve as a biomarker of cardiogenic shock, but also help

identify end-stage patients with HFrEF. In animal experiments,

Deniau et al. (121) also found that intravenous injection of

DPP3 in healthy mice can lead to myocardial depression and

impaired renal hemodynamics. In contrast, the level of oxidative

stress and inflammation was rapidly reduced through injection

of procilizumab, an inhibitor of DPP3, which significantly

normalized cardiac function and renal hemodynamics in the

mouse model of acute heart failure. The above studies show

that circulatory DPP3 plays an important role in the diagnosis

and staging of patients with cardiogenic shock caused by acute

heart failure. However, the mechanism of the elevated level of

DPP3 in pathological conditions and whether it is involved

in the occurrence and development of cardiogenic shock is

still unclear.

DPP3 and chronic heart failure

Unlike acute cardiogenic shock, the exogenous

administration of DPP3 showed a protective effect on the

development of myocardial fibrosis and chronic heart failure.

Given that excess Ang II can damage organs such as the

heart and kidneys, it was found that exogenous intravenous

administration of DPP3 for 4 weeks significantly reduced

the degree of Ang II-induced cardiac fibrosis and exerted a

protective effect (11). At the same time, Komeno et al. (46)

also found that the cardiac inflammatory cell infiltration and

myocardial fibrosis levels were significantly reduced, and

diastolic cardiac dysfunction was also improved after 8 weeks of

intravenous recombinant DPP3 treatment in the type 2 diabetes

model db/db mice, but it has no significant effects on blood

glucose. The above results have shown that DPP3 can prevent

the occurrence and development of chronic heart failure by

inhibiting myocardial inflammation and fibrosis. Although the

specific mechanism of DPP3 protection against chronic heart

failure is still unclear, these results suggest that DPP3 may be a

potential therapeutic target for cardiovascular diseases.

Possible mechanisms of DPP3 involved in
cardiovascular diseases

Imbalance of RAS

RAS is a peptide hormone system composed of various

components such as enzymes, inactive peptides, and

active peptides, which play an essential role in regulating

blood pressure and body fluid homeostasis. Traditionally,

angiotensinogen produced in the liver is hydrolyzed by renin

from paraglomerular cells to produce angiotensin I (10-peptide),

which is then converted by ACE to the biologically active Ang II

(8-peptide). Ang II is a highly efficient hydrolysis substrate of

DPP3 and is also the principal effector peptide of RAS. It can

virtually participate in the functional regulation of most organs,

including the heart, kidney, and vascular system, and has crucial

pathophysiological significance (123).
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Angiotensin-converting enzyme 2 (ACE2) can directly

catalyze the hydrolysis of Ang II to generate Ang-(1–7), but

Ang-(1–7) has the opposite biological effect to Ang II (124). By

binding to Mas receptors, Ang-(1–7) can promote vasodilation,

anti-proliferation, and anti-hypertrophy (125). At the same

time, Ang-(1–7) can also be cleaved by DPP3 to generate Ang-

(3–7). Studies have shown that Ang-(3–7) can promote the

release of dopamine and γ-aminobutyric acid in the striatum

(126). It plays a vital role in regulating blood pressure in the

rostral ventrolateral medulla (127), which suggests that DPP3

may play an important role in treating Parkinson’s disease and

hypertension, respectively. As research progressed, Blet et al.

(43) found that a low level of DPP3 (median 15 ng/mL) was

also present in the circulatory system of healthy individuals.

And in the pathological process of sepsis-induced multiple

organ failure, the higher the circulatory DPP3 on admission is

associated with the more prolonged need for supportive therapy

such as vasopressors and mechanical ventilation. Meanwhile,

DPP3 inhibits the signal transduction of the Ang II-AT1

receptor complex by affecting intracellular G protein-coupled

receptor-dependent Ca2+ in HEK293T cells (128). This laid the

theoretical basis for DPP3 to affect RAS and the hemodynamics

and development of cardiovascular diseases.

Oxidative stress

Besides the over-activation of RAS, oxidative stress may also

be a critical mediator between DPP3 and cardiovascular diseases

(129). Increased reactive oxygen species (ROS) can adversely

affect cellular molecules, such as DNA, RNA, proteins, lipids,

and carbohydrates, leading to cell damage and death (130). In

contrast, the cellular antioxidant system [superoxide dismutase

(SOD), peroxidase, and antioxidant vitamins] can maintain the

balance of these two systems by preventing the accumulation

of ROS (131). When there is an imbalance between ROS

production and antioxidants, oxidative stress will disrupt redox

signaling and further lead to endothelial damage, cardiovascular

remodeling, renal dysfunction, sympathetic nervous system

excitation, and immune cell activation (132, 133). Under

normal physiological conditions, Nuclear factor-erythroid-2-

related factor 2 (Nrf2) is a leucine zipper transcription factor

located in the cytoplasm that binds to the inhibitor of Nrf2

[INrf2, or Kelch-like ECH-associated protein 1 (KEAP1)], which

up-regulates a series of antioxidant enzymes. After oxidative

damage or phosphorylation of Nrf2 at the serine 40 site by

protein kinase C or phosphatidylinositol 3 kinase, Nrf2 is

released from the complex with INrf2 and migrates to the

nucleus. Afterward, nuclear Nrf2 up-regulates the expression

of antioxidant enzymes by binding to the antioxidant response

element (ARE) in its promoter (134). However, it is found

that elevated ROS levels can promote DPP3 expression through

the transcriptional regulator E26 avian erythroblastosis virus

transcription factor-1, and elevated DPP3 can mediate the

release and migration of Nrf2 to the nucleus, thereby up-

regulating the expression of antioxidant enzymes (131). In

2017, Lu et al. (12) found an interaction between endogenous

DPP3 and KEAP1, and hydrogen peroxide can strongly

induce the DPP3-KEAP1 interaction. In comparison, DPP3

is required for Nrf2 induction and nuclear accumulation in

estrogen receptor-positive MCF7 breast cancer cells (135). In

addition, a high level of DPP3 mRNA is associated with

an increase in expression of Nrf2 downstream genes and a

poor prognosis for estrogen receptor-positive breast cancer.

After that, Ren et al. (78) in 2021 also found that DPP3

can protect hippocampus neurons by modulating the neuronal

KEAP1/Nrf2 signaling pathway, inhibiting apoptosis, oxidative

stress, and inflammation in the pathological state of the cerebral

ischemia/reperfusion injury.

Inflammation

Inflammation is a protective response of the body to injury

or infection, but excessive long-term inflammation can lead

to the development of cardiovascular diseases (136, 137). A

large amount of evidence shows that long-term abnormal

changes in inflammatory cells such as macrophages and immune

molecules such as tumor necrosis factor-α (TNF-α) can promote

the development of myocardial fibrosis and chronic heart

failure. While excessive infiltration of inflammatory cells is

associated with acute deterioration of cardiac function (138).

In addition, a large number of clinical trials have shown

that compared with normotensive patients, the levels of

interleukin-6 (IL-6) (103), interleukin-1β (IL-1β) (139), and

TNF-α (140, 141) in plasma were higher in hypertensive

patients. Some studies have reported that DPP3 also has another

function, which is involved in inflammation and immune

responses. And DPP3 has been detected in the innate and

acquired immune systems, such as granulocytes, monocytes,

and lymphocytes (142). Moreover, deletion of DPP3 affects not

only the production of proinflammatory cytokines, but also

the anti-inflammatory cytokines (82, 143). Up-regulation of

proinflammatory cytokines TNF-α, IL-1β, and IL-6 were also

observed in DPP3-knockout myeloid cells and macrophages

(16). These results suggest that DPP3 may be involved in the

initiation and maintenance of immune responses, and it may

significantly impact the regulation of immune function.

Summary

Globally, cardiovascular diseases are the leading cause

of death. More than four-fifths of death in patients with

cardiovascular diseases is caused by heart attack or stroke.

Hypertension, as an essential risk factor for cardiovascular

diseases, substantially increases the risk of cardiovascular

and cerebrovascular diseases. Hence, identifying the risk of
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cardiovascular diseases and ensuring patients receive treatment

early are the main strategies to prevent death in patients with

cardiovascular diseases. Moreover, the foremost method is the

comprehensive use of indicators, including patient history,

imaging, and histology. Among them, the diagnostic evaluation

of biomarkers in plasma and the targeted administration of

cardiovascular drugs are particularly important for accurate

diagnosis and prevention of heart attack and stroke. At present,

the concentration and activity of DPP3 in circulation can

accurately predict the severity of acute cardiogenic shock

patients, which undoubtedly provides an important basis

for the prevention and diagnosis of cardiovascular diseases.

With the in-depth exploration of DPP3, a large amount

of evidence shows that it is not only a biomarker of

cardiovascular disease, but also participates in the occurrence

and development of cardiovascular diseases through pathways

such as RAS, oxidative stress, and inflammation. And DPP3

plays an essential role in the pathogenesis of cardiovascular

diseases such as hypertension and heart failure (Figure 1),

which will contribute to its transformation from biomarker to

therapeutic target.

Perspective

Although the mystery of DPP3 has been gradually unveiled,

the results of animal experiments have shown that exogenous

intravenous injection of DPP3 inhibitor procilizumab in

cardiogenic shock improves cardiac function. In high-risk

diseases such as hypertension and diabetes, DPP3 can prevent

the occurrence and development of chronic heart failure by

inhibiting myocardial inflammation and myocardial fibrosis.

The precise mechanism remains elusive for the difference in

the role of DPP3 in chronic cardiac failure and cardiogenic

shock. At the same time, the level of circulatory DPP3 has

been helpful in the diagnosis of diseases such as cardiogenic

FIGURE 1

DPP3 contributes to the occurrence and development of cardiovascular diseases by regulating inflammatory response, RAS, and oxidative

stress. × represents blocking this pathway.
√

means promoting this mechanism. DPP3, Dipeptidyl peptidases 3; RAS, renin-angiotensin system;

Nrf2, Nuclear factor-erythroid-2-related factor 2; INrf2, inhibitor of Nrf2; NQO1, quinone oxidoreductase 1.
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shock in clinical studies, but whether it can be further

used to identify patients sensitive to hemodynamic treatment

strategies remains to be explored. Therefore, it is still of great

significance to clarify the efficacy of DPP3 as a biomarker

and to explore its potential therapeutic value in patients with

cardiovascular disease for the diagnosis and prevention of

cardiovascular disease.
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