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Automatic Latent Fingerprint Identification Systems (AFIS) are most widely used by

forensic experts in law enforcement and criminal investigations. One of the critical steps

used in automatic latent fingerprint matching is to automatically extract reliable minutiae

from fingerprint images. Hence, minutiae extraction is considered to be a very important

step in AFIS. The performance of such systems relies heavily on the quality of the input

fingerprint images. Most of the state-of-the-art AFIS failed to produce good matching

results due to poor ridge patterns and the presence of background noise. To ensure

the robustness of fingerprint matching against low quality latent fingerprint images, it is

essential to include a good fingerprint enhancement algorithm before minutiae extraction

and matching. In this paper, we have proposed an end-to-end fingerprint matching

system to automatically enhance, extract minutiae, and produce matching results. To

achieve this, we have proposed a method to automatically enhance the poor-quality

fingerprint images using the “Automated Deep Convolutional Neural Network (DCNN)”

and “Fast Fourier Transform (FFT)” filters. The Deep Convolutional Neural Network

(DCNN) produces a frequency enhanced map from fingerprint domain knowledge. We

propose an “FFT Enhancement” algorithm to enhance and extract the ridges from

the frequency enhanced map. Minutiae from the enhanced ridges are automatically

extracted using a proposed “Automated Latent Minutiae Extractor (ALME)”. Based on

the extracted minutiae, the fingerprints are automatically aligned, and a matching score is

calculated using a proposed “Frequency EnhancedMinutiae Matcher (FEMM)” algorithm.

Experiments are conducted on FVC2002, FVC2004, and NIST SD27 latent fingerprint

databases. The minutiae extraction results show significant improvement in precision,

recall, and F1 scores. We obtained the highest Rank-1 identification rate of 100% for

FVC2002/2004 and 84.5% for NIST SD27 fingerprint databases. The matching results

reveal that the proposed system outperforms state-of-the-art systems.
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INTRODUCTION

It has been more than a century that fingerprints have been
used as a reliable biometric in person identification (Lee and
Gaensslen, 1991; Newham, 1995). Ten-print (rolled/plain)
and latent fingerprint searches are the most popularly
used fingerprint matching strategies. Rolled fingerprint
images are acquired by rolling fingerprints from one side
to another to capture ridge information. Rolled fingerprints
are capable of registering 100 minutiae and possess large skin
distortions, whereas plain fingerprint images are obtained by
pressing a fingertip against a flat paper surface or a scanning
device. Plain fingerprints can register about 50 minutiae
because of a small finger capture area and possess low skin
distortions. Since 1893, latent fingerprints (Maltoni et al.,
2009) have been used as one of the most crucial forensic
evidence in a criminal investigations. Latent fingerprints are
unintentionally left-over impressions lifted from surfaces
of objects.

The primary difficulty with latent fingerprints identification
is that it is very difficult to analyze because of its poor
quality (See Figure 1). Generally, rolled/slap fingerprints are
acquired under careful supervision, whereas latent prints are
lifted from the surface of objects, e.g., from crime scenes,
and result in poor quality ridges with the presence of
complex background noise. The most challenging ability of
the latent fingerprint identification system is to establish a
credible link between the partial prints obtained from crime
scenes with a suspects’ previously enrolled fingerprints (See
Figure 1) present in a large database. The challenge arises
because of the poor quality latent, partial fingerprint capture
area, smudged ridges, and greater non-linear skin distortions.
NIST SD27 (Garris and Mccabe, 2000) is a latent fingerprint
criminal database. The database is classified into good, bad,
and ugly fingerprints based on the quality of fingerprints.
Figures 1A–C show latent fingerprints (at the top) obtained
from crime scenes and their corresponding true mates (at
the bottom).

In automated fingerprint identification, a computer is used
to match fingerprints against a database of known or unknown
fingerprints. The Automated Fingerprint Identification Systems
(AFIS) is primarily used by law enforcement agencies for
a criminal investigation, to identify an unknown suspected
criminal’s fingerprints against the fingerprints in a large database.
On the other hand, automated fingerprint verification is
recognizing a known person from a relatively small fingerprint
database typically in applications such as attendance and access
control systems.

Before AFIS was introduced, latent fingerprints were
manually matched against the actual rolled/plain fingerprints
by latent examiners using an ACE-V (Ashbaugh, 1999)
(Analysis, Comparison, Evaluation, and Verification). In
the latent fingerprint scenario, manual matching of an
unknown latent fingerprint against a large fingerprint
database is a tiring process and practically not feasible—
manual intervention in fingerprint matching can lead
to errors.

LITERATURE SURVEY

The topic of automatic fingerprint identification is one of the
most popularly searched and studied topics in the biometrics
system in the past 50 years (Jain et al., 2016). The evolution of
Automated Fingerprint Identification Systems (AFIS) has helped
to significantly improve the speed and accuracy of rolled or plain
fingerprint identification using a large fingerprint database. The
Fingerprint Vendor Technology Evaluation (FpVTE) (Wilson
et al., 2004) in 2003 showed that the results of commercial
fingerprint matches achieved an impressive Rank-1 identification
rate of more than 99.4% on a database of 10,000 plain fingerprint
images. On the other hand, AFIS, developed for latent print to
rolled fingerprint matching, continues to pose more challenges
due to the poor ridge quality, and complex background noise
of the latent print. The accuracy in such systems remains low
compared to rolled/plain fingerprint matching systems.

Due to the poor latent print, most of the existing latent
identification modules in AFIS work with semi-automatic
configuration. In this process, a forensic expert first manually
marks minutiae features in a latent, obtains the candidate list
from search results, and identifies the true fingerprint from
the list. Despite manual intervention in feature marking and
matching stage, matching accuracy has not reached a satisfactory
level. FBI’s IAFIS reported a Rank-1 identification rate of
54% on a database of about 40 million latent fingerprints
(Jain et al., 1997).

Most of the AFIS make use of more reliable minutiae
features (Dvornychenko and Garris, 2006) for fingerprint
matching. Accurate minutiae extraction results decide the match
performance of the AFIS and are considered to be a very critical
step in matching. Minutiae extraction methods are classified into
two categories. The conventional extraction method involves
extracting handcrafted features from the fingerprint domain-
knowledge. Whereas the deep learning method is used to learn
the features from data automatically. Minutiae extraction from
rolled or slap fingerprints have produced good matching results.

Before extractingminutiae (Jain et al., 1997, 2008; Feng, 2008),
the AFIS makes use of pre-processing stages such as obtaining a
Region of Interest (ROI), ridge extraction, ridge enhancement,
and ridge thinning. This approach works well with good
quality rolled/plain fingerprints. For poor quality rolled/plain or
latent fingerprints, this approach provides inaccurate minutiae
location and orientation, without improving the quality of
the fingerprints.

Researchers (Jain et al., 2008; Jain and Feng, 2011) concluded
that the latent fingerprint identification accuracy was improved
by using manually marked minutiae, ROI, and ridge flow.
They further reported improvement in accuracy by using
additional manually marked extended features, ridge-spacing,
and skeleton. Simple steps like ridge extraction, thinning, and
minutia extraction (Ratha et al., 1995) were proposed. These
methods suffer due to the presence of background noise. To
overcome this, Gabor filters (Gao et al., 2010; Yoon et al.,
2011) are used to enhance the latent images and in turn,
overcome the influence of background noises. These methods
perform better than (Jain et al., 1997) but are only able to
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FIGURE 1 | Examples of low-quality latent fingerprints from the NIST SD27 (Garris and Mccabe, 2000) database (latent fingerprints at the top and their respective

true-mates at the bottom) (A) Original latent classified as good and its true mate (B) Original latent classified as bad and its true mate (C) Original latent classified as

ugly and its true mate.

extract low-level ridge features with the help of handcrafted
methods. Overall, ridge patterns in latent fingerprints suffer in
the presence of background noises. Therefore, it is very difficult
to extract handcrafted features with complex background noises.
As discussed earlier, manual intervention in marking the features
is a tiring and time-consuming process and is not feasible when a
large fingerprint database is involved.

To reduce human involvement, some level of automation was
introduced in the fingerprint identification process. Automatic
ROI cropping (Choi et al., 2012; Zhang et al., 2013; Cao et al.,
2014; Nguyen et al., 2018a), ridge-flow estimation (Feng et al.,
2013; Cao et al., 2014, 2015; Yang et al., 2014), and ridge-
enhancement (Feng et al., 2013; Li et al., 2018; Prabhu et al., 2018)
methods were proposed by various researchers. The Descriptor-
Based Hough Transform (DBHT) (Paulino et al., 2013) was
proposed to align and match the fingerprints. The orientation
field was reconstructed using minutiae marked by latent
examiners. Another state-of-the-art matcher called the Minutia
Cylinder-Codes (MCC) based indexing algorithm (Medina-Pérez
et al., 2016) was proposed. MCC performs fingerprint alignment
at the local level through Hough transform and to improve the

matching accuracy, clustering based onMinutiae Cylinder Codes
(MCC), M triplets, and NeighboringMinutiae-Based Descriptors
(NMD) was proposed. The highest rank-1 accuracy of 82.9% was
reported by the NMD clustering algorithm. Some researchers
(Tang et al., 2016, 2017; Darlow and Rosman, 2017; Nguyen
et al., 2018b) believed that the learning-based approaches using
deep networks will have a better ability to extract minutiae
features from latent fingerprint images. These deep learning
approaches only concentrate on a particular or set of methods
used in AFIS. These proposed methods do not build a complete
end-to-end AFIS. Several researchers (Cao et al., 2018a,b; Cao
et al., 2019) proposed solutions to build end-to-end AFIS.
An automated s Convolutional Neural Networks (ConvNet)
based ridge-flow, ridge-space, minutiae extraction, minutiae-
descriptor extraction, extract complementary templates, and
graph-based matching was proposed (Cao et al., 2018b). This
method achieved the highest Rank-1 identification accuracies of
64.7% for the NIST SD27, against a background database of 100K
rolled fingerprints. However, this method depends on manually
marked ROI and it consumes more template match time. To
overcome these problems, a texture template-based approach
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FIGURE 2 | Proposed end-to-end automated latent fingerprint identification system.

was proposed (Cao et al., 2018a). To make up for the lack of a
sufficient number of minutiae in poor quality latent prints, virtual
minutiae was introduced to improve the overall match accuracy.
It resulted in the improvement of Rank-1 identification accuracy
of 68.2% with a 10K gallery database. To further improve the
performance proposed work (Cao et al., 2018a), an automated
ROI-cropping, preprocessing, feature extraction, and feature
matching was developed (Cao et al., 2019). For every minutia,
a 96-dimensional descriptor is extracted from its neighborhood.
To improve the computation, the descriptor length for virtual
minutiae is reduced to 16 using product quantization. Highest
Rank-1 identification accuracy (rank level fusion) of 70% was
achieved for the NIST SD27 latent fingerprint database with
100K rolled prints. This method suffers from improper cropping
with dry laments and the match accuracy is less compared to
the state-of-the-art descriptor-based matcher. Deshpande et al.
(2020a) proposed a deep network based end-to-end matching
model called “CNNAI”. The system achieved highest Rank-1
identification rate of 80% for FVC2004 fingerprints and 84%
for NIST SD27 databases. However, the system failed to identify
genuine minutiae in latent fingerprints due to broken and
inconstant ridges.

In this paper, we have proposed the development of an
automated end-to-end system that pre-processes, enhances,
extracts the minutiae, and outputs the candidate list. In
section Literature Survey we report work carried out by
different researchers in this field. In section Automated
Latent Fingerprint Pre-processing and Enhancement Using
DCNN and FFT Filters we generate the enhanced frequency
map from a Deep Convolutional Neural Network (DCNN)
model. Moreover, we enhance the image using blocks of FFT
enhancement filters to extract all possible ridge structures.
Section For Automated Minutiae Extraction and Matching deals
with the minutiae extraction, minutiae template generation,

template matching, and outputting the candidate list. In
section Result and Discussion we discuss the obtained
result and conclude the paper. The proposed end-to-end
automated latent fingerprint identification system is shown
in Figure 2. We have reported our results on FVC2002
(FVC2002, 2012), FVC2004 (FVC2004, 2012) plain fingerprint,
and NIST SD27 (Garris and Mccabe, 2000) latent fingerprint
databases. The overall process involved in developing an
end-to-end automated latent fingerprint identification system
is shown in Figure 3. We compare the precision, recall, and
F1-score which are minutiae extraction measures with the
state-of-the-art minutiae extraction algorithms (Watson et al.,
2007; Verifinger, 2010; Tang et al., 2017; Nguyen et al., 2018b).
Later, we compare our Rank-1 identification accuracy with
the state-of-the-art algorithms (Medina-Pérez et al., 2016; Cao
et al., 2018b, 2019).

AUTOMATED LATENT FINGERPRINT
PRE-PROCESSING AND ENHANCEMENT
USING DCNN AND FFT FILTERS

The latent fingerprint pre-processing stage is made up of
fingerprint image normalization, orientation estimation,
segmentation, and enhancement steps. The performance of
the minutiae extraction algorithm completely depends on the
preprocessing stage and the quality of the input fingerprint
images. Initially, we use part of the DCNN layers of FingerNet
(Tang et al., 2017) to obtain the enhanced frequency map.
Later, we enhance the ridge structure to assist good minutiae
extraction. Minutiae extracted by FingerNet did not produce
a good number of minutiae and this affected the performance
of the extraction model as well as the matching. Thus, we
use Layers of DCNN to remove the background noise and
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FIGURE 3 | Continued
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FIGURE 3 | Fingerprint enhancement, minutiae extraction, and matching process involved in developing our proposed end-to-end automated latent fingerprint

identification system.
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FIGURE 4 | Automated latent fingerprint pre-processing and enhancement module of end-to-end automated latent fingerprint identification system.

to extract the important ridge information. Further there is a
need to process the images obtained from DCNN layers. To
achieve good enhancement, we use FFT enhancement filters
after producing an enhancement map from DCNN layers.
The complete automated latent fingerprint pre-processing and
enhancement block diagram is shown in Figure 4. The steps are
explained next.

Normalization
This step normalizes the overall global structure of the input
image [I(i,j)]. This is achieved by reducing input images to a
fixed mean (M) and variance (VAR0). This step performs a pixel-
wise operation (Hong et al., 1998) to normalize the contrast and
brightness of the image without changing the ridge structure. The
normalized image G(i,j) is defined as,

G
(

i, j
)

=







M0 +

√

VAR0((I(i,j)−M)2

VAR , I
(

i, j
)

> M

M0 −

√

VAR0((I(i,j)−M)2

VAR , Otherwise
(1)

Orientation Field Estimation
The fingerprint image contains ridge distribution in different
parts of the fingerprint. To determine the dominant direction
of the ridges, this step is implemented. This is a very important
step and any errors introduced here will get propagated into the
next stages. Gradient and sum of windowed computations are
replaced with convolutional operations (Ratha et al., 1995) and
it is transformed as,

∇iI = I ∗Mi, ∇jI = I∗Mj, Gij =
(

∇xI · ∇yI
)

∗ Ow,

Gii = (∇iI)
2 ∗ Ow,

Gjj =
(

∇jI
)2
∗ Ow,

θ = 90+
1

2
atan2

(

2 · Gij,Gii − Gjj

)

(2)

Here, ∇i and ∇j are the “i” and “j” gradients computed using
“Sobel Masks” (Mi and Mj) for the input image I. “∗” is a
convolutional operator, and “Ow” is amatrix of one’s with the size
of wxw. atan2(j, i) is used to calculate the arc-tangent of the two
variables j and i for their quadrant. “θ” is orientation field output.

We use “ConvNet” with three convolutional pooling blocks. Each
convolutional pooling block contains a pooling layer after a few
convolutional blocks. Each convolutional block is made up of a
convolution layer followed by a BatchNorm (Ioffe and Szegedy,
2015) and a PReLU (He et al., 2015) layer. Further, we use amulti-
scale resolution (ASPP layer) and a parallel orientation regression
on each feature map (Tang et al., 2017) to calculate maximum
ridge orientation (θmax).

Segmentation
The coherence (Bazen et al., 2001) gives a good response to the
gradients that are pointing in the same direction. Fingerprints
contain parallel ridge structures, and the coherence produces a
good response to the foreground ridge information compared
to the background noise. In a window “w” over pixels, the
coherence, mean, and variance are computed as:

oh =

√

(

Gii − Gjj

)2
+ 4 · Gij

2

Gii + Gjj
,

Mean =
I∗ Ow

w2
,

Var =
(I −Mean)2∗ Ow

w2
,

Seg = w ∗ [Coh,Mean, Var]+ β, (3)

Where “w” is the length of the local window, and “β” is the
classifier’s parameter. To implement a segmentation map using
deep layers, the entire multi-scale feature maps are shared with
an orientation estimation part as discussed in Orientation Field
Estimation. To predict the pixel within the region of interest
(ROI), a segmentation score with the size of “H/8 × W/8”
is chosen.

Enhancement
Because of frequency selective characteristics, Gabor
enhancement (Bernard et al., 2002) is widely used in fingerprint
identification applications. To obtain ridge frequency “ω” and
ridge orientation “θ,” convolution operations are conducted on a
fingerprint block. Gabor enhanced fingerprint block GE(i,j) for a
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FIGURE 5 | Minutiae extraction before and after FFT enhancement (A) Minutiae extracted from FpMV minutiae detection application1 (B) Minutiae extracted from

FingerNet (Tang et al., 2017) (C) Minutiae extracted after FFT enhancement using FpMV minutiae detection application.

pixel (i,j) in an image I am calculated as,

GE(i, j) = (I ∗ gω, θ)(i, j) (4)

GE(i, j) = A(i, j) · ei∅(i,j) (5)

where A(i, j) and iφ(i0, j0) is the amplitude and phase
components of the Gabor enhanced block. φ(i0, j0) is taken as
the final enhanced results. The orientation map discussed in
section Orientation Field Estimation from the orientation mask
is directly multiplied by Gabor filter banks.

To obtain a Gabor filter bank, Gabor filters with “N”
discretized parameters are generated, respectively, and the set of
filtered images are obtained by convolving with Gabor filters. The
orientation selector is a mask that will choose the appropriate
enhanced blocks from the filter banks. The final frequency
enhanced map is obtained by convolving the Gabor filter bank
images with enhanced blocks. This frequency enhanced map is
further enhanced using FFT filters.

Figure 5A shows the minutiae detected using NIST FpMV
minutiae detection application1. When the minutiae features
are extracted (without the FFT enhancement) using FingerNet
(Tang et al., 2017) (See Figure 5B), the system failed to extract
many genuine minutiae while producing few spurious minutiae
compared to the fingerprint shown in Figure 5A. Any fingerprint
recognition system can deal with the presence of few spurious
minutiae, but matching performance is affected when the system
fails to extract a sufficient number of reliable minutiae from
the latent fingerprints which already contain partial ridge
information. To overcome this problem we therefore further
enhance the image using FFT filter banks. Figure 5C shows the
minutiae extracted from the FFT enhanced image and it can be
observed that the FpMV detection application detects a greater
number of ridge structures and genuine minutiae compared to
Figures 5A,B.

1NIST Fingerprint Minutiae Viewer (FpMV). Available online at: https://www.nist.

gov/services-resources/software/fingerprint-minutiae-viewer-fpmv.

FFT Enhancement
Here we enhance the frequency enhanced map obtained from
DCNN layers using Fourier filters (Chikkerur et al., 2007). In this
process, the image is divided into small overlapping windows. To
obtain the ridge frequency and orientation, these small window
regions are analyzed. The energy distribution is used as a region-
mask to separate foreground fingerprint information with the
background noise. The Fourier spectrum of this small region
is analyzed, and probabilistic estimates of the ridge frequency
and ridge orientation are obtained. Based on the analysis the
energy map is used as a region mask to distinguish between
the fingerprint and the background regions. Based on the ridge
orientation information, an angular coherence image (Rao, 1990)
is obtained. This results in contextual information and helps in
filtering each window in the Fourier space. Butterworth Band
pass and root filters are used to enhance the ridges on the
overlapping blocks. Finally, the enhanced image is obtained
by inverting each window. Figure 6 shows the steps used in
implementing the automated FFT enhancement. These steps are
explained next.

Region-Mask and Segmentation
Latent fingerprints contain a complex and noisy background
with little ridge information. This results in little frequency in
the Fourier space. Let, E(i,j) define the energy content of the
respective block.

E(i, j) = log

{∫

r

∫

θ

∣

∣F(r, θ
∣

∣

2
}

(6)

The fingerprint is segmented from the foreground and
background by automatically thresholding (Otsu, 1979) the
energy image. The image is further processed to obtain the
connected components.

Ridge-Orientation
Let the orientation “θ” be a random variable with probability
density function P(θ). The orientation values are obtained
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FIGURE 6 | Steps used in implementing automated FFT enhancement algorithm.

by performing a vector averaging. To resolve orientation
difficulty between the orientation of ±180◦, sin(2θ) and cos(2θ)
are used.

E{θ} =
1

2
tan−1

{

∫

θ
P(θ) sin (2θ)dθ

∫

θ
P(θ) cos (2θ)dθ

}

(7)

Since the latent fingerprints contain poor ridge structures, we
estimate the ridge orientation from its immediate neighborhood.
The final resulting orientation image O(i,j) is further smoothened
using the Gaussian smoothening-kernel (W). Smoothening
kernel W(i,j) of size 3× 3 is used over a 5× 5 or 7× 7 kernel.

O′(i, j) =
1

2

{

tan−1
sin (2O(i, j)∗W(i, j))

cos (2O(i, j)∗W(i, j))

}

(8)

Ridge-Frequency
Similar to ridge orientation, the ridge frequency is calculated as,

E{r} =

∫

r
P (r) rdr (9)

Because of simple plain smoothening, ridge-frequency obtained
at the boundaries of the fingerprint can propagate errors over

the complete image. To overcome this, the modified smoothened
filter is obtained by,

F′(i, j) =

∑i+1
u=i−1

∑j+1
v=j−1 F (u, v)W (u, v) I(u, v)

∑j+1
v=j−1 W (u, v) I(u, v)

(10)

“W” represents the Gaussian smoothening-kernel with 3× 3 size.
Inter-ridge distance lies a range of 3 to 25 pixels per ridge and the
ridges outside this range are considered invalid.

FFT Enhancement Algorithm
We use FFT filters to obtain the final enhanced image from the
ridge frequency image. FFT filters are obtained by performing
different operations, by analyzing the result obtained in previous
steps. Enhancement at different stages of the FFT enhancement
algorithm is shown in Figure 6. Complete FFT enhancement
step is explained in the Algorithm 1. It can be observed that the
minutiae extracted after FFT enhancement using FpMVminutiae
detection software are close to the ground truth minutiae (See
Figure 5B).

After the final enhancement step, we obtain the enhanced
and binarized image ready for feature extraction. NIST’s FpMV
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detection software is a tool used to observe minutiae and cannot
be directly integrated into the proposed end-to-end.We therefore
propose an automated minutiae extractor and matching to
achieve this operation.

Algorithm 1| FFT Enhancement Algorithm.

Input← Frequency enhanced image I(i,j)
Output← FB(i,j) FFT enhanced and binarized image
for each image I(i,j)

for each overlapping block B(i,j) with sizes 6x6, 12x12,
24x24

Remove DC components in B, multiply with spectral window
‘w’, filter (F) ridges separated between 3 to 25 pixels using
(32x32) Band pass Butterworth filter (F = FFT(B)), and
perform root filtering (R= 0.5) on F.
Obtain values of Ridge-Orientation RO(i,j), Ridge-Frequency
RF(i,j) and Energy Image E(i,j)
Construct enhanced image maps using,
RO‘(i,j) ← Smoothening Ridge Orientation map from
RO(i,j).
RF‘(i,j)← Diffusing Ridge Frequency map from RF(i,j).
C(i,j)← Computing coherence image using RO‘(i,j).
RM(i,j)← Computing Region Mask by thresholding E(i,j).
FA← Computing angular frequency around RO(i,j).
FR← Computing radial filter centered around RF(i,j).
FFT← F∗ F∗AFR

I‘(i,j)← IFFT(F) Reconstruct the enhanced image from F
end for
Obtain,

RS(i,j) ← Segmented image by applying Region Mask
RM(i,j) over I‘(i,j).
ROG(i,j) ← Ridge-Oriented image by applying Gaussian
smoothening-kernel over RS(i,j).
RFE(i,j)← Ridge Frequency Enhanced image by masking
non-ridge regions and orientation
filtering over ROG(i,j).
FB(i,j)← Binarize the Frequency enhanced image RFE(i,j).

end for

FOR AUTOMATED MINUTIAE
EXTRACTION AND MATCHING

Minutiae-based matching methods are the most commonly
preferred method (Ratha and Bolle, 2003) because of their
uniqueness (no two fingerprints can have similar minutiae
patterns and minutiae do not change throughout its lifetime)
and ease of extraction. We discuss minutia-based extraction
and matching in this section. Minutiae present in the gallery
fingerprints are extracted and stored as a set of minutiae
belonging to a particular fingerprint with the fingerprint ids. For
a query fingerprint our proposed minutiae extractor performs
fingerprint alignment to retrieve minutiae pairings between both
the fingerprints. Our proposed matcher computes the similarity
between the query and gallery fingerprints, searches the top 20
similar fingerprints, and finally outputs the candidate list based
on the match score. These steps are explained in detail next.

Automated Latent Minutiae Extractor
(ALME)
After the frequency enhanced, and the binarized image is
obtained, the next step is to automatically extract the minutiae
features from a skeletonized fingerprint. We propose the
Automated Latent Minutiae Extractor (ALME) to achieve this
task. The ALME operation is explained in Algorithm 2. To
obtain an image skeleton, a morphological thinning operation
is performed on the ridge structure to reduce their size by
1-pixel thickness. This is done by deleting pixels present at
the edge of ridgelines until the pixel size is reduced to 1
pixel. Skeletonization of low-quality fingerprint results in ridge
breaks, bridges, irregular ridge endings, and can introduce
false minutiae. Our proposed enhancement method discussed
in section Automated Latent Fingerprint Pre-processing and
Enhancement Using DCNN and FFT Filters overcomes these
problems by improving the quality of latent fingerprints (See
Figure 5).

Algorithm 2| Automated Latent Minutiae Extractor (ALME)
Algorithm.

Input← Frequency enhanced and binarized image FB(i,j)

Output ← Extracted fingerprint templates (x, y, CN, Čθ, f,
fingerprint-id)
for each image FB(i,j) do

Fingerprint Skeleton Skel (i,j) ← Morphological
thinning operation on FB(i,j)
for each pixel in FB(i,j) do
Crossing Number (CN) Ą← Slide 3x3 mask to find
pixels in 8 neighborhoods

if (CN == 1) then
minutia← ridge ending

else if (CN == 3) then
minutia← ridge bifurcation

else if (CN == 5) then
minutia← core point

else
minutia← delta point

end if
Store fingerprint template ← x-y minutiae
co-ordinate, CN, minutia orientation, frequency,
fingerprint-id
end for

end for

After thinning, the binary image containing pixel “p” is
analyzed to locate the minutiae location. Crossing-number
(Rutovitz, 1966) is obtained by considering the 8-neighborhood
pixels (in a 3× 3 window with p as center) circularly traversed in
an anti-clockwise manner.

cn
(

p
)

=
1

2

∑

i=1...8

∣

∣

∣
val(p(imod8) − val(pi−1)

∣

∣

∣
(11)
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FIGURE 7 | Minutiae extracted from FVC2004 (FVC2004, 2012) and NIST SD27 databases (Garris and Mccabe, 2000) (A) Original plain FVC2004_DB1 extraction

using FpMV (B) Proposed skeletonization and minutiae extraction of fingerprint seen in (A) after Fourier enhancement (C) Original NIST SD27 extracted from FpMV

(D) Proposed skeletonization and minutiae extraction of latent fingerprint seen in (C) after Fourier enhancement.

Here, cn(p) represents the crossing number of a pixel “p” and
val(p)∈{0,1} is the binary value. The crossing number identifies
the minutiae pixel location as ridge ending (cn=1), bifurcation
(cn=3), core point (cn=5), and delta point (cn>5) in the
thinned image.

It can be seen that many false (spurious) minutiae appear
in the original FVC2004_DB1 and NIST SD27 fingerprints
when they are extracted using FpMV without enhancement
(See Figures 7A,C). False minutiae are detected mainly because
of broken ridges within and at the borders of fingerprints.
Additionally, when these images are not enhanced, they do not
reveal important ridge information and as a result they miss
out important minutiae in critical regions of the fingerprint (See
Figures 7A,C). After the fingerprints are enhanced using the FFT
enhanced method (as discussed in section Automated Latent
Fingerprint Pre-processing and Enhancement Using DCNN and
FFT Filters), the broken ridges become connected and hence
it removes false minutiae from fingerprints when extracted. It
can be seen from Figures 7C,D that a missing ridge structure
within and at the boundary of the fingerprint are visible
enhancement and minutiae are detected. In Figures 7B,D core-
point is indicated by green, delta or lower core-points with gold,
bifurcations with blue [for θ ∈ (0◦-180◦)] and purple [for θ ∈

(180◦-360◦)], and ridge-endings with orange [for θ ∈ [0◦-180◦)]
and red [for θ ∈ (180◦-360◦)]. Overall, compared to the original
fingerprints the minutiae extracted after frequency enhancement
produced tolerable false minutiae. Extracted minutiae are finally
stored as templates in the form of (x, y, CN, θ, f). x, y represents
minutiae coordinates, Crossing Number (CN) indicates the type
of minutia (ridge ending, bifurcation, etc.). It is indicated in
different colors as discussed above. “θ” indicates the value of ridge
orientation concerning reference minutia. “f ” indicates ridge
frequency. This value will be 0 or 1 because of binarization. The
extractedminutiae using ALME for gallery fingerprints are stored
as minutiae templates with fingerprint id’s in the database. For
a given input query fingerprint the minutiae are extracted by

ALME and the matching is performed. Fingerprint matching is
explained next.

Frequency Enhanced Minutiae Matcher
(FEMM)
In this process, minutiae from gallery fingerprints are extracted
and are stored as templates in the database. A template for
the input query fingerprint is obtained and two fingerprint
templates are compared based on the degree of similarity between
them. The similarity score between 0 and 1 indicates the
percentage of closeness to its original reference fingerprint. The
matching decision depends on the selected threshold value. The
performance of any matcher is measured in terms of matching
accuracy and response time. These performance metrics change
according to the fingerprint application.

Fingerprint matchers are classified into three categories:

• Correlation-based: To perform matching, fingerprint
images are superimposed and the correlation between the
corresponding pixels at different displacement and rotations is
calculated. This method greatly relies on accurate fingerprint
alignment before matching.
• Minutia -based: The minutiae from two fingerprints are

extracted and stored to find the maximum number of
matching pairs in the sets. Accurate minutiae detection is key
in this method.
• Non-minutiae based: The matcher uses global features such

as ridge-orientation and frequency to align and match two
fingerprints. Global features are not affine to rotation, scale,
and hence become difficult to align.

We use a minutiae-based matching on frequency enhanced
images. We propose a Frequency Enhanced Minutiae Matcher
(FEMM) to align and match the fingerprints. To begin, we
calculate the average distance between the stored ground truth
(in the gallery database) and the query fingerprint minutiae pairs
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to obtain the alignment error. If the average Euclidean distance
between the latent minutiae pairs is less than a predefined
number of pixels, then we consider it to be a correct fingerprint
alignment. This alignment is mainly done to initiate thematching
process as well as to remove the false minutiae. Depending
on the number of corresponding match pairs between the two
fingerprints, the match score is calculated. The matching process
using the FEMM operation is explained in Algorithm 3.

Algorithm 3| Frequency Enhanced Minutiae Matcher (FEMM)
Algorithm.

Input ← Query fingerprint template (x, y, CN, θ, f,
fingerprint-id)
Output← Similarity score and matching fingerprint-id
for each fingerprint template in Gallery database do
for each minutia in Query fingerprint template do

Align (δx, δy, α) ← coarsely align similar minutiae
present in gallery fingerprint
template by translating (δ) /rotating (α between -5 to +5
degrees) fingerprints
if fingerprints are closely aligned then

Rotate any minutiae set to for further matching
if ((minutiae pair position && orientation) == true)
then

Store matched minutiae pairs (x, y, θ,
fingerprint-id)

end if
else
Load next minutia from the fingerprint selected from
gallery fingerprint

end if
end for

For a matched fingerprint-id, sort matched minutia (x, y)
coordinate positions, orientation (direction)
based on their distance from the centroid or core point.
if (distance && orientation thresholds < pre-defined
thresholds) then
Output similarity score
end if

end for
Matching fingerprint-id← Gallery fingerprint with
highest similarity score

Fingerprint Alignment
The major limitation of fingerprint alignment, especially in
latent fingerprints, is that the singular or core points may not
always be present, unlike good quality fingerprints. Aligning
based on manually marked features is prone to developing
errors and is a tiresome process. FEMM performs the fingerprint
alignment based on the available minutiae pairs. Initially,
minutiae structures of two fingerprint images are coarsely
aligned. This is done by translating and rotating two fingerprints
so that one minutia from one fingerprint closely overlaps
with another similar minutia from the other fingerprint. After

two fingerprints are closely aligned in specific translation and
orientation, one of the minutiae sets is rotated to optimize
the alignment between two minutiae sets for further minutiae
matching. Minutiae pairs with close position and orientation are
considered to be corresponding matched pairs.

As discussed, to overcome the problems associated with
alignment, we use a method similar to the registration technique
(Ratha et al., 1996). We use a Hough based two-step minutiae
registration and pairing method. Here minutiae registration
involves a process of aligning a pair of minutiae within
a specified range using parameters < δx, δy, α >. (δx,
δy) are the translation parameters and “α” is the rotation
parameter. With the help of these parameters, minutiae sets
are rotated and translated within parameter specified limits.
Each transformation produces a score for a pair of minutiae,
and we find the highest alignment transformation score to
register it. Using this transformation score we align the query
minutiae set with that of a fingerprint minutiae set in the
gallery database. We set the value of “α” between −5 degrees
to 5 degrees in 1 or 2 steps. Some rotational steps are
represented as < α1, α2, α3...αk > where “k” is the number of
rotations applied.

To check similar fingerprints, for every query minutiae “i” we
see if,

αk + θi = θj (12)

Where “θi” and “θj” are the orientation parameters of ith minutia
from query minutiae set and jth minutia from gallery fingerprint
minutiae set. If the condition in Equation (11) is satisfied, then P
(i, j, k) is set as “1” or else “0.” For values set as “1,” translation
parameters (δx, δy) are calculated using the following equation.

(

δx , δy
)

= qj −

(

cos θ sin θ

− sin θ cos θ

)

∗pi (13)

where “qj” and “pi” are the coordinates of jth minutiae of gallery
fingerprint minutiae set and ith minutiae of query minutiae set,
respectively. Using the parameters < δx, δy, αk >, the query
minutiae set is aligned. These aligned minutiae sets are used to
compute the minutiae pairing score. Two minutiae are set to be
paired only if they lie within the same bounding box and possess
the same orientation. Minutiae pairing score is the ratio of the
number of paired minutiae to the total number of minutiae. The
i, j, k values with the highest minutiae pairing score will be used
to align the minutiae set. Coordinates of aligned minutiae are
obtained using the equation:

(

qj
)

=

(

cos θ sin θ

− sin θ cos θ

)

∗ pi +
(

δx , δy
)

(14)

Aligned minutiae are stored for further investigation.

Fingerprint Matching
After the alignment is done, similar minutiae are stored in an
order based on their distance from their centroid or core point.
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Minutiae orientation (direction) and coordinate (x, y) positions
are used to match minutiae extracted from two fingerprints.
Minutiae selected from query and gallery fingerprints are said to
be matched if their distance and orientation differences are less
than pre-defined threshold values. The minutiae difference and
their threshold are given by,

TDist ≥

√

(

1x2 +1y2
)

(15)

where “1x” is the difference between the x-coordinate of
minutiae of two fingerprints. Similarly, “1y” is the difference of
minutiae for y-coordinate. The orientation difference and their
threshold are given by,

Tori ≥ min
(

|1θ | , 360◦ − |1θ |
)

(16)

where “1θ” is the orientation difference of two minutiae
under consideration.

Based on the number of matched minutiae from two

fingerprints, the similarity score is computed. As discussed

in Fingerprint Matching the minutiae extracted from two

fingerprints are aligned and matched via shifting and rotating

fingerprints. The similarity score is calculated as the maximum
number of minutiae matching pairs. It is given by the formula,

Similarity score =

(

# total matched minutiae
)2

(

# of matching minutiae pairs from query FP
)∗ (

# of matching minutiae pairs from gallery FP
) (17)

RESULT AND DISCUSSION

We conducted experiments on plain FVC2002 (FVC2002, 2012),
FVC2004 (FVC2004, 2012), and NIST SD27 (Garris and Mccabe,
2000) latent fingerprint databases. FVC2002 and FVC2004 DB1
databases contain 80 fingerprints from 10 persons (class) with
each person registering eight fingerprints. It therefore contains
a total of 10 fingerprint classes in 80 fingerprints. Although
FVC2004 is a plain fingerprint, it is made up of low-quality
fingerprints and it will help to test our proposed methods.

TABLE 1 | Comparison of minutiae extraction performance (Precision, Recall, and

F1-Score) by different state-of-the-art methods using FVC 2004 and NIST SD 27

Databases with setting-1 (Dist=8, Ori=10).

Dataset Methods Precision Recall F1-Score

FVC 2004 MINDTCT (Watson et al., 2007) 30.8% 64.3% 0.416

VeriFinger (Verifinger, 2010) 39.8% 69.2% 0.505

FingerNet (Tang et al., 2017) 68.7% 62.1% 0.643

MinutiaeNet (Nguyen et al., 2018b) 79% 80.1% 0.795

Proposed ALME 87.88% 63% 0.74

NIST SD27 MINDTCT (Watson et al., 2007) 8.3% 14.7% 0.106

VeriFinger (Verifinger, 2010) 3.6% 40.1% 0.066

FingerNet (Tang et al., 2017) 53.2% 49.5% 0.513

MinutiaeNet (Nguyen et al., 2018b) 69.2% 67.7% 0.684

Proposed ALME 76.19% 61.54% 0.681

NIST SD27 is a criminal fingerprint database and contains 258
fingerprint images obtained from 258 persons. It forms a total
class of 258 fingerprint images with 88 Good, 85 Bad, and 85
Ugly images. We conducted experiments on FVC2002, FVC2004,
and NIST SD27 databases to check the performance of our
proposed enhancement and minutiae extraction algorithm. To
test the performance of minutiae matching algorithm, we used
FVC2004 and NIST SD27 databases. We compared our results
with different state-of-the-art methods. We implemented our
end-to-end system using python and MATLAB on an intel i7
2.7GHz dual-core machine.

Extraction Performance
We enhanced the low-quality fingerprint images with DCNN

and FFT enhancement algorithms. To measure the accuracy of

the minutiae extraction algorithm, we compared the extracted

minutiae with that of the ground truth. We used precision,

recall, and F-1 metrics to measure the performance. Precision

is defined as the number of True Positives (TP) divided by the
number of TP plus the number of False Positives (FP). In TP,
the model correctly labels positive class and in the case of FP
the model incorrectly labels as a positive and negative class. The
model expresses the Precision as the proportion of the relevant
data points.

Precision =
TP

TP + FP
(18)

“Recall” refers to the total percentage of relevant results that are
correctly classified by an algorithm. “Recall” expresses the ability
to find all relevant instances in a dataset. There is another metric
called the “F-1” score, it is a Harmonic-Mean (H.M) of precision
and recall values. We conducted experiments on a FVC2004DB1
and NIST SD27 latent database and compared our minutiae
extraction results with the state-of-the-art algorithms (Watson
et al., 2007; Verifinger, 2010; Darlow and Rosman, 2017; Nguyen
et al., 2018b). The experiment was conducted with maximum
minutiae distance, orientation of 8, and 10 pixels, respectively.
Table 1 shows the comparisons of precision, and recall obtained
by differentmethods. It can be observed that our proposed ALME
performs well-compared to the state-of-the-art techniques for
both FVC 2004 and NIST SD27 databases.

The obtained results were found to be similar to the ground
truth minutiae. The proposed frequency enhancement method
algorithm can even work well with partial fingerprints and
fingerprints with noisy backgrounds. Figure 8 shows a graph of
the precision-recall curve for FVC2004 and NIST SD27 datasets
with proposed against the reported state-of-the-art algorithms.

Matcher Performance
We used Cumulative Match Characteristic (CMC) as a
performance evaluation. The experiment was conducted on
FVC2002, FVC2004, and NIST SD27 latent query fingerprints
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FIGURE 8 | Precision-Recall curves of FVC 2004 (Left) and NIST SD27 (Right) datasets with the proposed ALME vs. state-of-the-art extraction methods.

with close-set identification configuration (Cao et al., 2019)
and we reported the top Rank-20 matching accuracy results.
For FVC2002DB1 and FVC2004DB1 query fingerprints, the
experiment was conducted with a gallery database of 2,560
images. These gallery fingerprints are formed from FVC2002,
FVC2004 (DB2,3,4), and NIST SD4 rolled fingerprints. We
obtained 100% Rank-1 identification accuracy for FVC2002
and FVC2004 query fingerprints. FVC2002/2004 are slap
fingerprint databases and the quality of fingerprints is good
compared to NIST SD27 latent fingerprint databases. Our
proposed FEMM performed well for quality fingerprints. Next,
we conducted experiments for the query NIST SD27 latent
fingerprint database including all latent and different quality
latent prints (good, bad, ugly). The ground truth fingerprint
database of 2,258 fingerprints is made up of NIST SD27 and
ND4 rolled fingerprints. Figure 9 shows the CMC curve of
the proposed and the reported four state-of-the-art matchers.
It can be seen that our proposed FEMM produced the
highest Rank-1 identification accuracy of 84.5% compared to
70% of Latent matcher (LM) (Cao et al., 2019), 83% of
NMD (Medina-Pérez et al., 2016), 74% of Latent Fingerprint
Matcher (LFM) (Cao et al., 2018b) and 53.5% of DBHT. Our
proposed algorithm produced Rank-20 accuracy of 94.57%.
It can be seen from Figure 9A that the proposed matcher
outperforms the reported state-of-the-art algorithms. We further
continue our experiment with good, bad, and ugly quality
latent prints. Figures 9B–D show a comparison of CMC curves
for good, bad, and ugly latent prints with the state-of-the-
art matchers. Our proposed matcher performed well in terms
of match accuracy compared to the reported state-of-the-
art algorithms.

FMR, FNMR, and EER
We further used False Match Rate (FMR), False Non-Match
Rate (FNMR), and Equal Error Rate (EER) to measure the
accuracy of the fingerprint recognition system. FMR, also
referred to as False Acceptance Rate (FAR), is the percentage of
impostor/unmatched comparisons that are incorrectly accepted.
FNMR is the percentage of genuine/matched comparisons that
are incorrectly rejected. FMR and FNMR, are computed using
the similarity score as,

FMR =
NAI

NI

FNMR =
NRG

NG
(19)

ROC–Receiver Operating Characteristics
Where “NAI” is the number of accepted imposters, “NI” is the
number of imposter attempts, “NRG” is the number of rejected
genuine, and “NG” is the number of genuine attempts. EER is the
error rate at the threshold “t” when FMR = FNMR. The system
performance is also reported at all operating points (threshold
t), by plotting FMR (t) against FNMR (t) as a receiver operating
characteristic (ROC) curve as shown in Figure 10.

We plot ROC (Cardillo, 2008) graphs for organizing a binary
classifier and to visualize their performance. ROC graphs are
commonly used fingerprint recognition systems. Sensitivity is
defined as the probability that a test result will be positive when
the true fingerprint is present (true positive rate). Specificity
is the probability that a test result will be negative when the
true fingerprint is not present (true negative rate). Area Under
Curve (AUC) ROC also known as “AUROC” is used to check the
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FIGURE 9 | Cumulative Match Characteristic (CMC) curves comparing the performance of proposed Frequency Enhanced Minutiae Matcher (FEMM) with the

reported state-of-the-art algorithms for NIST SD27 latent database (A) All latent (B) Good quality latent (C) Bad quality latent (D) Ugly quality latent.

FIGURE 10 | FMR and FNMR (FVC2004, 2012) for a given threshold (t) (A) FVC2002 (B) FVC2004 (C) NIST SD27.
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FIGURE 11 | AUROC graphs (Cardillo, 2008) to measure performance FEM for, (A) FVC2002 (B) FVC2004 (C) NIST SD27 datasets.

classification model’s performance. Here, ROC is a probability
curve and AUC represent the degree or measure of separability.
It tells us how much the model is capable of distinguishing
between classes. The higher the AUC, the better the model is
at predicting “0” s as “0” s and “1” s as “1” s. By analogy,
the higher the AUC, the better the model is at distinguishing
between the true fingerprint and false fingerprint. We use the
function to compute and plot the AUROC curves for Sensitivity,
and Specificity (See Figure 11). From Figures 11A,B, it can be
observed that FEM can easily distinguish between the true and
false fingerprints of FVC2002 and FVC2004 databases. However,
for the NIST SD27 database, the AUC is about 0.55 indicating
FEM has a discrimination capacity of about 50%. This is because
the NIST SD27 is a latent fingerprint database and the quality of
fingerprints is very poor.

CONCLUSION AND FUTURE SCOPE

We have proposed a fully automated end-to-end latent
fingerprint identification system. We initially enhanced the
low-quality fingerprints using a DCNN model and further
enhancement was achieved using an FFT enhancement
algorithm. This enhancement resulted in an improved ridge
structure even after skeletonization. Latent enhanced images
were extracted using the Automatic Latent Minutiae Extractor
(ALME) and the final match results were obtained by Frequency
Enhanced Minutiae Matcher (FEMM). ALME was able to
extract a good number of minutiae with a smaller number of
tolerable false minutiae. In spite of this, our matcher achieved
a precision of 87.88 and 76.19% for FVC2004 and NIST SD27
databases, respectively. We obtained a Rank-1 identification
accuracy of 100% for FVC2002/2004 datasets, and 84.5%
for all latent prints in the NIST SD27 dataset. We compared
matching results with good, bad, and ugly laments separately. We

compared the performance of latent enhancement, extraction,
and matching results with the state-of-the-art methods for

FVC2002, FVC2004, and NIST SD27 databases. Our proposed
enhancement, extraction, and matching methods performed well
compared to the state-of-the-art methods.

The system is not invariant to rotation and scale. To
improve the robustness of the system we can develop a scale-
rotation invariant based minutiae matcher similar to the method
proposed by Deshpande et al. (2020b). A deep minutiae extractor
model “MINU-EXTRACTNET” Deshpande and Malemath (in
press) can be utilized along with the proposed FFT enhancement
module to improve the systems matching accuracy. To reduce
the computational cost of matching, we can integrate a hash-
based indexing system for faster retrieval. We used the pre-
trained model (Tang et al., 2017), trained with a total of 8,000
images including plain (3,200 images) and augmented images
from the FVC 2002 dataset. To improve the learning, we can
train the models for additional latent databases. To improve
the overall performance of the system, we can develop and
integrate all the modules of the identification system using a
deep network.
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