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.e gold standard for diagnosing pulmonary Mycobacterium tuberculosis (TB) is the detection of tubercle bacillus in patient
sputum samples. However, current methods either require long waiting times to culture the bacteria or have a risk of getting false-
positive results due to cross-contamination. In this study, a method to detect tubercle bacillus based on the molecular typing
technique is presented. .is method can detect genetic units, variable number of tandem repeat (VNTR), which are the
characteristic of tuberculosis (TB), and performs quality control using amathematical model, ensuring the reliability of the results.
Compared to other methods, the proposed method was able to process and diagnose a large volume of samples in a run time of six
hours, with high sensitivity and specificity. Our method is also in the pipeline for implementation in clinical testing. Reliable and
confirmed results are stored into a database, and these data are used to further refine the model. As the volume of data processed
from reliable samples increases, the diagnostic power of the model improves. In addition to improving the quality control scheme,
the collected data can be also used to support other TB research, such as that regarding the evolution of the tubercle bacillus.

1. Introduction

In 2016, there were an estimated 10.4 million (95% un-
certainty interval 8·8–12·2) new incident cases of Myco-
bacterium tuberculosis (MTB) worldwide. While the rate of
increase of tuberculosis (TB) incidence has slowed down
since 2005, the population with latent and asymptomatic TB
continues to grow, particularly in developing countries [1].
Given the potential complications of untreated TB, early and
accurate diagnosis after the onset of symptoms can result in a
significant improvement in the outcome [2, 3]. However, it is
widely known that current diagnostic methods are time-
consuming or not accurate enough, limiting progress in the
prevention and control of TB-related diseases [4].

.e gold standard for TB diagnosis is finding MTB in
clinical samples of the patient that include sputum or other
specimen [5]. .e smear test of the primary specimen is the
usual method, while the most reliable method of confirming
the presence of the tubercle bacillus in the patient’s specimen
is culture. However, this requires a waiting period of 3 to
6weeks [6, 7], which results in uncertain treatment status for
suspected TB patients during this long process of diagnosis.
TB bacteria can also be difficult to cultivate, leading to low
sensitivity of smear microscopy [8, 9]. Other methods, such
as polymerase chain reaction (PCR) and the immunological
ones, require less time but may generate false-positive results
due to cross-contamination [10]. .erefore, it is important
for clinicians, before making a definitive diagnosis, to take

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2019, Article ID 9872425, 10 pages
https://doi.org/10.1155/2019/9872425

mailto:sumin0506@126.com
mailto:chenjinsh@126.com
http://orcid.org/0000-0001-7770-3714
http://orcid.org/0000-0001-8651-8908
http://orcid.org/0000-0003-1766-3137
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9872425


into consideration all the information, including X-ray
imaging, clinical symptoms, therapeutic effects, and clinical
history. .e consistency of information helps us to improve
the reliability of diagnosis..us, research on a TB diagnostic
approach able to combine rapidity and accuracy is still
ongoing [11–13].

In the present study, in order to overcome these two
technical difficulties in TB detection, a method based on a
molecular typing technique and mathematical modeling was
proposed. Molecular typing methods based on variable
number tandem repeat (VNTR) analysis have been used to
identify MTB in epidemiologic studies [14–17]. VNTR se-
quences have emerged as valuable markers for the geno-
typing of several bacterial species, especially of genetically
homogeneous pathogens, such as Bacillus anthracis, Yersinia
pestis, and M. tuberculosis complex members. Initial VNTR
typing systems for MTB complex strains made use of very
limited sets of loci, which turned out to be not discrimi-
natory enough. Subsequently, more extensive sets of VNTR
loci have been described, including a system based on 12
loci, which has been shown to be applicable for reliable
genotyping and molecular epidemiology studies of M. tu-
berculosis. .ese loci contain VNTR of genetic elements
named mycobacterial interspersed repetitive units (MIRUs),
which are located mainly in intergenic regions dispersed
throughout the M. tuberculosis genome. All above loci are
collectively designated as MIRU-VNTR loci [18]. Due to
their ease of operation, high sensitivity, and specificity, they
have the potential to be used as an MTB detection method.
In the present study, the detection of MTB was focused on
the MTB genotypes based on MIRU-VNTRs in regions
dispersed throughout the MTB genome [19]. However, false
positives from cross-contamination, pollution of the nucleic
acid amplification test (NAAT) reagent, and their exacer-
bation by nucleic acid amplification remain inevitable and
unidentifiable. Despite the fact that the rate of contamina-
tion may be low, any contamination that does occur is
amplified and can lead to serious clinical consequences.
.erefore, a stringently designed quality control (QC)
scheme is essential to guarantee high testing accuracy before
a testing method can be brought into clinical use [20, 21]. In
current practice, before testing the patient samples, clinical
technicians must calibrate their equipment using standard
samples. However, this still cannot eliminate confounding
factors, such as cross-contamination, since traditional QC
strategies only evaluate the reliability of reagents and
equipment [22–24]. .is is the reason why molecular am-
plification techniques lack a method for ensuring the re-
liability of samples during the testing process, resulting in

diagnostic uncertainty and, in the worst case, in mis-
diagnosis. Mathematical methods have been used in
medicine for many decades. In this study, a mathematical
QC model for molecular amplification technique based on
binomial distribution was developed, which addresses
potential contamination issues caused by the technique. In
order to evaluate the proposed model, real TB samples
were used.

2. Materials and Methods

2.1. Samples. 516 clinical sputum specimens were collected
from the Shanghai Pulmonary Hospital of Tongji University
between February and October 2014. Among them, 9 were
excluded due to uncertain diagnoses, and 13 were removed
since they were obtained from cured patients whose TB
results were affected by drugs. Form the remaining 494
samples, 167 were confirmed as TB and 327 were found to be
non-TB, including 4 samples of nontuberculous mycobac-
teria (NTM)..e diagnosis of the TB cases was also based on
X-ray imaging, clinical symptoms, therapeutic effects, and
clinical history. Finally, 148 samples with complete data
sheets and confirmed diagnosis were included in the study.
.e prior distribution of different subtypes of TB bacteria
was calculated based on their VNTR results.

2.2. MIRU-VNTR Method. In the proposed method, the
aforementioned MIRU-VNTR loci were used as the char-
acteristics of different TB subtypes [25], and more specifi-
cally, MTUB21, MTUB04, QUB-18, QUB-26, QUB-11b,
MIRU31, MIRU10, and MIRU26 were used due to the fact
that they can be amplified at the same temperature. .e
repeat counts for each locus were set as the identifiers of the
corresponding sample in the form of a numerical array. For
example 1, 2, 3, 4, 5, 6, 7, and 8 represented a TB sample
whose repeat counts for MTUB21, MTUB04, QUB-18,
QUB-26, QUB-11b, MIRU31, MIRU10, and MIRU26
were 1, 2, 3, 4, 5, 6, 7, and 8, respectively. In theory, the
occurrence rate of any given array is 1/108, assuming even
distribution of each locus with a maximum repeat count of
10. .e frequency of repeat counts for each locus can be
measured from the sample data. .en, as it can be seen in
Table 1, the prior probability of each array can be calculated
from the total number of permutations, following formula
(1). In the QC step, the following scheme was used: if the
expected occurrence rate is greater than the cutoff value, the
testing results can be used to support the clinical practice:

P(2, 3, 4, 4, 5, 8, 6, 4) � e
LnO1,2+LnO2,3+LnO3,4+LnO4,4+LnO5,5+LnO1,2+LnO6,8+LnO7,6+LnO8,4 , (1)

where Oi,j is the occurrence count of one locus, i is the
column number of Table 1, representing the type of loci, and
j is the number of repeat counts.

2.3. Quality Control Model. MIRU-VNTR helps in
extracting features of TB, and the chosen loci can be ana-
lyzed with PCR (a biological technique able to amplify the
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signal of such features) in the same temperature, in order to
obtain a clear signal. .erefore, features of TB can be
extracted with less time and cost. However, the contami-
nation can also be amplified during the PCR process. In
order to address this problem, it is important to know
whether the contamination is reasonable. Based on the
prior distribution of each locus, the occurrence rate of
different TB subtypes was calculated. .e occurrence rate
of one TB subtype in a batch of samples conforms to the law
of binomial distribution. Subsequently, using the binomial
distribution theory, one could evaluate whether the con-
tamination is reasonable.

Each sample had a specific numerical array and its
corresponding prior distribution. As the occurrence prob-
ability of any given array is very low, the probability of an
array appearing more than once in a single batch is far lower.
Knowing the sample number in the testing batch and the
prior distribution of each array, the expected occurrence rate
(EOR) of an array can be calculated based on the binomial
distribution function using the following formula in the
event of two repeated loci:

ES � 1− c
1
np

1
(1−p)

n−1 −(1−p)
n
, (2)

and the following (general) formula in the event of three or
more:

ES � 1− 􏽘

m

c�2
c

c−1
n p

c−1
(1−p)

n−c+1 −(1−p)
n
, (3)

where C is the permutation operation, p is the prior
probability of the relevant array, n is the number of samples
in the batch, and m is the number of copies. .e value of ES
is the expected occurrence rate for multiple copies of that
array. In general, the cutoff value was set as 0.05. .e arrays
with an ES greater than 0.05 are thought to be so rare that if
two or more copies of these appear in a batch, the result
should be considered dubious. For arrays with an ES be-
tween 0.05 and 0.1, a result of multiple copies in a single
batch should be cross-referenced against the patient’s
clinical information. For an array with an ES greater than
0.1, multiple copies are considered as a reasonable result.
When the model was a multiple testing problem, the cor-
rected cutoff value (cv), calculated by 1 − (1 − cv)n � 0.05,
was used to evaluate the results. Samples qualified as valid
and reliable were stored in a database, whose data were used

to derive prior distributions. As the sample size increased,
the prior distribution approached that of the actual pop-
ulation, further improving the practicality and accuracy of
diagnosis. Consequently, besides its utility in specimen
testing, the proposed scheme is also able to improve research
on the epidemiology of TB.

2.4. Ethical Considerations. Community surveys were con-
ducted and approved by the ethical committees of the
Shanghai Pulmonary Hospital of Tongji University. No
human tissue was used in this study. Two of the coauthors
of the paper provided clinical documents and clinical
sputum specimens. .e collected data included conformed
diagnosis results and MIRU-VNTR results from the spu-
tum specimens. No private information was used in this
study. .e data were used only for research purposes. .e
content of the study was written in the informed consent
form, which was signed by all patients. All acquired records
and specimens used in the study were anonymized and
could not be linked to any of the patients. .e ethical
committees of the Shanghai Pulmonary Hospital of Tongji
University approved all the experimental protocols. .e
methods carried out in this study were in accordance with
the approved guidelines.

3. Results and Discussion

3.1. Prior Distribution of Two Test Results. A total of 148
samples confirmed as TB was collected over a two-month
period, of which 92 were collected in the first month and 76
in the second. Table 2 shows the prior distribution of each
MIRU-VNTR locus. .e distribution was not even, similar
to previously reported results [26]. .e occurrence rate of 3
repeated MIRU10 (3-MIRU10) loci was in both batches, the
highest at 76.1%. .e full high-occurrence list based on all
data (148 samples) (>0.1), included 4-, 5-MTUB21; 3-, 4-, 5-
MTUB04; 8-, 9-, 10-QUB-18; 7-, 8-, 9-QUB-26; 4-, 5-, 6-, 7-
QUB-11b; 5-MIRU31; 2-, 3-MIRU10; and 8-, 9-MIRU26
loci. Most arrays demonstrated little difference (calculated as
the result of the sample collected in the first month minus
the result of the sample collected in the second) between the
two collections (<0.05), with the exception of 3-MTUB04, 4-
MTUB04, 4-QUB-26, and 8-QUB-11b.

Table 1: Calculation of the prior probability of each array.

Repeat counts
Loci

MTUB21 MTUB04 QUB-18 QUB-26 QUB-11b MIRU31 MIRU10 MIRU26
1
2 O1,2
3 O2,3
4 O3,4 O4,4 O8,4
5 O5,5
6 O7,6
7
8 O6,8
9
10
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3.2. Classification of TB Based on MIRU-VNTR. .e oc-
currence rate of each strain of tubercle bacillus was calcu-
lated using the equation Ln(Parray) � 􏽐

8
i�1Ln(Oij) based on

the results of Table 2. .e theoretical number of possible
arrays was 138–1, with “−1” accounting for the (0, 0, 0, 0, 0, 0,
0, 0) array, which corresponded to (0-MTUB21, 0-MTUB04,
0-QUB-18, 0-QUB-26, 0-QUB-11b, 0-MIRU31, 0-MIRU10,
0-MIRU26), and it indicated that no tuberculosis was de-
tected..e allowable permutations fromTable 1 resulted to 9
∗ 5 ∗ 13 ∗ 10 ∗ 8 ∗ 9 ∗ 6 ∗ 10 − 1 � 25,272,000 − 1 arrays in
total. Among all arrays, the highest occurrence 0.005 was
found for the array corresponding to the subtypes 5-
MTUB21, 4-MTUB04, 8-QUB-18, 8-QUB-26, 6-QUB-11b,
5-MIRU31, 3-MIRU10, and 8-MIRU26.

MIRU-VNTR assays were classified as high frequency if
the repeat distribution of any of its loci exceeded 0.1. .is

category comprised 864 TB subtypes, with occurrences
ranging from 0.005 to 5.07e−7. After sorting the arrays in
the descending order, it was found that the difference in
occurrence between two contiguous arrays decreased as the
occurrence decreased (Figure 1(a)), which means that high-
occurrence arrays were rare and the occurrence of most
arrays was very low. .e K-means method was used to
divide the 864 high-frequency arrays into 4 groups. Group
1 included only the array with the highest occurrence of
0.005. Group 2 contained 11 arrays with occurrence rates
ranging from 0.001 to 0.0023. .e vast majority of arrays
fell into groups 3 and 4, ranging from 0.00029 to 0.001 and
from 5.07e−7 to 0.00029, respectively.

.e EOR of an array increased with the number of
positive samples in the batch (Figure 1(c)). Each array has a
possibility of occurring (e.g., 0.00029). Despite that the

Table 2: Prior distribution of two test results.

Repeated number MTUB21 MTUB04 QUB-18 QUB-26 QUB-11b MIRU31 MIRU10 MIRU26

0
1st month 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
2nd month 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00
Difference 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00

1
1st month 0.04 0.01 0.00 0.00 0.01 0.00 0.00 0.01
2nd month 0.07 0.01 0.01 0.02 0.02 0.01 0.01 0.01
Difference −0.02∗ 0.00 −0.01 −0.02 −0.01 −0.01 −0.01 0.00

2
1st month 0.03 0.09 0.03 0.03 0.02 0.01 0.16 0.01
2nd month 0.04 0.08 0.03 0.03 0.01 0.03 0.15 0.02
Difference −0.01 0.01 0.01 0.01 0.01 −0.02 0.01 −0.01

3
1st month 0.07 0.09 0.04 0.02 0.07 0.10 0.76 0.04
2nd month 0.08 0.18 0.04 0.03 0.09 0.08 0.74 0.03
Difference −0.02 −0.09 0.00 −0.01 −0.02 0.02 0.02 0.01

4
1st month 0.18 0.70 0.03 0.13 0.10 0.05 0.05 0.08
2nd month 0.20 0.63 0.02 0.08 0.11 0.08 0.07 0.06
Difference −0.01 0.07 0.01 0.05 −0.02 −0.03 −0.01 0.02

5
1st month 0.52 0.12 0.07 0.04 0.21 0.67 0.01 0.09
2nd month 0.49 0.11 0.07 0.04 0.21 0.68 0.02 0.07
Difference 0.03 0.01 −0.01 0.00 0.00 0.00 −0.01 0.02

6
1st month 0.07 0.00 0.03 0.09 0.49 0.08 0.01 0.04
2nd month 0.05 0.00 0.02 0.08 0.41 0.07 0.01 0.07
Difference 0.01 0.00 0.01 0.01 0.08 0.01 0.00 −0.02

7
1st month 0.01 0.00 0.05 0.13 0.10 0.01 0.00 0.08
2nd month 0.01 0.00 0.06 0.16 0.14 0.01 0.00 0.08
Difference 0.00 0.00 −0.01 −0.02 −0.04 0.00 0.00 0.00

8
1st month 0.04 0.00 0.34 0.41 0.01 0.01 0.00 0.50
2nd month 0.03 0.00 0.36 0.43 0.01 0.01 0.00 0.50
Difference 0.01 0.00 −0.03 −0.02 0.00 0.00 0.00 0.00

9
1st month 0.03 0.00 0.18 0.12 0.00 0.00 0.00 0.14
2nd month 0.03 0.00 0.17 0.11 0.00 0.00 0.00 0.14
Difference 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00

10
1st month 0.00 0.00 0.14 0.02 0.00 0.07 0.00 0.01
2nd month 0.00 0.00 0.14 0.03 0.00 0.04 0.00 0.02
Difference 0.00 0.00 0.01 −0.01 0.00 0.02 0.00 −0.01

11
1st month 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
2nd month 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
Difference 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

12
1st month 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
2nd month 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Difference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∗.e minus sign means the result of the sample collected in first month minus the result of the sample collected in the second.
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occurrence rate of a given array may be very low, the
possibility of it occurring twice or more times increased as
the number of positive samples increased. If the rate of an
array that occurred twice or more times increased above the
cutoff value of 0.05, the event was no longer considered as
low rate. At this point, repeated occurrences of the array in
a single batch were considered statistically reasonable.
According to the results presented in Figure 1(b), a TB
subtype with an occurrence rate of 0.0007 could reasonably
appear twice in a batch containing at least 480 positive
samples, whereas subtypes with larger initial occurrence
rates could reasonably be repeated in smaller batches.
Nevertheless, repetition in a single batch was highly im-
probable for most TB subtypes. Considering the possibility
of contamination, it was necessary to set a time window
within which all samples were considered as a single batch.
It was calculated that, out of a total of (25,272,000 − 1) TB
subtypes, there were no more than 200 types of TB with a
reasonable possibility of appearing twice.

.e results of the parts are shown in Figure 1(a). In
Figure 1(a), the 864 TB subtypes with the high-occurrence
rate were classified into four groups, based on the distance
between two adjacent numbers, which indicated that the
occurrence rate of most TB subtypes was very low. In
Figure 1(c), three TB subtypes were chosen, with initial
occurrences (IOs) 0.005, 0.0023, and 0.00029..is suggested

that the p value (occurrence rate) increased as the sample
number increased. In Figure 1(b), the relationship between
ES and IO is demonstrated. If a batch contained more
samples, higher occurrence of a TB subtype was reasonable,
even if the IO of the subtype was low.

3.3. Simulation of the Process. In this subsection, a Monte
Carlo algorithm was used to simulate the application of the
proposed method in a clinical laboratory. .e steps of this
procedure are illustrated in Figure 2. In the first step, the
random samples corresponding to one strain of tuberculosis
were artificially generated. In this clinical test scheme,
contamination was mainly simulated as cross-
contamination due to airborne MTB, careless operation
by staff, or contamination of equipment or reagents. As our
proposed method entails the use of PCR amplification, any
amount of cross-contamination could seriously affect the
results. Instances of contamination were assumed to be
random, low-frequency events, and that the contamination
effects endure for some period of time. .erefore, the
samples tested over a span of 1week were considered part of
the same batch and were used to calculate the expected
occurrence rate of a strain of tuberculosis. When a repeated
result occurred, we evaluated whether the repetition was
reasonable based on if its expected occurrence rate was lower
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than the corrected cutoff value of 0.05, and the result was
assumed to be contaminated and was ruled ineligible for use
in clinical diagnosis. If the tested result succeeded the val-
idity evaluation, it was also considered valid for clinical use,
and the array was added to the QC database, where the prior
distribution was recalculated, further refining the accuracy
of diagnosis.

.e simulation time was set as 50weeks, with an average
of 1000 positive samples per simulation. .e simulation re-
sults are demonstrated in Figure 3. From Figure 3(a), we know
the maximum difference (max|dE

i − dT
i |) between the distri-

bution of all collected data and the distribution of data
collected each week is disturbed, where dE

i is the distribution
of each locus based on sample data in one week and dT

i is the
distribution of each locus based on all collected sample data.
.e value of the sum of the absolute difference (sum|dT

i − dE
i |)

decreased as the accumulation of counts increased
(Figure 3(b)), indicating that more data were collected and
more accurate and thorough knowledge of the actual TB
distribution was gained. For the first week, in order to
construct the model, the available data of 1000 samples
without cross-contamination were used. Since the model was
a multiple testing problem, the corrected cutoff value (cv) was
used to evaluate the results. In the model without the con-
tamination function, 35 repeated samples were found. Among
those, 29 had expected occurrence rate values larger than the
cv and were considered as reasonable results that could be
used in patient diagnosis, while 6 had expected occurrence
rates below the cv, and thus, they were considered as in-
valid and were discarded. Figure 3(c) shows the rate of
nonreasonable repetition across all 50weeks, with the total
repeated sample number per week noted at the corresponding
positions. .e repeated sample numbers ranged from 22
to 45.

Data tested with the contamination function produced
an average of 28.82 known contaminated samples each
week, ranging from 17 to 38. In Figure 3(d), the rate of
detection of contaminated samples (contaminated samples
detected by the model/total number of contaminated sam-
ples) is shown, which ranged from 0.88 to 1.0. Further
analysis showed that incorrect judgments made by the
model were predisposed to contamination by high-
occurrence samples, as well as false positives, when there
was indeed a repetition of samples with low-occurrence
rates. Based on the known contaminated condition of each
sample, the proposed method demonstrated a sensitivity of
88.6% and a specificity of 98.14% in determining whether a
sample is contaminated or not. .e sensitivity was the rate
of finding the contaminated samples that were preset, and
the specificity was the rate of distinguishing the non-
contaminated samples.

In Figure 3(a), the maximum difference between the
distribution of each locus based on sample data of one week
and the distribution of each locus based on all collected
sample data was disturbed, indicating that the distribution
of each locus calculated based on a date in a time window
was not stable. As the accumulation of sample counts
increased, the sum of the absolute differences decreased
(Figure 3(b)), suggesting that the more the collected data,
the more accurate and thorough the gained knowledge
regarding the actual TB distribution. In Figure 3(c), the rate
of unreasonable repetition is demonstrated, while in
Figure 3(d), the accuracy of detection of contaminated
samples is displayed, and it can be seen that the proposed
model was able to detect the unreasonable repetition with a
high accuracy.

When the proposed method was used on 148 TB cases,
three repetitions were found. Due to their low-occurrence
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Figure 2: Simulating process using Monte Carlo.
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Figure 3: Continued.
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rate, the method assumed that the samples were con-
taminated, making a wrong diagnosis. .e negative sam-
ples without contamination were expected to have no
MIRU-VNTR features of TB. .ere was a very low
probability that a sample may have a TB type with none of
the MIRU-VNTR loci included in the study, which would
bring a misdiagnosis. In our dataset, no patient provided
TB specimens without at least one of the MIRU-VNTR loci
included in the study based on the 327 confirmed TB-
negative cases.

Despite the fact that there were some MIRU-VNTR loci
whose distributions differed between the two tested results,
most of these differences were negligibly small. In the
simulation, the difference between the distribution of all
collected data and that of the data collected during each
week gradually decreased as the total accumulation of
collected data in our database increased. .e results sug-
gested that most TB bacteria do not mutate frequently.
Additionally, it was found that the TB subtypes (5-
MTUB21, 4-MTUB04, 8-QUB-18, 8-QUB-26, 6-QUB-11b,
5-MIRU31, 3-MIRU10, and 8-MIRU26) were by far the
most dominant subtype in the Shanghai area, with an
appearance rate about 17 times that of the next most
common subtype. Even though the exact reason why these
loci remain stable has not been yet discussed, there is
clinical significance in studying the effects (e.g., drug re-
sistance) conferred by different types of tuberculosis. With
the increasing accumulation of clinical information from
patients, our database may contribute in making key in-
roads in this area of TB research.

Even small amounts of contamination, such as those
obtained through aerosol, can be significantly amplified by
PCR..erefore, a longer time window of seven days was set
for the tests. Based on the results, it was concluded that

most arrays have an extremely low possibility of appearing
twice within a time window. A laboratory that can confirm
the elimination of some forms of contamination can set an
even shorter time window. In this study, it was found that
the high-frequency loci have an inordinately large influence
on the testing results. If such results were involved in cross-
contamination, the contamination may have been mistaken
for a normal result. It was considered reasonable for the
samples with an occurrence rate >0.0003 to have two or
more copies in a single time window containing 1000
positive samples. .ese samples were classified into
group(s) one (1), two (11), or three (61). .e presence of
more than two copies of some loci was also reasonable in
this system. .e most dominant subtype in the present
study (5, 4, 8, 8, 6, 5, 3, 8) occurred 233 times and was
almost consistent with its occurrence rate of 0.0005.
Overall, the suggested testing method can account for a
large majority of contamination incidents. However, if
high-frequency loci occur twice or more in reasonable
tested results, additional confirmation should be per-
formed, such as thorough review of the patient’s medical
records.

.eoretically, the possibility that two strains of TB in
the same clinical laboratory will have the same genetic
features, namely, the same MIRU-VNTR loci repeats, is
extremely low. If this happens, it is very plausible that one
strain has contaminated the other. Based on this hy-
pothesis, a rapid and accurate clinical scheme for TB
testing was developed. In the clinical laboratory, eight
samples were measured for eight to ten genetic sites at once
and the repeat numbers of each genetic site were recorded
as the special identifier of that subtype of TB. According to
the results, the highest occurrence rate for any sub-
type appearing multiple times was 0.005 and was that of
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5-MTUB21, 4-MTUB04, 8-QUB-18, 8-QUB-26, 6-QUB-
11b, 5-MIRU31, 3-MIRU10, and 8-MIRU26. Despite the
fact that this rate was already very low, it still dwarfs those
of other subtypes. If a sample with a low-repetition rate
appears twice or more, there is a high risk of contami-
nation being the cause. Intracontamination is generally
caused by poor procedures followed by the operating
technician. When this happens, the suspect samples are
recollected and retested. Intercontamination can be de-
rived from contact between patients or airborne tuber-
culosis in the laboratory. In order to identify and solve
these problems, the repeated results, the activity range of
the corresponding patients, and the appearance and du-
ration of symptoms should be investigated, all of which are
included in the proposed method. If factors stemming
from intra- and intercontamination can be excluded, but
repeated samples with low-occurrence rates are still de-
tected, it can be speculated that a subtype of TB may be
creating an epidemic.

Compared to traditional TB testing, the proposed MIRU-
VNTR method in this study can process large amounts of
samples in very short time (Figure 4). Apart from the sputum
specimen collected from patients, each step can be automated
in a testing device and seamlessly connected in sequence. To
account for potential cross-contamination of patient samples,
the developed QC model not only can find a TB-positive
patient with high accuracy but also can evaluate the reliability
of the testing results.

4. Conclusions

In the present study, a method that can be widely used in
epidemiological studies was proposed. However, due to the
limited available volume of data, our method was insufficient

to derive bias-free results. Based on the proposed testing
scheme, digital MIRU-VNTR data extracted from collected
sputum specimens can be automatically and constantly
uploaded by clinicians using this scheme, allowing the analysis
of large volumes of data and the acquisition of comprehensive
and objective results. .e data processing power of this
technique may also aid researchers in determining the rela-
tionships between different TB subtypes and their clinical
features, such as drug resistance [27], with the end goal of
providing more accurate and personalized treatments. Apart
from TB applications, this method can be also used in the
detection of other viral diseases with genetic features, such as
HIV andHBV..eproposed schemewas designed for a central
laboratory that can offer testing services formany regions.With
the accumulation of large data volumes from different areas,
more comprehensive and accurate results can be achieved.
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