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Abstract
Background: A study to evaluate the biofilm-development ability in three different media
(Middlebrook 7H9, sterile tap water and PBS-5% glucose) was performed with 19 collection strains
from 15 different species on non-pigmented rapidly growing mycobacteria (NPRGM). A microtiter
plate assay was developed to evaluate the percentage of covered surface of the microtiter plate
wells in different days from day 1 to day 69.

Results: All strains were able to develop biofilm in all the tested media. Middlebrook 7H9 showed
the fastest growth, followed by sterile tap water and PBS-5% glucose. A sigmoid growth curve was
detected in all the strains both in Middlebrook 7H9 and in sterile tap water. A difference could be
detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other
strains.

Conclusion: Biofilm development seems to be a property of all the species of NPRGM and it
depends on the nutrients present in the medium. The microtiter plate assay described here is a
useful tool to evaluate differences in biofilm development among the different species of rapidly
growing mycobacteria.

Background
Non-pigmented rapidly growing mycobacteria (NPRGM)
are among the most commonly isolated species of nontu-
berculous mycobacteria in clinical laboratories. Although
most of the members of this group have been described as
the cause of human infections, Mycobacterium abscessus,
Mycobacterium fortuitum and Mycobacterium chelonae are
the most frequently isolated species in these syndromes
[1,2]. Among the broad spectrum of these infections,
nosocomial diseases are the most important because they

may have devastating outcomes [1,3]. Many of these
infections are related to implantable medical devices.

NPRGM are also environmental organisms that can be
found in many habitats [4,5]. Several studies have shown
that these organisms can be recovered from different
water sources, including biofilms present in plumbing
systems. Biofilms are considered important in device-
related infections due in part to their increased resistance
to antimicrobials [6,7]. However, despite their impor-
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tance as human pathogens, there are only a few in vitro
studies about NPRGM. In this study we report the results
of a series of experiments aimed to evaluate the ability of
different strains of NPRGM (including all the clinically
relevant species) to develop biofilm under different nutri-
ent conditions, and the relationship of biofilm develop-
ment with the presence of sliding motility among these
strains.

Methods
Strains
The following strains were used in the experiments: Myco-
bacterium fortuitum ATCC 6841T and ATCC 13756, Myco-
bacterium chelonae ATCC 19235 and ATCC 35752T,
Mycobacterium abscessus DSM 44196T, Mycobacterium per-
egrinum ATCC 14467T, Mycobacterium mucogenicum DSM
44124, Mycobacterium septicum ATCC 700731T, Mycobacte-
rium immunogenum ATCC 700505T, Mycobacterium mager-
itense ATCC 700351T, Mycobacterium porcinum ATCC
33776T, Mycobacterium senegalense NCTC 10956T, Myco-
bacterium elephantis DSM 44368T, Mycobacterium smegma-
tis ATCC 607, ATCC 19420T and ATCC 14468,
Mycobacterium goodii ATCC 700504T, Mycobacterium alvei
ATCC 51304T, and Mycobacterium brumae ATCC 51384T.
All strains were maintained frozen at -20°C until the
experiments were performed.

Sliding motility test
One colony of each mycobacteria was put in the centre of
a plate of motility medium, consisting in Middlebrook
7H9 with 0.3% agar without supplements. The inoculated
media were incubated at 37°C in a 5% CO2 atmosphere
during 2 weeks [8]. The diameter of the bacterial growth
was measured at days 4, 8, 12 and 16 using a digital cali-
per.

Biofilm development test
After thawing, mycobacteria were checked for purity, inoc-
ulated on Middlebrook 7H9 broth and incubated at 30°C
during 5 days. These broth cultures were centrifuged at
3000 × g, washed with sterile phosphate buffered saline
(PBS) and resuspended and calibrated to a 0.5 McFarland
Standard with PBS. Ninety-six well sterile flat-bottom tis-
sue-culture treated polystyrene microtiter plates (Costar,
USA) were inoculated with 100 μl of the suspension.
Plates were incubated at 37°C during 30 minutes. The
inoculum was then removed with a sterile Pasteur pipette.
The wells were washed with sterile PBS and 100 μl of the
following media were added for all the strains: Middle-
brook 7H9, PBS-5% glucose, PBS- 5% glucose-0.5% glyc-
erol and filter sterilized tap water. Plates were placed on
an orbital shaker (80 rpm) and incubated at ambient
room temperature for 69 days. The media were replaced
on days 1, 4, 7, 11, 14, 18, 21, 25, 28, 32, 35, 39, 41, 44,
47, 51, 54, 58, 61, 65 and 69. On days 1, 4, 7, 11, 21, 28,

35, 41, 47, 54, 61 and 69, one well was washed with sterile
distilled water and stained with basic fuchsine during 30
minutes, washed and decoloured for 10 seconds with
absolute ethanol. The stained well was then photo-
graphed (3–4 images/well) at low magnification (10×)
using a Leitz DM IL inverted microscope (Leica, Germany)
with an attached Nikon Coolpix 8400 digital camera
(Nikon, Japan). Each strain was tested at least two times
in different experiments.

To check the viability of mycobacteria, randomly selected
wells were analyzed by inoculating the culture medium
onto tryptic soy agar-5% blood agar plates, which were
incubated at room temperature during 3 days. All the
experiment was repeated when a contamination was
detected.

Data analysis
Digital photographs obtained from the stained wells were
analysed with the Image J software (National Institute of
Health, Bethesda, MD, USA) to evaluate the surface cov-
ered by the biofilm. The proportion of surface covered by
biofilm at each time point was used to construct a growth
curve of the biofilm. The experiment was stopped when
growth covered 100% of the surface.

Confocal laser scanning microscopy (CLSM)
To evaluate the biofilm development, we randomly
selected 4 strains (M. fortuitum ATCC 6841T, M. septicum
ATCC 700731T, M. smegmatis ATCC 19420 and M. immu-
nogenum ATCC 700505T) to be analysed by using confo-
cal laser scanning microscopy (CLSM) using the following
protocol:

One ml of a 0.5 McFarland turbidity inoculum was inoc-
ulated onto 6 × 4 well-plates (Nunc, USA) with a polysty-
rene plastic disc (Nunc, USA) at the bottom of each well.
Plates were then incubated at room temperature using the
same protocol that microtiter plates with Middlebrook
7H9 as culture medium. On days 7, 14 and 21, the
medium was removed, and the plastic discs were stained
with the Live/dead© BacLight© viability stain (Invitrogen,
Eugene, OR, USA) according to instructions provided by
the manufacturer. Stained discs were then analysed with a
Leica DM IRB confocal laser scanning microscope (Leica,
Germany). Possible contaminations were also checked
using the above described protocol.

Statistical analysis
Growth curves were obtained with the percentages of cov-
ered surface for each medium and each strain, obtained
from the analysis of all the photographs. A linear mixed-
effects model was used to make comparisons between the
different observed growth curves. If yij denotes the j-th
observation of the i strain then we assumes that:
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yij = β1tij + b1tij + εij (1)

where tij is j-th observation time of the i-th strain. The
parameter β1 corresponds with the mean slope meanwhile
the random variable b1 (with normal distribution) corre-
sponds with the random slope. It is assumed that b1 has a
normal distribution with null mean and standard devia-
tion σb1. The error term in the model, εij is assumed inde-
pendent and normally distributed (with variance σ2) for
different times and different species. Additional details of
the model used can be found in [9]. The statistical analysis
was performed by using the NLME software package [10]
and, particularly, for linear mixed-effect models, it has
been used the package [11].

Results
Sliding motility
All strains with the exception of M. goodii, M. chelonae
ATCC 19235, M. porcinum and M. septicum showed sliding
motility on Middlebrook 7H9-0.3% agar plates at the 7th

day (Figure 1). There were differences in the speed of slid-
ing motility between strains, M. chelonae ATCC 35752T
was found to be the slowest and M. abscessus the fastest
(Figure 2D).

Biofilm development
The reproducibility of the test was confirmed using the M.
smegmatis strains and testing them three times each. All
three strains produced biofilm that covered almost identi-
cal percentages of the surface and had identical growth
patterns. No difference in biofilm growth was found
between this first reproducibility experiment and the fol-
lowing experiment where M. smegmatis strains were tested
together with all NPRGM tested. Data reported here for M.
smegmatis are those obtained in the experiment where all
species were tested. All strains tested developed biofilm
with all media.

The strains showed a sigmoid growth curve during the
development of the biofilm (Figure 2A) with Middle-
brook 7H9. M. abscessus was the fastest species, although
no significant differences between them could be
detected. The strains grew in Middlebrook 7H9 showing
initially a characteristic lace-like pattern, where bacteria
were detected forming delicate nets of organisms (figure
3A). This pattern disappears when bacterial growth covers
considerable parts of the surface (Figure 3B). All the
strains covered 100% of the surface the 28th day of incu-
bation.

When sterile tap water was used as culture media, all the
strains showed also a sigmoid growth curve (Figure 2B),
however growth was slower and 100% of the surface was
not covered until the day 63. Wells containing PBS-5%
glucose had the worst results for biofilm development
because none of the tested strains grew enough to cover all
the surface even by day 69 (Figure 2C).

Table 1 displays the models fitted. The first column (Mid-
dlebrook 7H9, PBS-5% Glucose and Motility) indicates
the data set meanwhile the model fitted is given in Equa-
tion 1. Basically, a random line passing through the origin
plus a random error. The random slope has a normal dis-
tribution with mean βtime and standard deviation σtime.

The estimators for the different data sets appear in table 1
in the column headed βtime and σtime. Note that the stand-
ard deviation of this random slope for Middlebrook 7H9
is almost null and, in fact, we have a fixed slope estimates
as 4.31, i.e. for each additional day we observe a mean
increment of 4.31% of covered surface for Middlebrook
7H9.

Analogous interpretations can be given for the estimates
of column βtime corresponding to PBS-5% Glucose and

Sliding motility of some strainsFigure 1
Sliding motility of some strains. 1A: M. abscessus (DSM 44196T). 1B: M. septicum (ATCC 700731T). 1C: Diameter of the 
colony in the motility experiments. M. chelonae 1: ATCC 19235;M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 6841T; M. 
fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 14468.
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Motility (third and fourth rows). However, the mean
increment is estimate as 0.88 for PBS-5% Glucose and the
corresponding standard deviation is estimated as 0.08.
For the motility the estimate is 2.25 but we have a large
standard deviation estimated, 1.30. Additionally, the esti-
mates of the standard deviation of the random error are
shown in column headed σresidual. Note the large standard
deviation estimated for Middlebrook 7H9 and Motility.

It can be observed that the row corresponding to tap water
has an additional column headed ψtype. From the observa-
tion of the original data and by fitting a different linear
model it was suggested that the behaviour of M. abscessus
in this medium could be different from the other ones. We
have introduced in the model an additional explanatory
variable. The model now considered is:

yij = βtimetij + ψtypetype + b1tij + εij (2)

where type = 1 corresponds with M. abscessus and zero oth-
erwise and ψtype is a constant. This model considers that
the random slope can have a different mean for M. absces-
sus and a common but different mean for the other spe-
cies. The mean of M. abscessus would be βtime+ ψtype and for
the other species would be βtime respectively. This random
slope will have a common standard deviation σtime. We
have compared, for the tap water the two models, given in
equations 1 and 2. The p-value observed is lesser than
0.0001, i.e. the mean of the random slope for M. abscessus
is significatively different from the other species in tap
water. In particular, the mean increment per unit time
would be 1.78+9.25 = 11.02 for M. abscessus and 1.77 for
the other ones. Note that the standard deviation is almost
null for the tap water data, i.e. we can consider a constant
slope estimated with the values just commented. Finally a
large standard deviation of the random error is estimated,
7.79.

Growth on non-pigmented rapidly growing mycobacteria strains on the different media: Figure 2
Growth on non-pigmented rapidly growing mycobacteria strains on the different media: 2A: Middlebrook 7H9. 
2B: Sterile tap water. 2C: PBS-Glucose 5%. M. chelonae 1: ATCC 19235; M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 
6841T; M. fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 
14468.
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All the strains analysed by CLSM developed biofilm. The
photographed structures showed identical growth pat-
terns than those observed with fuchsine stain (Figure 4).
Live/dead© stain allow us to evaluate the presence of live
and dead bacteria in the biofilm, with higher percentages
of live bacteria in early states of biofilm development
(75–80% of live bacteria the day 7) than in the mature
biofilm (approximately 50% of live bacteria the day 20).
At day 24, biofilm had a thickness of around 20 μm in all
tested species.

Discussion
The relationship between biofilms and mycobacteria has
been known for many decades, both in environmental
and in medical settings. Detection of mycobacteria in bio-
film samples from different water systems have been
reported [1,4,5,12-15]. However, in these reports identifi-
cation of the species was not achieved in all cases. Rapidly
growing species, such as M. fortuitum and M. chelonae,
have been described as part of these polymicrobial bio-
films, where slowly growing mycobacteria have also been
isolated. Recent taxonomic changes among this group of
organisms, however, make the former identifications less
valuable, because many of the recently characterized spe-

cies were identified as M. chelonae or M. fortuitum accord-
ing to old identification schemes [1].

The clinical significance of the isolates of NPRGM is
unclear, with a high percentage of NPRGM being identi-
fied as "contaminants" or "colonizers", especially related
with the origin of the sample [16]. Infections due to
NPRGM include a broad range of diseases, the majority of
them being caused by 3 of these species (M. fortuitum, M.
chelonae and M. abscessus), with all other species rarely
causing human infection [1,17-19], despite their relatively
common isolation from clinical samples [1,3,16,20,21].
These pathogenic infections are commonly biofilm-
related ones, and include a large variety of surgical com-
plications which ranged from relatively mild infections,
such as surgical wound infections [1,22], to extremely
severe ones, such as prosthetic valve endocarditis [23,24].
In our hospital, biofilm-related infections represent half
of the infections caused by NPRGM since 1980 to 2003
[3] and this percentage increased in a more recent multi-
center study performed in our area [23]. Few reports eval-
uate in vitro biofilm development in NPRGM [8,25-36],
although data concerning the detection of such mycobac-
teria in clinical samples has been published many years
ago [37-40]. Recently, our laboratory described the ability
of several strains of NPRGM to attach to polypropylene
sutures, a first step in the development of biofilm [41].
Because biofilm development is a common pathogenic
factor for many bacteria, and because the differences in
clinical significance of the different species of NPRGM, we
studied NPRGM of clinical interest to see if there were any
differences in biofilm development. We found that all
species tested can develop a biofilm, so this characteristic

Morphology of biofilm development of M. fortuitum ATCC 6841T the day 4 (3A) and the day 24 (3B) in Middlebrook 7H9Figure 3
Morphology of biofilm development of M. fortuitum ATCC 6841T the day 4 (3A) and the day 24 (3B) in Middle-
brook 7H9.

Table 1: Summary of the fitted models.

σtime σresidual βtime βtype

Middlebrook 7H9 4.63e-05 16.00 4.31
Tap water 8.64 e-06 7.79 1.77 9.25
PBS-5% Glucose 0.08 3.89 0.88
Motility 1.30 5.87 2.24
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is not species-specific. However, we have found a faster
growth of M. abscessus in one of the tested media. Because
this species is probably the most pathogenic one
[1,2,16,42], this difference can represent a property that
makes this species more pathogenic than others, despite
all of tested NPRGM are able to develop a biofilm. M.
abscessus has been described as the cause of many biofilm-
related diseases, and recent reports showed that the ability
to develop biofilm seems to be related with other patho-
genic mechanisms, such as colony phenotype or virulence
in experimental models [29].

In this study biofilm development of representative
NPRGM species was analyzed using several techniques.
One of these techniques has been developed in our labo-
ratory based in previously described systems [33]. It

allows us to follow the dynamics of biofilm development,
including an analysis of the morphology of the growing
biofilm. For all NPRGM, a sigmoid growth curve was seen
in two of the tested media, and a similar curve has been
previously described for M. fortuitum using a different
technique [27].

Another finding deals with the changes in biofilm devel-
opment when using different media. A previous study
[28] showed that low nutrient conditions decrease bio-
film development for M. fortuitum and M. chelonae. In our
study, we detected that such modifications in biofilm
development could be detected among all the tested spe-
cies. Tap water was found to be a better culture media than
PBS-glucose for biofilm development. This difference can
be due to the fact that tap water has many chemical mol-
ecules in minimal quantities that could be of great impor-
tance as nutrients for many organisms, including
mycobacteria [4,43]. Another important issue could be
the temperature. We select temperature for attachment
based on a previous study performed by us [41], and we
then select room temperature as the incubation tempera-
ture because it is the temperature where biofilms caused
by these mycobacteria grows in natural environments.
However, further experiments must be done to assess if
temperature changes can affect the biofilm development.
This factor can also influence the motility, because some
species have also different optimal temperatures for
growth. We selected 37°C for the motility experiment
based on previously published studies [8].

Of interest, we have detected important differences in slid-
ing motility among the studied strains, despite the fact
that all of them can develop biofilm. Because these two
properties have been linked previously [8,29,31,32], and
related with the presence of glycopeptidolipids in myco-
bacterial cell wall [8,31], we speculate that there could be
differences in the lipid content of the cell wall of the dif-
ferent species that can affect the results of the experiment.
In our study, some representative strains did not show
sliding motility, so it seems that this property is not
always related with biofilm development, as has been
recently described for Mycobacterium avium [44].

Conclusion
All the tested species of NPRGM are able to form biofilm
in vitro, so this property is not species-specific in this
group of mycobacteria. The chemical composition of the
media influences the time necessary for the biofilm devel-
opment of all tested species. The protocol described here
allows is easy to perform and allows following the biofilm
development and is useful for further studies in this field.

CLSM of mycobacterial biofilmFigure 4
CLSM of mycobacterial biofilm. 4A: M. fortuitum (day 7, 
100×), 4B: M. septicum (day 20 40×).
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