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Review: Parkinson’s disease: a dual-hit hypothesis

Accumulating evidence suggests that sporadic Parkin-
son’s disease has a long prodromal period during which
several non-motor features develop, in particular, impair-
ment of olfaction, vagal dysfunction and sleep disorder.
Early sites of Lewy pathology are the olfactory bulb and
enteric plexus of the stomach. We propose that a neuro-
tropic pathogen, probably viral, enters the brain via two
routes: (i) nasal, with anterograde progression into the
temporal lobe; and (ii) gastric, secondary to swallowing of
nasal secretions in saliva. These secretions might contain
a neurotropic pathogen that, after penetration of the epi-
thelial lining, could enter axons of the Meissner’s plexus

and, via transsynaptic transmission, reach the pregangli-
onic parasympathetic motor neurones of the vagus nerve.
This would allow retrograde transport into the medulla
and, from here, into the pons and midbrain until the
substantia nigra is reached and typical aspects of disease
commence. Evidence for this theory from the perspective
of olfactory and autonomic dysfunction is reviewed, and
the possible routes of pathogenic invasion are considered.
It is concluded that the most parsimonious explanation for
the initial events of sporadic Parkinson’s disease is patho-
genic access to the brain through the stomach and nose –
hence the term ‘dual-hit’.
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Introduction

Sporadic Parkinson’s disease (PD) is the most frequent
degenerative disorder of the human nervous system after
Alzheimer’s disease. It is not known to occur spontane-
ously in other vertebrates and does not directly affect other
organs apart from the nervous system. Motor dysfunc-
tion (hypokinesia, postural imbalance, cogwheel rigidity,
resting tremor) indicates the presence of disease, but also
can appear in the guise of ‘Parkinsonism’ in other disorders
that are associated with a significant reduction of dopam-
ine in the central nervous system (CNS). Parkinsonism
may develop as a sequel to intoxication, trauma, vascular
disease and infections. There are genetically based familial
forms and degenerative or sporadic forms, the last of which
include the tauopathy progressive supranuclear palsy

(PSP) and synucleinopathies such as multiple system
atrophy (MSA) and Lewy body disease. Lewy body disease
has been further subdivided into pure autonomic failure,
sporadic PD and dementia with Lewy bodies (DLB) [1–5].
This review will refer mainly to the sporadic form of PD.

The pathological process that underlies sporadic PD
is linked to the development of a-synuclein-containing
inclusion bodies in the form of Lewy bodies (LBs) in
perikarya and Lewy neurites (LNs) in neuronal processes
[6–8]. Of the diverse neuronal types within the human
nervous system, only a few develop pathological inclu-
sions, and this selective involvement is reflected in the
regional pattern of the pathology. Vulnerable cells are dis-
tributed throughout the peripheral, enteric and central
portions of the nervous system (ENS/CNS) [9–12]. All of
the susceptible cells are projection neurones that generate
a long and thin axon, which is unmyelinated, or poorly
myelinated [13]. Despite their greater prevalence with
advancing age, PD-associated inclusion bodies do not
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occur consistently in all aged non-symptomatic cases and,
as such, they are pathological rather than protective or
neutral age changes. The presence of these pathogno-
monic inclusions is a prerequisite for the post mortem diag-
nosis of sporadic PD [14,15].

These disease-related inclusions occur in symptomatic
PD patients as well as in individuals who did not manifest
any of the characteristic motor symptoms in life. Thus, the
pathological process has a pre(motor)-symptomatic and a
symptomatic phase [16–18]. The term ‘presymptomatic
phase’ implies that even when only a few LNs/LBs are
detectable in non-symptomatic cases, such ‘incidental’
inclusion bodies represent incipient PD or the harbinger of
the symptomatic disease phase [14,19].

It has been postulated that sporadic PD might be a
primary disorder of olfaction, given that smell loss is an
early event in the course of this disorder [20]. This theory
was derived from sources based on psychology, physiology,
anatomy and pathology. Additional studies not only have
corroborated the initial involvement of anterior olfactory
structures, but also have pointed to an early involvement
of the enteric nerve cell plexuses as well as of the dorsal
motor nucleus of the vagus and the intermediate reticular
zone in the lower brainstem [21–25]. To be plausible, any
theory attempting to explain sporadic PD must incorpo-
rate these extra-nigral sites, which consistently become
affected in the course of the disorder [9]. Furthermore,
any speculation regarding the cause and beginnings of PD
must take into account the involvement of olfactory and
autonomic systems that generally develop prior to the
onset of the classical somatomotor symptoms [26–28].
This article will review the evidence for such involvement
and summarize several hypotheses developed on the basis
of these findings.

Evidence for PD-related olfactory dysfunction

Psychophysical tests

The first case–control study that demonstrated smell
abnormality in PD was conducted by Ansari and Johnson
[29] in 22 clinically diagnosed PD patients. A subsequent
larger study used detection threshold tests to amyl acetate
in 78 subjects and 40 controls [30]. Thresholds were
reduced, but no correlation was found with age, gender or
treatment with levodopa. Unlike the first study, there was
no association with disease duration. The next sizeable
investigations using the University of Pennsylvania Smell

Identification Test (UPSIT) showed that age-matched
olfactory dysfunction did not relate to odour type, was
independent of disease duration, and did not correspond
with motor function, tremor or cognition [31,32]. The
authors also demonstrated that the deficit was of the
same magnitude in both nostrils, and not influenced
by anti-Parkinsonian medication. A comparable survey
was undertaken using UPSIT in 155 cognitively normal,
depression-free PD patients, and 156 age-matched con-
trols [33]. UPSIT scores for PD patients were dramatically
lower than those for controls. There was no correlation
between disease duration and UPSIT score (r = 0.07).
Impairment of smell sense has also been documented in
PD patients using Sniffin Sticks [34,35]. Although the
psychophysical evidence provides overwhelming support
for olfactory involvement in PD, it does not completely
eliminate the possibility of confounding factors from cog-
nitive dysfunction, nor can it be determined whether the
smell defect is initially peripheral or central [36–39].

Neurophysiological tests

A further measure of smell sense is the olfactory event-
related response (OERP) pioneered by Kobal and Plattig
[40], which has the advantage of minimizing the poten-
tial effect of cognitive dysfunction. An initial examina-
tion compared OERP recording of 73 PD patients with
that of 47 controls of similar age and gender [33]. In 36
patients (49%), responses were either absent or unsatis-
factory for technical reasons. Analysis of the 37 with a
measurable trace showed that, for hydrogen sulphide
(H2S), a highly significant latency difference existed
between diagnostic groups. Similar results were obtained
in 31 patients with clinically labelled PD tested by OERP
to vanillin and H2S [41]. Prolonged latencies were seen
in these individuals whether they were taking anti-
Parkinson medication or not.

The above-cited evidence from psychophysical and
neurophysiological sources gives virtually unassailable
support to the presence of olfactory dysfunction in estab-
lished PD, a feature that occurs more frequently [33] than
tremor (80% vs. 70%).

Olfactory dysfunction in presymptomatic phases
of PD

If the previous observations about early olfactory involve-
ment are correct, this should be reflected by tests in
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individuals at risk for future disease or by prospective
studies of those with prior olfactory impairment [42].
Montgomery and colleagues [43,44] implemented a test
battery comprising motor function, olfaction (UPSIT) and
mood for PD first-degree relatives. There were significant
differences in sons and daughters, particularly where the
affected parent was the father.This work has been criticized
[45] because there may have been self-selection in allegedly
unaffected relatives – who may have had undisclosed
motor complaints resulting in the unusually high 2-year
positive prediction rate (40 out of 59 subjects). Ponsen
et al. [45] evaluated prospectively 78 asymptomatic first-
degree relatives of non-familial PD patients by olfactory
tests and Dopamine Transporter Scan (DATScan). Forty
were hyposmic at baseline and, when reviewed 2 years
later, four had abnormal DATScans and showed clinical
signs of PD. In the remaining 36 hyposmics, who displayed
no sign of PD, the rate of decline of dopamine transporter
binding was higher than in normosmic relatives. Others
[46] tested 30 patients with unexplained and isolated smell
impairment to determine whether any might be in the
premotor phase of PD. Apart from detailed olfactory
testing, subjects were evaluated by DATScan and transcra-
nial sonography of the substantia nigra. Eleven displayed
increased (that is, abnormal) echogenicity on transcranial
sonography characteristic of PD. Ten subjects volunteered
for DATScan and, of them, five had abnormal scans and an
additional two were borderline, suggesting that they might
be in a presymptomatic phase of PD. Two of the five scan-
positive patients have now developed clinically confirmed
PD (Hummel, pers. comm., 2006).

The first long-term, community-based prospective
study has been published, in connection with these rela-
tions [47]. The authors used the cross-cultural Brief Smell
Identification Test (BSIT) [48] in 263 healthy Japanese-
American men aged 71–95 years who participated in the
Honolulu-Asia Ageing Study. After 7-year follow-up, 19
men developed PD at an average latency of 2.7 years from
baseline assessment. Adjustment for multiple confounders
gave relative odds for PD in the lowest tertile of BSIT score
of 4.3 (95% CI 1.1–16.1; P = 0.02), thus indicating a
moderate predictive power of olfactory testing. In the
same cohort, those who later died underwent brain
autopsy to detect the presence of brainstem LBs [49]. Of
163 autopsied men without clinical PD or dementia, 17
were found to have incidental LBs. Those who scored in
the lowest tertile of the BSIT were significantly more likely
to have LBs at autopsy. Potentially conflicting findings

were obtained in a study of 70 male twin pairs discordant
for PD [50], 62 of whom agreed to undergo olfactory tests.
At baseline, the authors confirmed impaired UPSIT scores
in the affected twins, but not in their brothers who were
rated normal. After a mean of 7.3 years, 28 brothers were
still alive and, of them, 19 were retested using the 12
odour BSIT, whereby 2 had developed PD. Neither had
impaired UPSIT at baseline, but the average decline in
UPSIT percentile score in both was greater than the
remaining 17, who had not developed the disease. It is
suggested that smell testing may not be a reliable predic-
tor. The dropout rate was unusually high and smell assess-
ment was by different methods, that is, initially by UPSIT
(40-item) then by BSIT (12-item). On the first occasion,
the test was unsupervised; moreover, a 7.3-year interval
may have been too short.

Further considerations regarding olfactory
dysfunction

Despite such evidence, theories regarding olfactory dys-
function as a characteristic symptom of PD have had
difficulty gaining acceptance, because 10–20% with a
clinical diagnosis of PD have normal smell identification.
In some PD patients with normal UPSIT scores, the OERP
was absent or delayed [33], which implies that the olfac-
tory deficit may be more frequent than indicated by UPSIT.
Pathology-based studies indicate that the diagnostic error
rate for PD is 10% or higher, and that olfactory identifica-
tion is sometimes abnormal in other diseases showing
Parkinsonism [51]. Mistaken diagnosis of PD occurs most
often in MSA, PSP, vascular Parkinsonism and, occasion-
ally in individuals with essential tremor. All these disor-
ders may be characterized by either normal or slight
impairment of olfaction. It is not yet known whether
persons with normal UPSIT score are the very patients
who have received an incorrect diagnosis, but prospective
studies would resolve this issue.

Evidence for PD-related autonomic dysfunction

An understanding of the applied anatomy of the vagus is
necessary in view of its early and severe pathological
involvement. Three major components of the vagus
can be distinguished in the medulla oblongata: (i) the
ambiguus nucleus, a motor nucleus that innervates
muscles of the palate, pharynx, larynx and heart; (ii) the
dorsal motor nucleus, which harbours the preganglionic
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visceromotor neurones that control the postganglionic
parasympathetic nerve cells in internal organs of the
chest and abdomen; and (iii) the complex of nuclei accom-
panying the solitary tract. The parvocellular nuclei of the
latter complex receive taste information and an abun-
dance of visceral sensations. The dorsal motor nucleus is
damaged severely and early on in PD, the solitary tract
nuclei exhibit little change until later stages, and the
nucleus ambiguus remains intact [21] (Figure 1, right).

Gastrointestinal disorder

The gastrointestinal tract is supplied by two major nerves:
the vagus, which is for excitatory parasympathetic control,
and sympathetic nerves, which are inhibitory. There is
abundant evidence of pathological involvement in both
systems, as detailed below, and clinically features of this
pathology become increasingly obvious [52–55]. Dysph-
agia is a common feature sometimes demonstrable in
asymptomatic individuals [56]. In one survey of 17
autopsy-confirmed cases of PD, swallowing difficulties
appeared after an average period of 10 years from onset of

initial extrapyramidal symptoms [57]. A variety of mecha-
nisms account for swallowing difficulty, with evidence of
dysfunction at either oropharyngeal or oesophageal level.
Although dysphagia may relate to mechanical problems
(e.g. Zenker’s diverticulum) or dry mouth, the majority can
be explained on the basis of vagal dysfunction.

Reduction of appetite and weight loss are common fea-
tures that typically affect more advanced cases, and this
may also relate to impairment of smell and taste [58], or to
poor diet, increased energy expenditure or depression
[59]. Although many patients drool saliva, the consensus
view is that the volume of saliva produced is either
unchanged or decreased, although it may be increased by
levodopa preparations [60]. Gastric dysfunction is likewise
a recognized feature of established PD [61,62]. These
investigators reported frequent bloating or nausea sug-
gesting delayed gastric emptying ,and this phenomenon
has indeed been confirmed by measurement of gastric
emptying time in patients whether they are receiving
levodopa or not [63]. While little is known about small
intestinal motility in PD, there are several studies relating
to colonic disorder.

Figure 1. (A–B, left hand side) to illustrate the mode of spread of herpes simplex virus following injection into peripheral portions of the
vagus nerve in the rat medulla oblongata, adapted and reproduced in part with permission from Blessing et al. [154]. (A–B, right hand side)
to show the topographical distribution pattern of a-synuclein pathology in the human medulla in stages 1 and 2 of sporadic Parkinson’s
disease, adapted and reproduced in part with permission from Del Tredici et al. [21]. amb, ambiguus nucleus; dmo, dorsal motor nucleus of
the vagus (marked in green); gig, gigantocellular reticular nucleus, iop, inferior olivary nucleus, principal subnucleus; irz, intermediate
reticular zone; rob, nucleus raphes obscurus; sol, solitary tract; XII, motor nucleus of the hypoglossal nerve.
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If ENS involvement and disease of both the parasympa-
thetic and sympathetic systems is an early event in PD,
there should be relevant symptoms in the premotor phase.
There is presently only one investigation in support of this,
namely the prospective study of bowel habit in elderly
patients who took part in the Honolulu Heart Program
[64]. This comprised 6790 men without extrapyramidal
disease at enrolment, followed up for 24 years, of whom
96 developed PD. The adjusted risk of PD in those with less
than one bowel movement per day, compared with those
with one or more per day, was increased almost threefold
(OR 2.7; 95% CI 1.3, 5.5), implying that constipation is a
harbinger of PD [27]. Prevalence estimates of constipa-
tion in PD have been inconsistent because of variable
definitions of constipation, but a conservative estimate
would be at least 20% [65]. Colonic transit time is raised
from control values of around 20 h to 44–130 h [66,67],
probably worsening as the disease advances.

Cardiac disorder

In established PD, several investigators have found reduced
cardiac uptake of the noradrenaline analogue, metaiodo-
benzylguanidine (MIBG) [68–72]. This procedure evalu-
ates postganglionic noradrenergic cardiac sympathetic
function. Heart rate variability may be abnormal in PD and
is thought to reflect involvement of both sympathetic and
parasympathetic pre- and postganglionic neurones [73].
Incidental LBs have been found in the cervical sympathetic
ganglia and cardiac plexus [74]. In another study, it was
clearly shown that tyrosine hydroxylase-immunoreactive
nerve fibres in the heart had almost entirely disappeared in
patients with PD (and DLB), whereas they were well pre-
served in all those with PSP and pure Alzheimer’s disease
[75]. Only one patient with PD displayed abnormalities in
the sympathetic ganglia, which indicates that cardiac sym-
pathetic denervation precedes neuronal loss there. Auto-
nomic failure presaging a Parkinsonian syndrome has
been shown in two patients [76], but, to date, there have
been no long-term prospective epidemiological studies of
cardiac function. One investigation showed a significant
correlation between MIBG uptake and olfactory disorder in
26 patients with PD (but not MSA), thereby confirming the
close association of these two modalities [77].

Sleep disorder

A variety of sleep disorders are recognized in established
PD [78], of which the most studied are excessive daytime

sleepiness and rapid eye movement sleep behaviour disor-
der [79]. The pathophysiology is not understood fully
but most likely reflects cellular changes found in the
Parkinson neuropathological stages 1 and 2, involving
the reticular formation, coeruleus/subcoeruleus complex,
pedunculopontine nucleus and hypothalamus [80]. In the
prospective Honolulu-Asia Ageing Study [81], 43 of 3078
men aged 71–93 years developed PD over a 7- to 10-year
period, and those reporting excessive daytime sleepiness
were approximately three times more likely to develop PD
(OR 3.3; 95% CI 1.4, 7.0). According to one source [82],
11/29 subjects with unexplained REM sleep behaviour
disorder (RBD) subsequently developed Parkinsonism,
complementing the finding of decreased striatal trans-
porter uptake in RBD by others [83]. In other studies of
olfaction and sleep [84–86], many RBD patients had sig-
nificantly impaired smell function, once more implying
that olfaction and RBD are early features. A difficulty with
most of these studies, however, is the lack of post mortem
confirmation. The investigation by Iranzo and co-workers
[87] is of particular interest in this regard. Apart from
corroborating the suspected status of RBD as a precursor
of PD, they document the time interval between onset of
RBD and clinically manifest sporadic PD. In seven patients,
the latent period was on average 12 years (range
3–17 years). Given that RBD is a sign of PD stage 2 pathol-
ogy, this estimate provides a lower time limit for the pres-
ymptomatic phase and suggests that the earliest evidence
of PD pathology (stage 1) would be 15–20 years before the
onset of typical clinical manifestations.

The pathological process associated with

sporadic PD

Braak and colleagues [22] performed detailed pathoana-
tomical analyses of 41 cases of PD by a-synuclein immu-
nostaining. A similar approach was taken in 69 subjects
who had no PD-associated somatomotor symptoms in life
but displayed LNs and/or LBs (incidental cases). A third
group consisted of 58 age- and gender-matched cases
without LNs or LBs and no history of neurological or psy-
chiatric illness. The results of the cross-sectional study led
the authors to propose that the PD-related pathological
process in the CNS progresses, apparently without remis-
sion, through presymptomatic and symptomatic disease
phases [22]. A subsequent study identified LNs and LBs in
enteric nerve cell plexuses in both presymptomatic and
clinically diagnosed PD cases [88] (Figure 2).This led to the
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suggestion that the pathological process begins at two sites
simultaneously, that is, in the olfactory bulb/anterior olfac-
tory nucleus and within enteric nerve cell plexuses. Follow-
ing damage of these predilection sites, the preganglionic
parasympathetic projection neurones of the dorsal motor
nucleus of the vagus (Figure 3) and, shortly thereafter, the
post- and preganglionic sympathetic projection neurones
in the coeliac ganglion and intermediolateral nucleus of
the spinal cord may become drawn into the disease process
[89]. Next to show the lesions are superordinate supraspi-
nal centres such as the coeruleus/subcoeruleus complex,
magnocellular portions of the reticular formation, and

posterior raphe nuclei (Figures 4B and 1, right). Additional
CNS regions might then follow successively: central sub-
nucleus of the amygdala [90–93], pars compacta of the
substantia nigra, and magnocellular nuclei of the basal
forebrain [23]. In other words, all of the vulnerable sites do
not become involved at the same time but, rather, in a
predictable topographic sequence. Within the brain, the
disease process displays a stereotypical caudal-rostral
advance from the lower brainstem through basal portions
of the mid- and forebrain, finally reaching the cerebral
cortex (Figure 4A). A distinctive lesional pattern, includ-
ing neuronal loss, emerges. With one exception [94],

Figure 2. Alpha-synuclein immunoreactions (Syn-1: 1:2 000, Transduction Laboratories) in 6-mm paraffin sections showing Lewy bodies
(A, arrows and B) in the Auerbach plexus of the human oesophagus. Scale bar in (B) is valid for (A). Reproduced in part with permission
from Braak et al. [24]. Aggregated axonal a-synuclein inclusions (Lewy neurites) in the gastric Meissner plexus (C,D). Notice how the
terminal ramifications of abnormally altered axons extend through the lamina propria of the gastric mucosa and run parallel to the gastric
glands (D). Syn-1 immunoreactions in 150-mm cryosections. Scale bar in (D) also applies to (C). Adapted and reproduced with permission
from Braak et al. [88].
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subsequent studies have confirmed, for the most part, the
results of this pathoanatomical study [95–98], and inter-
rater reliability of the pathological samples was high [99].

Pathological changes in olfactory structures

PD-associated a-synuclein-containing inclusion bodies as
yet have not been found in the olfactory epithelium of
autopsied PD patients [100]. Nasal biopsy specimens from
seven patients with symptomatic PD [101] were compared
with four anosmic controls using antibodies against olfac-
tory marker protein (OMP), neurotubulin, protein gene
product 9.5 (PGP 9.5) and mRNA for OMP. Irregular areas
of olfactory epithelium were positive for PGP 9.5 and neu-
rotubulin but mostly negative for OMP, although mRNA for
OMP was found in the olfactory cleft and respiratory
mucosa. In this small series, there was no clear difference
between PD and anosmic controls; however, sections were
not examined for presence of LNs/LBs, and it could be
argued that those with anosmia may have been in the
presymptomatic phase of PD. Daniel and Hawkes [102]
examined olfactory bulbs and tracts in eight controls as
well as eight patients with a clinical and pathological diag-
nosis of PD taken from the United Kingdom Parkinson’s
Disease Brain Bank. All PD cases contained LBs, which
were most numerous in the anterior olfactory nucleus but

also were found in mitral cells, the first projection neurones
to receive input from the bipolar neurones in the olfactory
epithelium. It was subsequently shown that loss of neu-
rones in the anterior olfactory nucleus correlated with
disease duration [103]. One report [104] suggested that
expression of tyrosine hydroxylase in the olfactory bulb is
increased 100-fold, and that the consequent excess of
dopamine might explain the hyposmia that develops in PD.
Braak and colleagues [22] confirmed the presence of
PD-related lesions in mitral cells and tufted neurones of the
olfactory bulb and in projection neurones of the anterior
olfactory nucleus, which is dispersed throughout the olfac-
tory tract. A tightly woven network of LNs rapidly develops
within the anterior olfactory nucleus. From there, the
pathology tends to spread slowly into more remote olfac-
tory sites (olfactory tubercle, piriform and periamygdalear
cortex, entorhinal cortex of the ambient gyrus) [105]
without advancing into non-olfactory cortical areas
[8,22,24].

Pathological changes in the ENS

It is known that ENS lesions occur in symptomatic cases of
PD [106–110]. As in the brain, only a few of the many
neuronal types within the ENS [111–113] are prone to
develop PD-associated lesions (Figure 2A,B). Once again,

Figure 3. Simplified diagram showing the vagal interconnections between the enteric nervous system and medulla oblongata. A
neurotropic agent capable of passing through the mucosal epithelial barrier of the stomach could enter terminal axons of postganglionic
VIPergic neurones (black, rounded cell somata) in the submucosal Meissner plexus and, via retrograde axonal and transneuronal transport
(black, rounded cell somata in the Auerbach plexus), reach the preganglionic cholinergic neurones (black, diamond-shaped cell somata) of
the dorsal motor nucleus of the vagus in the lower brainstem. Reproduced with permission from Braak et al. [88].
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the vulnerable cells apparently are projection neurones
with a long and unmyelinated axon [13]. The inhibitory
nitrergic vasoactive intestinal polypeptide neurones have
been shown to develop LNs and LBs [109,110]. Axons
containing a-synuclein from the submucous plexus have
been seen to protrude through the muscle layer of the
mucosa, extending widely and ramifying within the
mucosal lamina propria [88] (Figures 2C,D and 3). Axons
of affected ENS cells contain thread-like or spindle-shaped
LNs of varying size. In the mucosal lamina propria, the

unmyelinated axons are only micrometers away from
the body’s innermost environment, their only protection
being a single layer of epithelial cells (Figures 2D and 3).
Such involvement of the enteric nerve cell plexuses may
represent a particularly early event – if not the earliest
vagal-associated event – because LNs were observed both
in clinically diagnosed cases and in non-symptomatic
individuals with PD-related brain lesions limited to the
lower brainstem [88]. In summary, the studies indicate
that early involvement of the ENS with widespread and
thinly distributed lesions throughout the walls of the
upper gastrointestinal tract is accompanied by mild CNS
lesions. It remains to be seen whether ENS lesions also
occur in the absence of lesions in the brain.

Pathological changes in preganglionic
parasympathetic projection neurones

The very first brainstem lesions appear in the dorsal motor
nucleus of the vagus [21]. The preganglionic parasympa-
thetic projection neurones there generate long and thin
unmyelinated axons [114,115]. Pathological a-synuclein
aggregates are detectable in both proximal intramedullary
and peripheral portions of these axons. Other nuclei in the
dorsal vagal area, including the nucleus gelatinosus, area
postrema, and the nuclei surrounding the solitary tract,
are minimally affected or uninvolved. The catecholamin-
ergic melanoneurones in this area and those in the
intermediate reticular zone [116] remain intact, at least
initially [21]. These neurones do not project to the periph-
ery but to higher levels of the brain [117]. The multipolar
motorneurones of the ambiguus nucleus have thickly
myelinated axons and remain free of LNs/LBs.

Pathological changes in post- and preganglionic
sympathetic projection neurones

PD-associated pathological changes in sympathetic path-
ways (intermediolateral column of the spinal cord, coeliac
ganglion and other peripheral sympathetic ganglia) have
been studied and, to some extent, characterized already
[74,118]. Recently, such lesions also have been shown
in presymptomatic patients dying of non-neurological
causes, thereby confirming the early involvement of the
autonomic system [89,119,120]. All cases examined also
displayed PD-related involvement of the lower brainstem,
which, in turn suggests that the spinal cord abnormalities
within the sympathetic nervous system may occur after

Figure 4. Two schematic drawings. (A) The essentially
caudal-rostral expansion (white arrows) of the Lewy body
pathology in the brain after it attains a foothold in the dorsal motor
nucleus of the vagus in the medulla oblongata (here, in black). The
other consistently involved induction site in sporadic Parkinson’s
disease is the olfactory bulb (black). Reproduced with permission
from Braak et al. [22]. (B) Median view of a mediosagittal section
through the human brain: lines A and B indicate the respective
planes of the frontal sections through the medulla oblongata
depicted in Figure 1. Adapted and reproduced in part with
permission from Del Tredici et al. [21].
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the parasympathetic preganglionic projection neurones of
the vagus have become affected.

Is PD caused by a neurotropic pathogen?

It is unlikely that the lesions in the olfactory system and in
other predilection sites within the ENS and CNS develop
independently of each other. A more plausible explana-
tion is that a common pathologic insult, a hitherto
unknown neurotropic factor or pathogenic substance,
induces the disease and triggers the sequential involve-
ment of vulnerable regions. Anatomical analysis reveals a
continuous chain of long-axoned and sparsely myelinated
projection neurones that interconnect not only the olfac-
tory epithelium but also the ENS with the brain (Figure 3)
and, within the brain, all of the vulnerable regions [23].
After uptake, such a neurotropic pathogen might utilize
these pathways and progress within the nervous system
by way of axonal transport and trans-synaptic trans-
mission [121–124]

Neuroactive substances, including neurotropic viruses,
unconventional pathogens with prion-like properties, or
slow neurotoxins, usually are taken up at synapses, where
they are frequently controlled by receptor-mediated
endocytosis. The substances are transported to the cell
body via the axon [125–128]. Neurotropic viruses that
pass from the surroundings into axons of susceptible
nerve cells can be prevented from doing so by the existence
of a myelin sheath, which functions as a physical barrier
against virus penetration [129]. Thus, the absence of a
myelin sheath around axons of the first neurones in the
potential chain of vulnerable projection neurones may
facilitate entrance and damage by viruses or other patho-
gens [125,127,130–132]. In addition, most of the neu-
ronal types located within the CNS are protected against
uptake of substances from the extracellular milieu beyond
the CNS by the blood–brain barrier. Only axons of nerve
cells that project from the olfactory epithelium into the
CNS and those that project from the CNS into the periph-
ery, such as the preganglionic parasympathetic and sym-
pathetic fibres, lack such a protective barrier. Accordingly,
an intravenous injection of horseradish peroxidase (HRP)
results in retrograde labelling of the dorsal motor vagal
nucleus [133].

Despite enormous gaps in the present state of knowl-
edge, the main line of reasoning that favours a ‘dual-hit’
PD-related process (with olfactory and enteric means of
access) is that both are in close and constant contact to the

(potentially hostile) outer environment. From the enteric
plexuses, the prospective pathogen may gain access retro-
gradely to the CNS via parasympathetic pathways (vagus;
Figure 3) and, thereafter, through post- and preganglionic
sympathetic fibres. Once in the CNS, the disease process
could ascend from spinal cord and lower brainstem
through vulnerable portions of the basal mid- and fore-
brain until it reaches the cerebral cortex (Figure 4A).
From the olfactory epithelium, on the other hand, the
pathogen would follow an anterograde route, to reach
medial amygdala, olfactory tubercle, as well as piriform
and periamygdalear cortex.

Possible role of viral invasion

The possibility that PD might be of viral aetiology was
formally addressed by Elizan and Casals [134]. The inabil-
ity to transfer PD to primates and the lack of viral antibod-
ies in the then newly described Guam PD-dementia
individuals, who were usually anosmic [135], argued
against a viral aetiology for PD, although the theory was
not entirely discounted. Influenza virus has been associ-
ated with PD, as discussed in detail by Takahashi and
Yamada [136]. Despite many negative studies that
searched for direct evidence of influenza A in PD [137–
141], nearly all pointed out that influenza A behaves as a
persistent virus possibly capable of initiating autoimmu-
nity. On the basis of human and experimental models,
these authors proposed that the virus shows a predilection
for the substantia nigra, cerebellum and hippocampus,
and may be responsible for the formation of LBs.

Parkinsonism is seen on rare occasion during or after
infection with herpes simplex encephalitis [142], and a
link between chronic herpes simplex type 1 encephalitis,
PD and tic doloureux has been suggested [143]. There is
no evidence of antibodies to herpes simplex virus (HSV)
type 1 and 2 when compared with measles or cytomega-
lovirus antibodies in the serum and spinal fluid of PD
subjects [144,145]. Similar findings were documented by
Elizan and Casals [134]. One unconfirmed report suggests
an association between PD and coronavirus infection on
the basis of enzyme-linked immunosorbent assay in cere-
brospinal fluid in 20 patients [146].

There is recent evidence that diseases of intermediate
type hypersensitivity (asthma, allergic rhinitis, seasonal
rhinitis) may be associated with PD [147]. Retrospectively,
the authors reviewed medical records in 196 cases of PD
and 196 healthy controls and found a significant, approxi-

Dual-hit hypothesis 607

© 2007 Blackwell Publishing Ltd, Neuropathology and Applied Neurobiology, 33, 599–614



mately twofold increase of prior intermediate-type sensi-
tivity disorder in general, but particularly for allergic
rhinitis (OR 2.9; 95% CI 1.3, 6.4; P < 0.01). There was a
trend towards protection against PD in those who had
used anti-inflammatory drugs. It is suggested that patients
with PD might initiate an inflammatory response that
could be directed towards the CNS. There is some evidence
of impaired smell sense in those with allergic rhinitis
[148], raising the possibility that allergic rhinitis might
facilitate entry of a pathogen from the nose into the olfac-
tory bulb and tract.

Altered protein handling may be a factor in the
PD-associated pathogenic process. Many viruses, e.g.
Epstein-Barr virus, encode proteins that exploit the
ubiquitin-proteasome system to regulate virus latency
and allow the persistence of infected cells in immuno-
competent hosts [149,150].

There is longstanding evidence that neurotropic virus
can enter the brain via the nasal route. It was shown that
HSV type 1 placed intranasally in 6-week-old mice was
detectable in the trigeminal root entry zone and olfactory
bulbs 4 days later [151]. In some mice, virus which had
entered the olfactory bulb, spread via axons as far as
the temporal lobe, hippocampus and cingulate cortex.
Another study in the rat showed that HRP applied intra-
nasally can be transported to the bulb, anterior olfactory
nucleus, as well as to cholinergic neurones of the diagonal
band, serotonergic raphe neurones, and noradrenergic
cells of the locus coeruleus [152]. It is not widely appreci-
ated that direct connections exist between primary
olfactory areas and the substantia nigra. For example,
application of HRP into the olfactory tubercle results in
anterograde labelling of the ventral tegmental area, the
pars reticulata of the substantia nigra, and anterior olfac-
tory nucleus. As anticipated, there was retrograde label-
ling in the olfactory bulb and anterior olfactory nucleus
[153].

Blessing and colleagues [154] studied connections of
the vagus using HSV type 1 in the rat (Figure 1, left).
Live HSV-1 was injected into the cervical vagus, and its
distribution was examined using polyclonal antiserum.
On day 2, virus was detected in glial cells of the area pos-
trema, in nuclei of the solitary tract, the vagal dorsal
motor nucleus, spinal trigeminal nucleus, and the great
raphe nucleus, whereas the hypoglossal nucleus was
spared, as in PD. On day 3, there was rostral spread to
involve the locus coeruleus, parvocellular reticular
nucleus and periaqueductal grey, but not the substantia

nigra. HSV-1-positive neurones were seen in an oblique
area corresponding to the human intermediate reticular
zone [114]. This route of infection is shown in Figure 1
(left) and should be compared with the similar distribu-
tion of PD-associated brainstem pathology (Figure 1,
right). There are clear differences between this animal
model and the pathology in humans. For instance, in
contrast to the situation in PD, the trigeminal nerve
in the rodents is involved and the substantia nigra is
spared. Nevertheless, the rostral migration of HSV-1 has
remarkable similarity to the suggested progression of
the a-synuclein pathology in PD (Figure 1) and reaffirms
speculation that a neurotropic agent may utilize the
vagus as a means of entering the medulla [22,23]. The
experiments of Blessing and co-workers [154] are of
additional interest in that they show that the first site of
attack is in glial cells, which raises the possibility that
residual virus in these cells may be responsible for the
slow progression of PD.

Transvagal spread in animal models has been reported
for other neurotropic enteroviruses, reovirus, pseudora-
bies virus and haemagglutinating encephalomyelitis
virus [132]. The same group was unable to introduce
CNS infection in mice with influenza A virus through
non-autonomic routes, such as the anterior chamber of
the eye, the brachial plexus, knee joint, sciatic nerve and
hindlimb footpad. Conversely, pseudorabies virus spreads
though both somatic and autonomic nerves. A strain of
Hong Kong influenza virus inoculated intranasally in
mice reached the CNS through afferent fibres of the olfac-
tory, vagal, trigeminal and sympathetic nerves following
replication in the respiratory mucosa [155]. Intranasally
inoculated avian influenza virus in mice gave rise to
lesions in lung and brainstem [156]. The main areas
involved were the nuclei of the solitary tract and the
trigeminal ganglia. Although haematogenous CNS
spread is well documented in many viral strains, the find-
ings of these experiments indicate that influenza viruses
have preferential routes of access to the CNS along the
vagus and olfactory nerves following replication in the
lungs, but the pattern of brainstem involvement is vari-
able; that is, the trigeminal nerve is sometimes involved,
at other times spared. These observations have some par-
allels with the pattern of proposed CNS invasion in PD.
Although no virus mirrors exactly the pathological
profile seen in PD, it is possible that a particular viral
strain might display a predilection for the olfactory and
vagal routes of entry.
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Discussion

We propose that an unknown neurotropic pathogen initi-
ating the pathological process underlying sporadic PD
adopts a two-pronged attack on the nervous system:
anterogradely, via olfactory pathways; and retrogradely,
via enteric plexuses and preganglionic vagal fibres. If the
pathogen is viral, then brain entry via the nasal route or
uptake through the gastrointestinal tract has ample pre-
cedent, as described above. A nasal infection would have
direct access to the olfactory nerve; infected saliva or
mucous could be swallowed and reach the upper digestive
tract to infect axons of Meissner’s plexus and, after trans-
neuronal passage, ascend retrogradely in preganglionic
parasympathetic fibres of the vagus nerve to the lower
brainstem. Direct access to the medulla via the visceros-
ensory fibres of the vagus in the pharynx or via the
trigeminal nerve, while anatomically appealing, is not
compatible with virtual sparing of the solitary tract and
trigeminal nuclei during the entire course of the disorder.

Our observations relate to the commonest, sporadic
variety of PD. As mentioned earlier, not all neuropatholo-
gists are in accord with the Frankfurt PD classification
[94,95], the main objection being (in a few cases) the
absence of medullary or pontine Lewy pathology where
the substantia nigra was affected. Another study used the
Frankfurt staging procedure to group an autopsy cohort
into: preclinical (stages 1 and 2); early (stages 3 and 4, 35%
with clinical PD); and late (stages 5 and 6, 86% with clinical
PD) cases [157]. Preclinical compared with early or late-
stage cases should progressively be more elderly at the time
of sampling, but this feature was not observed. Despite this,
the proposed sequential progression of Lewy pathology,
and the associated clinical features that have been demon-
strated in many prospective epidemiological studies
[47,49,64,81], give strong support to the staging concept.

The enigma of PD is to explain why a condition that
probably begins in anterior olfactory structures and por-
tions of enteric nerve cell plexuses, has a presymptomatic
period of several years, possibly decades, during which
time the disease-related destruction inexorably advances
retrogradely along fibre tracts in the brainstem and
anterogradely along olfactory pathways in a predictable
sequence to destroy the substantia nigra and then initiate
a disease that runs a further course of approximately 15
additional years. What the clinician observes is the latter
phase of a chronic illness, about which most patients are
unaware or relatively untroubled. In contrast to most

virally induced infection, the intraneuronal lesions appear
to progress with remarkable slowness; yet, at the same
time, they display only minimal interindividual deviation
from the predictable topographical distribution [23,88].
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