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Recent metastatic castration-resistant prostate cancer (mCRPC) clinical trials

have integrated homologous recombination and DNA repair deficiency

(HRD/DRD) biomarkers into eligibility criteria and secondary objectives. These

trials led to the approval of some PARP inhibitors for mCRPC with HRD/DRD

indications. Unfortunately, biomarker-trial outcome data is only discovered by

reviewing publications, a process that is error-prone, time-consuming, and

laborious. While prostate cancer researchers have written systematic evidence

reviews (SERs) on this topic, given the time involved from the last search to

publication, an SER is often outdated even before publication. The di�culty

in reusing previous review data has resulted in multiple reviews of the same

trials. Thus, it will be useful to create a normalized evidence base from recently

published/presented biomarker-trial outcome data that one can quickly

update. We present a new approach to semi-automating normalized, open-

access data tables from published clinical trials of metastatic prostate cancer

using a data curation and SER platform. Clinicaltrials.gov and Pubmed.govwere

used to collect mCRPC clinical trial publications with HRD/DRD biomarkers.

We extracted data from 13 publications covering ten trials that started before

22nd Apr 2021. We extracted 585 hazard ratios, response rates, duration

metrics, and 543 adverse events. Across 334 patients, we also extracted

8,180 patient-level survival and biomarker values. Data tables were populated

with survival metrics, raw patient data, eligibility criteria, adverse events, and

timelines. A repeated strong association between HRD and improved PARP

inhibitor response was observed. Several use cases for the extracted data

are demonstrated via analyses of trial methods, comparison of treatment

hazard ratios, and association of treatments with adverse events. Machine

learning models are also built on combined and normalized patient data to

demonstrate automated discovery of therapy/biomarker relationships. Overall,

we demonstrate the value of systematically extracted and normalized data. We

have also made our code open-source with simple instructions on updating

the analyses as new data becomes available, which anyone can use even with

limited programming knowledge. Finally, while we present a novel method of

SER for mCRPC trials, one can also implement such semi-automated methods

in other clinical trial domains to advance precision medicine.
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Introduction

Interventional biomarker clinical trials report associations

between biomarkers, interventions, and patient outcomes.

Biomarker-based outcomes and eligibility criteria are now

common in cancer clinical trials. Most of the biomarker analyses

reported for these trials are only accessible in difficult-to-

access publications, with no controlled data access. Published

biomarker outcomes are used in clinical guidelines, drug labels,

and research. For example, the olaparib drug label references the

PROfound trial data (de Bono et al., 2020; Hussain et al., 2020;

FDA, 2020), and multiple publications have reviewed PARP

inhibitors in mCRPC (Luo and Antonarakis, 2019; Antonarakis

et al., 2020a; Jang et al., 2020). These activities involve a

redundant, error-prone, time-consuming, and laborious data

aggregation step.

Normalizing reported outcomes into an open-access

database that can be easily updated as new data becomes

available can help address this redundancy and improve the

reusability of currently difficult to access biomarker outcome

data. We present an approach to extracting the metastatic

castration-resistant prostate cancer (mCRPC) trials data across

different studies and normalizing it. The aggregated data

tables and figures are also made available in an open-access

format with a codebase that can be used to update them

as new data becomes available. Biomarker, therapy, and

outcome data were normalized into common tabular formats to

analyze homologous recombination and DNA repair deficiency

(HRD/DRD) biomarkers. The analyses herein can be fully

reproduced in a short R script without the need for access to

local files. The reviewer(s), time of review, and extracted data

for each document can be looked up by readers and updated

easily. We used Sysrev (Bozada et al., 2021), a web application

designed to facilitate data curation and systematic evidence

reviews (SER). It has an integrated machine learning (ML)

platform with natural language processing (NLP) tools for

searching, tagging, and extracting data from database sources.

At a fundamental level, Sysrev helps to curate secondary data

from biomedical research publications, and analyze them.

The potential value of the extracted and normalized data is

demonstrated via several visualizations, which help to evaluate

associations between therapies and DRD/HRD biomarkers in

mCRPC trials. Computational access to these data points has

the potential to accelerate precision medicine by enabling

programmatic exploration of trial outcomes. This will become

even more relevant in the future as results from more clinical

trials get published and it will become even more difficult to

search and screen for appropriate papers to include in a review,

if done manually, to synthesize results across studies. Access to

databases that can provide this data easily can facilitate clinical

trial development and providemore transparency for guidelines,

drug labels, and research.

Five analyses are done: biomarker usage counts, biomarker

conditional treatment hazard ratios, biomarker response rates,

adverse event comparisons, and automated discovery of

therapy/biomarker relationships.

Many of these analyses focus on comparisons between

the AR-directed (ARD) therapies abiraterone acetate +

prednisone/enzalutamide and PARP inhibitors (PARPi)

olaparib, rucaparib, veliparib, niraparib, and talazoparib. HRD

specifically is widely recognized to mediate PARPi survival

benefit, potentially via synthetic lethality (Jang et al., 2020).

Our approach demonstrates that normalizable

biomarker/outcome data exist in prostate cancer clinical

trial publications and identifies an opportunity to accelerate

precision medicine by making this data computationally

accessible. Precision oncology could benefit from efforts to

collect this normalized data from clinical trials rather than

re-collecting it in a systematic literature review (SLR), which is

often outdated by the time it is published ((Beller et al., 2013)).

We do not intend to promote SLR as the ideal solution for

collecting this data. In The Future Of Annotation/Biocuration,

Amos Bairoch states, “It is quite depressive to think that we are

spending millions in grants [clinical trials] for people to perform

experiments, produce new knowledge, hide this knowledge

often in badly written text and then spend some more million

trying to second guess what the authors really did and found.”

(Bairoch, 2009).

Materials and methods

Search strategy

The first step in the process was to carry out a review of

biomarkers associated with therapeutic outcomes (BAWTO),

from clinical trial publications. We extracted biomarkers

matching one or more HRD/DRD biomarkers in the list

(BRCA1, BRCA2, ATM, FANCA, PALB2, CHEK2, BRIP1,

HDAC2, ATR, MLH1, MRE11A, NBN, RAD51C, RAD51,

MLH3, ERCC3, MRE11, RAD51B, BARD1, CDK12, CHEK1,

FANCL, PPP2R2A, RAD51D, RAD54L) (Luechtefeld et al.,

2021).

A multi-stage Prisma diagram (Figure 1) describes the

screening and search process for included documents (Page

et al., 2021). Columns A and B describe the BAWTO

review, which screens documents from PubMed.gov

and Clinicaltrials.gov.

Briefly, the BAWTO review performs three screening steps.

In each screening stage, documents were reviewed in duplicate,

with conflicts resolved by a project administrator not involved

in the original document review. Documents were included

during each screening process when they contained three

primary features:
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A B C

FIGURE 1

3 stage prisma diagram, gray diagrams indicate screens completed in the BAWTO project. Shared colors indicate equivalent sets. (A)

Clinicaltrials.gov documents screened in the BAWTO project. (B) Publications derived from pubmed or from (A) are screened in the BAWTO

project. (C) Studies screened from BAWTO and other sources for reference to HRD/DRD biomarkers.

1. A therapeutic intervention such as a drug, combination of

drugs, surgery, or radiation.

2. A prostate cancer population with a well-definedmutation.

3. A measured patient outcome such as overall survival,

adverse events, and progression-free survival.

In column A, the BAWTO review screened 2,132 documents

from Clinicaltrials.gov matching the query for text matching

“prostate”, study type “interventional,” and the overall status of

“Completed” or “Active, not recruiting” as of April 22, 2021.

These 2,132 documents were reviewed by five researchers with

varying levels of research experience (three PhDs, BS, current

university student); there were 58 conflicts which were resolved.

In column B, the BAWTO review used a PubMed query for

“prostate cancer” with the PubMed clinical trial filter. On April

29, 2021, this query generated 8,937 articles. The 8,937 were

reviewed by the same five researchers. There were 52 conflicts

which were resolved. The articles resulting from the two screens

were deduplicated and overall 95 articles underwent a full text

screen and initial data extraction phase, performed by four

researchers (three PhDs, BS). Forty-seven articles were found to

have the primary features stated above for any biomarker.

Column C in Figure 1 describes the screening process

completed in this HRD/DRD biomarker trials review. Forty-

seven articles were sourced from BAWTO, and five reports

were collected by searching conference abstracts and identifying

relevant citations from other reviews of HRD/DRD in mCRPC.

The data already extracted from these documents was reviewed

to identify articles with HRD/DRD biomarkers. Of the 52

resulting documents, 39 exclusions occurred due to a lack of

HRD/DRD biomarkers. In total, we collected 13 documents for

evidence synthesis over the course of 3 months.

Evidence synthesis

Sysrev.com was used to extract, transform, and load data

from documents into controlled “labels”. Labels are boolean,

string, categorical, or tabular forms that constrain user input in

order to build consistent, structured data. Data were accessed

and analyzed in R using the rsr package (Bozada et al., 2021).

Label design

During evidence synthesis, we extracted five primary

tables from each document: Biomarker measurement, Relative

population outcomes, Single population outcomes, Single

population response rates, and Adverse Events. We also created

an uncontrolled sixth table to contain patient-level data,

including specific days to death, days to last follow-up, day

of progression, biomarker status, and trial arm membership

data. Future iterations of this project will attempt to control

patient-level data, but the heterogeneity of patient-level data

within and between publications made creating a normalized

patient outcomes table too challenging for the current scope of

this work.
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TABLE 1 Ten mCRPC trials [0mm][8mm]measuring HRD or DRD biomarkers were included with results reported in 13 publications.

Trial Study Intervention(s) Assignment Brief observation(s) Patient Study type

NCT02987543 1. PROfound-1

2. PROfound-2

1. A1 - Olaparib

2. A2 - Enz or AAP

Randomized

Parallel

1. Stratified population with HRD to

AAP/Enza or Olaparib.

2. Identified strong evidence of PARPi

survival benefit for HRD

None Complete

NCT01682772 1. TOPARP-A

2. TOPARP-B

Olaparib Single Group 1. First mCRPC specific HRD Olaparib trial.

2. Identifies strong response rates in patients

with BRCA2 mutations

Limited Complete

NCT02952534 1. TRITON2-1

2. TRITON2-2

Rucaparib Single Group 1. Only Rucaparib (a PARPi) trial

2. Stage 1 gives BRCA1/2 associations stage 2

focuses on non BRCA HRD.

Full Complete

NCT01576172 Hussain et al.

(2018)

1. A1 - AAP

2. A2 -

AAP+Veliparib

Randomized

Parallel

1. ETS Fusion stratification factor

2. identifies no significant difference between

arms

3. identifies HRD survival association in

both arms

Full Complete

NCT01972217 Clarke et al.

(2018)

1. A1 - Olaparib+

AAP

2. A2 - Placebo

+ AAP

Randomized

Parallel

1. Precursor to PROfound trial with the

same biomarkers measured

2. weak HRD - OS relationship, but stronger

HRD - rPFS benefit

None Complete

NCT02125357 Annala et al.

(2018)

1. A1 - AAP

2. A2

- Enzalutamide

Randomized

Crossover

1. No difference in survival between arms in

any subgroup

2. Large number of tested biomarkers

identified in liquid biopsy

3. Circulating Tumor DNA strong

association with survival

Full Complete

NCT01078662 Kaufman et al.

(2015)

Olaparib Single Group 1. The only trial with diseases in addition to

mCRPC.

2. The first trial applying olaparib to mCRPC

None Complete

NCT02312557 Graff et al.

(2020)

Enz+ Pembro Single Group 1. The only trial involving immunotherapy -

Pembrolizumab

2. Only 16 patients with baseline biopsies

3. Potentially weak psa response in patients

with HRD 16% (3–50%)

None Complete

NCT03148795 TALAPRO-1 Talazoparib Single Group 1. Only talazoparib (a PARPi) trial.

2. Shows a strong composite response 76.1%

in BRCA1/2 patients

3. Much weaker response in non BRCA1/2

HRD (0–40%)

None Preliminary

NCT02854436 GALAHAD Niraparib Single Group 1. Only Niraraparib (a PARPi) trial

2. Strong composite response in BRCA1/2

(65%)

3. Weaker composite response in non

BRCA1/2 HRD (31%)

None Preliminary

Publications were collected on April 22, 2021. The left identifier is the Clinicaltrials.gov identifier for each trial. The study column provides a trial acronym (if available), followed by−1 for

the first publication and a−2 for the second. The last author’s name and year of publication are provided when a trial acronym was not available. The availability of patient data is broken

down into none—no data available, limited—only biomarker data available, and full—both biomarker and clinical outcome data available. The study type indicates whether the collected

data were a complete peer reviewed publication(s) or a preliminary conference abstract result.
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Biomarker measurement

A simple label was constructed to associate gene names

with their use as biomarkers in the respective study. Genes

were categorized as used for inclusion, used for exclusion,

measured, or not measured. Genes that were both measured

and used for inclusion/exclusion, were only marked as used

for inclusion/exclusion.

Relative population outcome

The “relative population outcome” table records hazard

ratios as computed by univariate and multivariate Cox

proportional hazards models for overall survival, prostate

specific antigen (PSA) progression-free survival, and

radiographic progression-free survival (Cox, 1972). The

table captures treatment and biomarker descriptors for an

experimental population and a control population. In total,

105 hazard ratios were extracted, with 47 hazard ratios

comparing treatment outcomes for populations with the same

biomarker status, and 58 hazard ratios comparing outcomes

between populations with the same treatment but different

biomarker statuses.

Single population outcome

The “single population outcome” table captures overall

survival and progression-free survival median duration and

confidence intervals. These tables define the population by

known prior treatment, biomarker status, and treatment type.

Two hundred and ten single population outcomes were

recorded, 78 median overall survival measurements, and 132

median progression-free survival-based measurements.

Single population response rates

The “single population response rate” table defines a

population by biomarker status, treatment, and known prior

treatment. Two hundred and seventy single population response

rates were recorded, including measurements of radiographic

response (134), PSA response (94), circulating tumor cell

reduction (10), and death (32).

Patient-level data

Four studies associated patient identifiers with biomarker

status and survival/response rate metrics. These data were

often provided in heatmap form and some supplementary

tables. Patient-level data were collected but have not yet been

transformed into a normalized table.

Adverse event data

A simple table associates adverse event names with grade and

event counts. This table suffers from uncontrolled vocabulary,

but many trials used consistent naming. Some of these data were

also available on Clinicaltrials.gov, but many trials did not have

AE data available on Clinicaltrials.gov.

Clinicaltrials.gov trial protocols and
metadata

Study protocols were downloaded from Clinicaltrials.gov

and included with their associated publications for reference

during document review. Trial metadata describing phase,

eligibility criteria, design, primary and secondary objectives

were accessed programmatically via the Tasneem et al. (2012).

Clinical trial events (start, end, etc.) were manually extracted

from historical Clinicaltrials.gov updates.

Pathway databases and genomic data
commons access

Normalized biomarker data can be compared to other public

databases. We found homologous recombination repair (HRR)

genes that were missing in the reviewed papers by accessing

KEGG, wikipathways, and reactome pathway databases with

the msigdbr package in R (Dolgalev, 2020). The referenced

pathways included:

1. KEGG_HOMOLOGOUS_RECOMBINATION

2. WP_HOMOLOGOUS_RECOMBINATION

3. REACTOME_HDR_THROUGH_HOMOLOGOUS_

RECOMBINATION_HRR

Missing gene relevance was measured by counting

occurrences in the genomic data commons prostate cancer

cohort with the TCGABiolinks package (Colaprico et al., 2015)

and code: “GDCquery_Maf (“PRAD”, pipelines=”muse”)”.

Model-based recursive partitioning

Model-based recursive partitioning (MOB) was used to

construct decision trees that optimally separate populations

on treatment hazard ratios. MOB trees and random forests

were created, using the R package MOB for recursive

partitioning and the R survival package for Cox modeling
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(Therneau and Grambsch, 2000; Zeileis et al., 2010; Garge et al.,

2013; Therneau, 2021).

All patient-level data were collected into a single table to

build MOB trees. Because different publications had different

methods for annotating gene alterations, we chose to mark genes

as either “altered” or “normal”. This simplifies model building at

the cost of losing features like zygosity, which is an opportunity

for future research.

The MOB tree for patient-level data from the Chinnaiyan

study (Hussain et al., 2017) was built using all the Chinnaiyan

genes. Parameters included a minimum of 20 patients in leaf

nodes and no Bonferroni or confidence constraints.

The MOB tree for combined Chi/Chinnaiyan data used

genes (1) measured in both trials and (2) had at least 10

patients for every combination of alteration status and treatment

status. This tree was restricted to 15 children in each leaf

node, a maximum depth of 5, and had no Bonferroni or

confidence constraints.

The MOB random forest combined

TRITON2/Chi/Chinnaiyan data. In this forest, we assumed

that unmeasured genes were not altered. The forest was

built from 10 trees and required a minimum of 10

patients in every leaf node. Trees used binary features for

BRCA1,BRCA2,ATM,TP53,PTEN,AR, and engineered binary

pathway features set to true if any gene in the pathway was

altered - PI3K pathway, AR associated pathway, DNA repair. A

final feature, “multiple alterations,” was true if the patient had

more than two alterations in any gene.

Plotting

Base R, meta and metafor packages were used to

generate confidence intervals, response rates, and forest

plots (Viechtbauer, 2010; Balduzzi et al., 2019). The treemap

visualization uses the plot_ly package with treemap layout (Inc.

PT, 2015). Other visualizations involved custom code, ggplot,

ggparty, patchwork and ggkm (Wickham and Wickham, 2007;

Pedersen, 2017; Borkovec and Madin, 2019; Sachs, 2020).

Results

Trial characterization

Ten mCRPC clinical trials were identified that measured

biomarkers for HRD or DRD (Table 1). Three trials hadmultiple

publications, some having preliminary/final results (PROfound-

1 vs. PROfound-2) and some having reports on different

stages and subgroup analyses (TOPARP-A vs. TOPARP-B and

TRITON2-1 and TRITON2-2).

Biomarkers were used as part of eligibility criteria, part

of the primary or secondary objectives, and as part of the

trial design. In addition to HRD/DRD, several trials measured

biomarkers related to other mechanisms in prostate cancer,

including androgen receptor, ETS fusions, WNT, PI3K, and Cell

cycle mechanisms. However, this publication primarily focuses

on the outcomes associated with HRD/DRD.

The PROfound study was the only phase 3 trial identified. All

other trials were phase 2 trials. There were four multi-arm trials

comparing treatments in patients with and sometimes without

specific HRD mutations. Three of these trials compared a

PARP inhibitor against next-generation androgen receptor (AR)

directed (ARD) therapies (Abiraterone Acetate + Prednisone

or Enzalutamide), which are routinely used in mCRPC

treatment (Cabot et al., 2012; Fizazi et al., 2012, 2017;

Beer et al., 2014; Ryan et al., 2015). The remaining trials

all had single group assignments and used PARP inhibitors

(Talazoparib, Niraparib, Olaparib, Rucaparib, Veliparib) and, in

one case, a combination of Enzalutamide and Pembrolizumab.

None of the trials used radium-223 or sipuleucel-T. None

of the trials used taxane-based therapies, although several

had prior treatment conditions and subgroup analysis based

on taxane use.

AR-directed therapies AAP and enzalutamide

The most common treatment class used in five trials was

one of the AR-directed (ARD) therapies Abiraterone Acetate

+ Prednisone (AAP) or Enzalutamide. ARD was frequently

used as a control (three trials) and/or in combination with

another therapy (three trials), and one trial compared AAP to

Enzalutamide. ARD works by targeting the androgen signaling

pathway, which is critical inmCRPC progression (Sumanasuriya

and Bono, 2018). Several ARD resistancemechanisms, including

AR modifications, can reduce therapeutic benefits. These

mechanisms may impact differential outcomes, particularly

when ARD progression is an eligibility requirement.

PARP inhibitors

Many of the evaluated studies used PARP inhibitors

like Olaparib (four trials), Rucaparib (TRITON), Veliparib

(Chinnaiyan), Talazoparib (TALAPRO-1), and Niraparib

(GALAHAD). PARP enzymes have an important role in single-

strand DNA repair. One of the mechanisms for the therapeutic

effect of PARP enzyme inhibitors is their ability to disrupt

single-strand DNA repair (Dziadkowiec et al., 2016). Disruption

of ssDNA repair results in the aggregation of double-strand

breaks. When dsDNA repair is simultaneously disrupted via

homologous recombination defects, like a BRCA2 alteration,

the cell has no way to recover, and synthetic lethality occurs.

Synthetic lethality is the primary reason for the high prevalence

of PARP inhibitors as the experimental arm or therapy in the

single group studies in these trials. The hypothesis is often that

patients with a BRCA2 or other HRD mutation will see greater
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benefit from PARP inhibitors relative to existing therapies

like ARD.

Pembrolizumab

Pembrolizumab, immunotherapy, was tested in

combination with Enzalutamide in the Moran, 2020 study

(Graff et al., 2020). The resulting PSA response was low relative

to other trials, even in the HRD group. Still, the authors saw

other metrics to conclude that Pembrolizumab “Responses were

deep and durable and did not require tumor PD-L1 expression

or DNA-repair defects” (Graff et al., 2020).

Taxanes, like docetaxel and cabazitaxel, were not used as an

intervention or control in any of the trials. Still, many trials

had conditions or subgroup analysis based on prior treatment

with taxanes.

Timelines

Seven of the ten reviewed studies have estimated completion

dates in the future, with all trials estimated to complete before

2023. All included trials have already completed recruiting.

Several trials started as recently as 2017 (Figure 2). We should

expect the number of publications from these trials to double

or more in the next 2 years relative to the reviewed publications

found and included.

Biomarker eligibility, measurement and
GDC prevalence

We recorded the measurement status and use of biomarkers

as eligibility criteria for each study. Figure 3 provides a heatmap

with rows ordered from the study with the most HRD/DRD

biomarkers to the study using the least. The columns are ordered

from the biomarkers used in the most studies (BRCA1/2) to

the HRD/DRD biomarkers used in the least. BRCA1/2 was

used in every identified study except TRITON2-1. TRITON2-

2 and Kaufman et al. (2015) were the only studies that did

not measure ATM, and TRITON2-2 is a special case where

ATM results were published in TRITON2-1. Some of the

heterogeneity in measured genes can be explained by choices

to measure HRD and DRD vs. HRD alone. For instance,

the FANCA gene is not considered part of the homologous

recombination repair pathway in KEGG, Wikipathway, and

Reactome pathway databases.

Unstudied HRR genes

KEGG, Wikipathway, and Reactome pathway databases

identify 59 HRR genes that aren’t measured in any trials. These

genes may be excluded for technical reasons, low prevalence, the

low likelihood of having a deleterious effect, or other reasons.

By using TCGAbiolinks (Colaprico et al., 2015; Silva et al.,

2016; Mounir et al., 2019) we found that these unmeasured

genes do have variants in Genomic Data Commons prostate

adenocarcinoma population. Variants in the measured genes

occurred in 63 patients, and variants in the unmeasured genes

occurred in 30 GDC prostate cancer patients with 39 Moderate

and four High impact variants identified by the IMPACT

algorithm (McLaren et al., 2016).

The only study that excluded participants based

on a biomarker result was TRITON2-1 which focused

on the relationship of non-BRCA1/2 biomarkers of

HRD with rucaparib (a PARP inhibitor). TRITON2-2

complemented this analysis with a focus on populations

with a BRCA1/2 mutation.

Many biomarkers were measured in addition to HRD

and DRD biomarkers. Other categories of biomarkers covered

androgen receptor biomarkers, cell cycle, WNT pathway,

chromatin modifier, and ETS fusions.

Treatment hazard ratios

Overall survival (OS) and progression-free survival (PFS)

treatment hazard ratios (HRs) were collected from four trials

and calculated from combined patient data in the Chinnaiyan,

Chi, and TRITON studies.

In Figure 4A, PROfound OS HRs and patient counts are

used to build a treemap. The overall HR is reported at the

top (0.79), and subgroup hazard ratios are placed within

parent groups with size proportional to prevalence and color

from green to red indicating HR (Olaparib vs. AAP). The

BRCA2|BRCA1|ATM group covers patients with BRCA1/2 or

ATM mutations. It has five subgroups, a group with only

BRCA2 alterations (@BRCA2), only BRCA1 (@BRCA1), prior

taxane + only ATM, no prior-taxane + ATM alterations,

and an “Other” group with HR found via pooling. These

subgroups’ pooled HR and patient count are equal to the

BRCA2|BRCA1|ATM group.

Prior taxane therapy and ATM

In PROfound, the overall ATM HR was 0.93 (0.53–1.75),

but prior-taxane status drops to 0.45, below even the BRCA2

HR, and the absence of prior taxane raises ATM HR to 2.82.

This prior-taxane/OS relation is less significant in BRCA1/2

and CDK12 subgroups (Figure 3B PROfound). CDK12 may

not be a robust biomarker for HRD (Antonarakis et al.,

2020b).
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FIGURE 2

Timeline of reviewed trials with start, recruiting, active not recruiting and suspended dates extracted from Clinicaltrials.gov archive. When trials

have not been completed, end dates are given by the Clinicaltrials.gov expected completion date. Dotted line is the extraction date.

FIGURE 3

Heatmap identifying the DRD and HRD biomarkers measured in included mCRPC clinical trials. Red boxes identify biomarkers that were used to

exclude patients, green used for including patients, blue biomarkers were measured but not used for eligibility. Purple biomarkers were not

measured. Trials in red (on left) provide patient level data in figures or supplements.

Significant results and BRCA2

The PROfound study was the only study to report significant

treatment HRs at the 95% confidence interval level. The

Chinnaiyan, Chi, and SAAD studies did not report significant

differences at the 95% level (Figure 4B). BRCA2 had the

strongest reported treatment HRs of.21 (0.13–0.32) for rPFS

in PROfound. Chinnaiyan did not duplicate this, perhaps due

to the sample size, Veliparib specific factors, or differences in

eligibility criteria.

Combined group

The Figure 4B COMBINED group reports HR between

PARPi in Chinnaiyan/TRITON2 and ARD in Chi which were
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A B

FIGURE 4

(A) Treemap for PROfound overall survival hazard ratios for olaparib relative to physicians’ choice of AAP or Enz. (B) Forest plot of overall survival

and progression-free survival hazard ratios for olaparib relative to AAP or physicians’ choice of AAP or Enz for Saad, PROfound, Chinnaiyan, CHI,

and combined trials.

chosen due to overlapping survival curves. PARPi HRwas strong

for the HRD group (green, row 2) relative to the full cohort

and better still relative to patients who did not have HRD

alterations (red).

Response rates

Single population response rates were extracted from all

thirteen studies. In Figure 5, simple PSA response rates (PSA

drop > 50%) and radiographic (RECIST any version) response

rates are given. These results are filtered to only the reported

HRD/DRD response rates. Abbreviations starting with HRD or

DRD correspond to groups with mutations in any HRD/DRD

biomarkers recorded in the respective trial (see Figure 3).

BRCA1/2 zygosity

Zygosity is an important consideration for DNA repair

mutations. Monoallelic tumors may still have functional DNA

repair pathways, and it is often hypothesized that homozygous

loss/alteration is a better predictor of PARP-i response than

alteration alone. In the TRITON2-2 study (2nd group from

bottom), different response rates are given for BRCA1/2 based

on zygosity. The homozygous loss group saw the best response

rate, but the monoallelic group also saw a very strong response

rate, perhaps indicating some weakness in this hypothesis.

ATM CDK12, and non-BRCA1/2 response
rate

The ATM, CDK12, and other non-BRCA1/2 groups

saw poor relative response rates in the TRITON2-1,

GALAHAD, and TOPARP-B studies, providing more

evidence of BRCA1/2 dominance in the observed

HRD/PARP-i relation.

AAP di�erences

The PROfound trial ARD arm had poor response rates,

possibly due to inclusion criteria requiring patients to have

progressed on prior ARD therapy. The Chi study also reports

this relationship and writes that HRD may prime tumors for

ARD resistance (Annala et al., 2018). In the Chinnaiyan study,

which did not have an ARD failure eligibility criteria, HRD

positive AAP patients (green) had better aggregate response

rates than those without (red).

Adverse events

In total, 113 adverse events (AEs) types were reported in

at least one study, 20 were reported in 3 or more studies and

are shown in Figures 6A,B. Similar data are stored on Clinical

trials.gov, but with less coverage (Appendix A1). In Figure 6A,
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FIGURE 5

Reported PSA and radiographic (RAD) response rates. Green, population with biomarkers; Red, population w/out biomarkers.

median AE rates across grade and study are stacked and colored

by grade. The median rate of serious anemia events was 20% in

PARPi populations and∼20% for grade 1/2.

ARD events

The rate of severe grade 3+ AEs was <11% in all

ARD populations for all event types. Hyperglycemia in the

Chinnaiyan study and anemia/asthenia in the PROfound studies

were the only reported serious AEs that impacted 5+ patients

at >5%. Three out of 28 patients in the Moran ARD arm had

a severe hypertension event. Asthenia was the most common

event in all ARD populations except Moran.

PARP-I events

Anemia was the most common serious AE (>15%) in all

PARP-i populations except the Chinnaiyan population, where

only 2 (2.5%) of patients had a severe anemia event. Serious

platelet count decreases and asthenia were also frequently

reported at lower median rates.

AE dose dependence is seen in TOPARP-A-300 (300mg

olaparib) vs. TOPARP-A-400 (400mg). Every serious AE

affecting 2+ patients had a higher rate in the 400mg group

(except back pain). Abdominal pain, spinal cord compression,

arthralgia, and hypertension affected 8%+ of the 400mg and 0%

of the 300 mg group.

Comparison

In studies with ARD and PARPi arms, the rate of most

adverse events was higher for PARPi, with significance in some

studies for anemia (Figure 6C), nausea, lymphocyte decrease,

pyrexia, and asthenia. The only significant risk difference in

grade 3+ AE was for anemia in the PROfound-2 and Saad

studies (Appendix A2).

Patient-level data and simple models

In Figure 7, models are constructed from combined patient-

level data from 2 to 4 trials. There are issues using combined

data to build models, and here they are only meant to describe

use cases for the extracted data.

Models as research tools

In Figure 7A, combined Chinnaiyan/Chi patient data is

partitioned into groups that differ the most in Cox model
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FIGURE 6

(A) Stacked median adverse event rates across reporting trials by grade and treatment type. (B) Heatmap providing reported rate of trial +

adverse event pairs faceted by grade and treatment type. (C) Adverse event rates for anemia by trial and treatment class.

FIGURE 7

In all plots, red indicates ARD treatments and blue PARPi. (A) Model based recursive partitioning tree separating patients according to treatment

hazard ratios (PARPi vs. ARD). (B) A MOB tree for patients in the Chinnaiyan study. (C) Survival curves evaluating BRCA2 hazard ratios for altered

(top right) vs. unaltered (top left) and for patients separated into hazard ratio buckets by a ten tree MOB random forest (bottom). (D) Survival

curves for patients with (top) and without (bottom) HRD and strong (right) or no (left) model preference for PARP-i.

treatment hazard ratios. The model-based partitioning (MOB)

tree (Zeileis et al., 2010) identifies BRCA2 as the strongest

treatment differentiator. It prioritizes AR next, perhaps due to

ARD resistance in the altered subgroup.

A tree built on all the patients in the Chinnaiyan paper

(Figure 7B) identifies an ETS fusion subgroup negative for

TP53 alteration with a strong PARPi preference. This subgroup

provides evidence for molecular theories. ETS fusions are a
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factor in PARPi activity, and p53 modifications are known to

impact PARP1 PARylation (Fischbach et al., 2017). Clinical

researchers could use models/visualizations like these in a

research tool to explore treatment hypotheses.

Models to extend/refine drug indications

HRD can be thought of as a simple model - HRD is true

if any HRR gene is altered. More complex models can add

predictive power to biomarker indications. Figure 7C uses a

random forest of MOB trees (Garge et al., 2013) to group

patients from 4 trials by those with no, weak, or strong (top 15%)

PARPi preference. In this combined cohort, BRCA2 alteration

has anHR of 0.34 (upper right), and the strong PARPi preference

group for the model has a lower HR of 0.21. Better stratification

of patients can be useful when therapy is weighed against factors

like AE risk.

Figure 7D uses the random forest to find an HRD negative

subgroup that may still benefit from PARPi (lower right).

The model also identifies a subgroup of HRD positive

patients that may not benefit from PARPi (upper left). These

examples demonstrate that complex models could extend

or refine drug indications with the potential to improve

trial success.

Queryable data

Whilemachine learningmodels can provide powerful aids in

developing precision medicine, often what is needed are answers

to simple questions. Normalized, queryable data can answer

questions like:

What was the longest reported median
overall survival time in each trial?

One line of code can answer this question, and it allows us

to generate ideas about the mCRPC trial’s overall survival. We

should not use this question to compare results. Median overall

survival in months in increasing order:

1. 13.8 - BRCA1/2 negative HRD patients receiving

olaparib (TOPARP-A)

2. 17.7 - BRCA1/2 altered patients receiving olaparib (TOPARP-

B)

3. 22.7 - AAP+ Olaparib without specified biomarker (Saad)

4. 24.8 - BRCA2 altered patients receiving olaparib (PROfound)

5. 32.3 - AAP + veliparib, without specified

biomarker (Chinnaiyan)

Which PARP-I had the lowest and highest
rate of grade 3+ anemia?

A single line of code can answer this question. In increasing

order, the reported rates PARPi of serious anemia:

1. 2.53% - AAP+ Veliparib in Chinnaiyan

2. 15.3% - Rucaparib in TRITON2-1

3. 20.4% - TOPARP-B

4. 21.1% - AAP+ Olaparib Saad

5. 22.7% - Olaparib PROfound

6. 25.2% - Rucaparib in TRITON2-2

7. 30.6% - 300mg group TOPARP-A

8. 36.7% - 400mg group TOPARP-A

Open access, queryable data, will help providers

and clinical researchers ask and answer questions

like these in real-time. These queries can be viewed

at insilica.co/bawto/figure-scripts/statements.html.

Discussion

Today, biomarker-based clinical trial outcome data are not

readily accessible by oncologists, researchers, and policy makers

in publicly available databases. Instead, the research, treatment,

and regulatory decisions that rely on these data are limited

by the need to search, read and recall literature manually.

Accessibility in published literature indicates that the data

are not confidential. An opportunity exists to improve data

access, save time, reduce errors, and enable better therapy and

research. Here, we present an approach to explore some of those

possibilities in HRD/DRD biomarkers mCRPC clinical trials.

Additionally, all of our work is open-source, with step-by-step

instructions, and anyone with limited programming knowledge

can build upon it.

The publication of trial results in closed-access journals

makes it hard to access by oncologists, researchers, and

policymakers. Also, the absence of computationally accessible

data prevents the use of modern informatics methods on this

data. When normalized, clinical trial results can be combined,

which has its challenges, but can enable greater statistical power

and improve our ability to understand the disease. In this review

of mCRPC trials using our approach, we extracted thousands of

data points from only 13 studies in a normalizable manner.

The data points analyzed in this trial are difficult and time-

consuming to find. They can’t be computationally accessed

without human labor. They are not stored in an interoperable

format so that results can be jointly analyzed. Even when the

manual data extraction process is done, the results are not

reusable by future researchers. In short, biomarker outcome data

is not findable, accessible, interoperable, or reusable (FAIR).

In this publication, we show that for a set of 13 mCRPC

HRD/DRD trial publications, outcome data for hazard ratios
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could be extracted, compared, and visualized, thus identifying

(1) high impact biomarkers like BRCA2, (2) possible biomarker

interactions with prior treatments, (3) surprising results in

specific trials, like the lack of an HRD survival benefit for

Veliparib in the Chinnaiyan study. The combination of semi-

normalized patient data was used to build simple models to

automate the discovery of interesting patient subgroups in

combined data.

With access, any internet-connected machine can run this

entire analysis from a simple RScript. These scripts can be

viewed on insilica.co/bawto or at https://github.com/insilica/

bawto.

Models

Machine learning models like those demonstrated here can

identify biomarker-outcome patterns that are too complex for

humans or remain unobserved due to human bias (Maertens

et al., 2020). Machine learning models can identify causal

relationships, an important aspect when considering disease

progression and treatment effects (Luechtefeld et al., 2020).

Guidelines for using algorithms in trial designs indicate

that models could be used to refine eligibility criteria or

stratify patients based on model outputs from biomarker data.

Guidelines like SPIRIT-AI provide suggestions and checklists to

navigate the possible issues with clinical trial model use (Rivera

et al., 2020).

Limitations

Our approach was restricted to clinical trial publications

and, as a result, fails to identify secondary research identifying

gene - outcome relationships. Many publications reference large

amounts of retrospective molecular data derived from tissue

banks and other sources. Some of these data are accessible in

repositories like the genomic data commons and NCBI-GEO

and would make an excellent addition to analyses performed for

this study.

Conclusion

There exists a rich set of currently inaccessible but

normalizable data in biomarker-based clinical trial publications.

In a subset of 13 mCRPC clinical trial publications reporting

the results of trials measuring homologous recombination and

DNA repair deficiency biomarkers, our approach demonstrates

that biomarker clinical trials have sufficient normalizable data.

This will help inform biomarker selection in clinical trial design,

compare and rank survival metrics, investigate the effects of

biomarker-outcome relationships, evaluate adverse events, and

automate the discovery of therapeutic mechanisms. Today,

oncologists, regulatory agencies, and researchers use many of

these same data points, but they must search, read, and recall

data from publications to retrieve them. The approach presented

in this work to collect and store data allows for data to be reused,

combined with other data sets, and extended in future analyses.

While we showed its utility for metastatic prostate cancer, our

approach is domain-agnostic and can be easily extended to other

clinical domains and advance precision medicine.
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