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Preterm premature rupture of membranes (pPROM) typically leads to spontaneous preterm 
birth within several days. In a few rare cases, however, amniotic fluid leakage ceases, 
amniotic fluid volume is restored, and pregnancy continues until term. Amnion, the 
collagen-rich layer that forms the load-bearing structure of the fetal membrane, has 
regenerative capacity and has been used clinically to aid in the healing of various wounds 
including burns, diabetic ulcers, and corneal injuries. In the healing process of ruptured 
fetal membranes, amnion epithelial cells seem to play a major role with assistance from 
innate immunity. In a mouse model of sterile pPROM, macrophages are recruited to the 
injured site. Well-organized and localized inflammatory responses cause epithelial 
mesenchymal transition of amnion epithelial cells which accelerates cell migration and 
healing of the amnion. Research on amnion regeneration is expected to provide insight 
into potential treatment strategies for pPROM.
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IS pPROM IRREVERSIBLE?

Preterm premature rupture of membranes (pPROM) is a leading cause of preterm birth (Menon 
and Richardson, 2017). Fetal membrane rupture has traditionally been regarded as an irreversible 
process: the mean latency period from membrane rupture to delivery is 12  days at 20–26  weeks 
of gestation and 4  days at 32–34  weeks of gestation (Parry and Strauss, 1998). In some cases, 
however, ruptured fetal membranes can spontaneously “reseal”: Johnson reported that membrane 
resealing, defined as cessation of fluid leakage and negative nitrazine test, occurred in 24 cases 
of 208 pPROM patients (11.5%) in all 5,937 deliveries (Johnson et  al., 1990). In addition, 
we  know that the membrane repairs itself and heals spontaneously after amniocentesis (Borgida 
et al., 2000). These findings suggest that, although most women who experience pPROM deliver 
spontaneously within several days, the amnion has the capacity for wound healing in vivo.

CAUSES OF pPROM

About 30% of pPROM cases are caused by intra-amniotic infection, whereas the other 70% 
are unrelated to infection (Romero et  al., 1988). pPROM cases that are unrelated to infection 
are caused by smoking, low body mass index, maternal stress or undernutrition, oxidative 
stresses, intrauterine bleeding, and iatrogenic factors such as amniocentesis or fetoscopy.  
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Romero et  al. reported that intra-amniotic inflammation occurs 
in 37% of cases of preterm labor before 37  weeks of gestation. 
Interestingly, the rate of inflammation with infection was only 
11%, whereas that of sterile inflammation in the absence of bacteria 
was 26% (Romero et  al., 2014). They suggested that sterile intra-
amniotic inflammation might be  caused by damage-associated 
molecular patterns (DAMPs), such as high-mobility group box1 
(HMGB1), and concluded that sterile inflammation is a more 
common contributor to preterm labor than bacterial infection.

DAMPs are believed to play a major role in the 
pathophysiology of sterile inflammation. Specifically, when a 
tissue is damaged, intracellular components and molecules such 
as HMGB1, nucleic acids, heat-shock proteins, adenosine 
triphosphate, hydrogen peroxide, and calcium ions are released 
(Kono and Rock, 2008). Uric acid and S100 proteins are 
associated with pPROM (Friel et al., 2007; Nadeau-Vallee et al., 
2016). These DAMPs are recognized by toll-like receptors and 
receptor for advanced glycation end products (RAGE), leading 
to activation of inflammatory pathways such as NF-κB and 
AP-1, which yield sterile inflammation (Akira et  al., 2006; Xia 
et  al., 2017). Although DAMPs are released when tissue is 
damaged, they are also signals of tissue repair. Whereas pPROM 
initiated by bacterial infection requires immediate delivery to 
avoid fetal infection, the numerous pPROM cases that are 
unrelated to infection may be eligible for expectant management.

HEALING OF FETAL TISSUES: THE 
ROLES OF MACROPHAGES

The healing mechanisms of adult tissue are divided into four 
overlapping stages: (1) hemostasis, (2) inflammation, (3) migration 
and proliferation, and (4) resolution and remodeling (Sonnemann 
and Bement, 2011). In contrast with adult tissues, the healing 
of fetal tissue is much simpler (Sonnemann and Bement, 2011): 
inflammation is suppressed to a minimum, fetal tissue is usually 
not vascularized, and granulation tissue is usually not formed. 
These characteristics of fetal wound healing enable the tissue 
to heal quickly and scarlessly (Cordeiro and Jacinto, 2013). 
For example, when fetal skin is injured, actin and myosin 
proteins aggregate in the injured epidermis to form acto-myosin 
complexes that cause contraction of the tissue and shrinkage 
of the area of injury. These cellular structures stimulate migration 
of the epidermis and closure of the wound.

Remarkably, macrophages are recruited to injury sites to 
facilitate healing of fetal tissues. Circulating monocytes migrate 
to injury sites where they differentiate into tissue macrophages, 
and tissue-resident macrophages are also involved in wound 
healing (Jenkins et  al., 2011).

Macrophages are roughly divided into two types (Murray 
and Wynn, 2011), classically activated macrophages (M1 
macrophages) and alternatively activated macrophages (M2 
macrophages) (Gordon and Martinez, 2010). Wound healing 
is facilitated by M2 macrophages (Murray and Wynn, 2011). 
These cells release growth factors, such as transforming growth 
factor (TGF-β) and platelet-derived growth factors (PDGF), 
which activate damaged epidermis and fibroblasts. TGF-β plays 

a major role in the differentiation of fibroblasts from 
myofibroblasts. These cells migrate and contract, as well as 
release tissue inhibitor of metalloproteinases (TIMPs), which 
inhibits matrix metalloproteinases (MMPs) and prevents over-
destruction of tissues. Myofibroblasts also release collagen and 
repair damaged sites in conjunction with macrophages, which 
also release MMPs and TIMPs and remodel wounded tissue. 
Subsequently, macrophages phagocytose debris and damaged 
extracellular matrix (ECM) to clean the wounded tissues.

HEALING OF AMNION IN ORGAN 
CULTURE

In an experiment reported by Devlieger et  al. (2000b), small 
holes were generated with a biopsy punch in the centers of 
human fetal membrane sample. Interestingly, increased cellularity, 
survival, and proliferation were limited at the tissue border 
and the rupture did not heal even after 12  days. This result 
suggests that amnion cannot heal by itself; rather, the help of 
other cells such as immune cells are necessary for wound 
healing in the amnion.

ANIMAL MODELS OF FETAL 
MEMBRANE HEALING

Amnion has a high tensile strength; in fact, the strength of 
the fetal membrane is provided exclusively by the amnion 
(Parry and Strauss, 1998). Although fetal membrane structures 
differ among mammals, humans, and several experimental 
animals including mice, rats, rabbits, and sheep all have similar 
amnion structure; they also all have amnion in the most 
superficial layer of the fetal membrane (Carter, 2016). Thus, 
animal models are useful for the study of ruptured human 
fetal membranes in vivo.

The first histological observations of the healing process in 
fetal membranes were conducted in rats. Pioneering work by 
Sopher (Sopher, 1972) demonstrated that puncturing rat 
gestational sacs with a 21-gauge needle on day 15 of gestation 
resulted in a proliferation of amnion mesenchymal cells at the 
edge of the amnion within 24  h. Further, she showed that the 
thickened edge of the amnion was covered by epithelial cells 
and confirmed that wound closure occurred within a few days. 
Similarly, in a rabbit model, amnion integrity recovered to 40% 
of its initial value within 30  days of puncture (Deprest et  al., 
1999). The healing process of rabbit pPROM involves matrix 
remodeling by MMPs and TIMPs (Devlieger et  al., 2000a).

Using a mouse model, we  investigated the mechanisms of 
wound healing of fetal membranes. On day 15 of pregnancy, 
fetal membranes were mechanically ruptured with sterile needles 
of various sizes through the myometrium. Ruptured fetal 
membranes were clearly observed after 6  h and healing began 
within 24  h. Our mouse study revealed that the closure of such 
ruptures was complete within 48–72  h (Mogami et  al., 2017). 
Consistent with Sopher’s study, we  observed an aggregation of 
amnion mesenchymal cells at the edge of the amnion at 24  h. 
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Interestingly, this thickened edge was covered by a monolayer 
of epithelial cells. The proinflammatory cytokines IL-1β and TNF 
were quickly increased at the fetal membrane rupture site. When 
a 26-gauge needle was used to create a small rupture, this increase 
in proinflammatory cytokines returned to basal levels around 
24  h. When a 20-gauge needle was used to create a larger 
rupture, the puncture-induced increases in these cytokines persisted 
for a longer time. At the same time, IL-10, an anti-inflammatory 
cytokine, increased at the ruptured site, decelerating inflammation. 
IL-10 assists in wound healing, as shown by the finding that 
overexpression of IL-10 in mice accelerates skin healing (Peranteau 
et  al., 2008). In contrast, chronic inflammation conditions such 
as diabetic ulcers delay wound healing, suggesting the importance 
of a balance between inflammation and anti-inflammation  
for complete and organized wound healing. In the amnion,  
well-controlled switching from a pro- to an anti-inflammatory 
state seems to be  necessary for repair.

We observed an aggregation of macrophages around the 
sterile ruptured amnion (Mogami et al., 2017). These macrophages 
were fetal-derived and were probably recruited from the amniotic 
fluid, although they may have been amnion-resident macrophages. 
These fetal-derived macrophages released IL-1β and TNF at 
the ruptured site. In contrast with the typical wound healing 
process in adults, migration of neutrophils was rarely observed. 
Perhaps this is not surprising given the absence of infection 
and the sterile nature of the inflammatory stimulus. Yet, this 
raises questions regarding the role of these inflammatory cytokines 
at the ruptured amnion. We tested the function of these cytokines 
through in vitro scratch assays using primary human amnion 
cells. IL-1β and TNF caused significant acceleration of amnion 
epithelial cell migration. They did not, however, alter amnion 
mesenchymal cell migration. Importantly, the shape of the  
amnion epithelial cells changed, assuming a more spindle-like 
configuration (similar to that of mesenchymal cells) at the edge 
of migration. These spindle-shaped cells were immunoreactive 
for vimentin, suggesting that these wounded epithelial cells 
were undergoing epithelial-mesenchymal transition (EMT). In 
vivo, similarly, vimentin-positive cells can be observed scattered 
in the epithelial layer of the ruptured amnion in mice, suggesting 
that EMT occurs in vivo as well. EMT is known to speed up 
cell migration, which in turn speeds up wound closure. Our 
results imply that EMT provides more mesenchymal cells to 
the wounded amnion, where these cells then synthesize and 
release extracellular matrices such as collagen to strengthen 
the injured site. Richardson and Menon also reported that EMT 
occurs during amnion healing (Richardson and Menon, 2018) 
and that mesenchymal-epithelial transition (MET) occurs with 
the help of IL-8 once amnion closure is complete. In addition, 
Richardson et  al. also recently showed that oxidative stresses 
activate the p38 MAPK pathway, which causes EMT in the 
fetal membrane (Richardson et  al., 2020). Taken together, these 
results suggest that EMT is a key mechanism involved in 
stimulating amnion healing in the presence of sterile inflammation.

There is a concern that the healing properties of the amnion 
differ among species. In rabbits, for example, relatively small 
punctures created with a 14-gauge needle spontaneously healed 
to 41.7% of their initial state (Deprest et  al., 1999), whereas 

relatively large ruptures created with a 1  cm hysterotomy did 
not heal at all (Papadopulos et al., 1998). Similarly, in a mouse 
model, the amnion healed at a slower rate after being punctured 
with a 20-gauge needle than after being punctured with a 
26-gauge needle (Mogami et  al., 2017). We  speculate that the 
reported variation in healing potential depends on the initial 
size of the rupture rather than on species differences.

IMPORTANCE OF “SCAFFOLDS” FOR 
HEALING TISSUES

ECM scaffolds have recently received attention as a fascinating 
mechanism involved in wound healing acceleration and tissue 
regeneration (Eming et al., 2014). For example, a type-1 collagen 
patch preserved contractility and protected cardiac tissue from 
injury in a mouse myocardial infarction model, accompanied 
by attenuated left ventricular remodeling, diminished fibrosis, 
and formation of a network of blood vessels within the infarct 
(Serpooshan et  al., 2013; Wei et  al., 2015). Porcine urinary 
bladder ECM scaffold implantation improved the regeneration 
of muscle in volumetric muscle loss in rodents as well as in 
five human patients; perivascular stem cell mobilization was 
seen in connection with this procedure (Sicari et  al., 2014). 
Bioengineered biomaterials have been clinically applied to 
replace and restore the skin, heart valves, trachea, and tendons 
(Lutolf and Hubbell, 2005; Berthiaume et  al., 2011).

The application of biomaterials to ruptured membranes has 
been attempted in such animal models as rabbits, sheep, and 
rats (Zisch and Zimmermann, 2008). When gelatin sponge plugs 
were used in ewes and rhesus monkeys, for example, rupture 
sites were found to be  intact at term (Luks et  al., 1999).

Previously, we  showed that application of a collagen matrix 
assisted amnion healing in a mouse model of sterile pPROM 
(Mogami et  al., 2018). In this model, a type I  collagen gel 
was injected into mechanically-ruptured sites on murine fetal 
membranes immediately after puncture. The collagen gel was 
immediately solidified due to the animal’s body temperature 
such that it formed a collagen matrix layer beneath the ruptured 
amnion (Figure  1A). Interestingly, macrophages were trapped 
in this layer of collagen (Figure  1B). Moreover, this injection 
of collagen thickened the healing site, presumably stimulating 
more collagen synthesis by the mesenchymal cells in the amnion. 
We found vimentin-positive mesenchymal cells in the wounded 
layer of the amnion, suggesting that EMT occurs in this 
situation, as we had previously reported in our mouse pPROM 
model. Collagen injection dramatically increased the overall 
healing rate to 90%, whereas an injection of phosphate buffered 
saline alone resulted in a healing rate of only 40%. We concluded 
that scaffold formation at the wounded site in the amnion 
stimulates wound healing through at least two mechanisms. 
First, the scaffold provides a base for migrating amnion cells 
to cover the wound. Second, the matrix scaffold traps, 
concentrates, and localizes wound healing macrophages.

Application of collagen to the rupture site has also been 
tested in a rabbit pPROM model. In that study, amnion integrity 
was diminished by the injection of a collagen “plug” compared 
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to myometrial closure alone. This result is different from ours. 
We  speculate that this is because we  injected a collagen “gel” 
in liquid form to the rupture site using a syringe, such that 
the gel spreads immediately after injection around the rupture 
site rather than forming a “plug” as in the rabbit study 
(Papadopulos et  al., 1998). The formation of a plug might 
block the migration of amnion cells. Our collagen gel, in 
contrast, formed a collagen layer beneath the amnion in our 
mouse model. This layer serves as a scaffold for migrating 
amnion cells and traps macrophages. Thus, it never interferes 
with the healing process. The form of biomaterials (liquid or 
solid) and the means of their application (injection or patch) 
may thus be  as important as the material type itself.

The effectiveness of biomaterial scaffolds has been observed 
in other tissues. Bone and cardiac muscle-derived tissue ECM 
scaffolds for traumatic muscle wounds in mice improved tissue 

regeneration (Sadtler et  al., 2016). In this study, macrophages 
and immune cells were increased at the injured site, allowing 
these immune cells to be  polarized into a type 2 immune 
state. Therefore, providing a scaffold is a good strategy for 
stimulating healing of ruptured amnion. The least invasive means 
of accomplishing this in vivo remains under active investigation.

CONCLUSION

Based on several previous studies, we speculate that the amnion 
might be  capable of healing. Several cell types coordinate and 
orchestrate wound healing in the fetal membranes, including 
amnion epithelial cells that differentiate into mesenchymal  
cells, migrating mesenchymal cells, differentiating resident 
macrophages, and recruited fetal macrophages. ECM scaffolds 
could support spontaneous healing of the amnion not only 
by promoting the migration of amnion cells but also by 
polarizing macrophages into a type-2 phenotype. The mechanisms 
by which the amnion heals itself represent a new field of 
study in which a great deal more research must be  done to 
clarify how this healing process works.
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