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Acute and chronic disease processes that lead to cerebral injury can often be clinically 
challenging diagnostically, prognostically, and therapeutically. Neurodegenerative pro-
cesses are one such elusive diagnostic group, given their often diffuse and indolent 
nature, creating difficulties in pinpointing specific structural abnormalities that relate to 
functional limitations. A number of studies in recent years have focused on eye–hand 
coordination (EHC) in the setting of acquired brain injury (ABI), highlighting the important 
set of interconnected functions of the eye and hand and their relevance in neurological 
conditions. These experiments, which have concentrated on focal lesion-based models, 
have significantly improved our understanding of neurophysiology and underscored the 
sensitivity of biomarkers in acute and chronic neurological disease processes, especially 
when such biomarkers are combined synergistically. To better understand EHC and its 
connection with ABI, there is a need to clarify its definition and to delineate its neuro-
anatomical and computational underpinnings. Successful EHC relies on the complex 
feedback- and prediction-mediated relationship between the visual, ocular motor, and 
manual motor systems and takes advantage of finely orchestrated synergies between 
these systems in both the spatial and temporal domains. Interactions of this type are 
representative of functional sensorimotor control, and their disruption constitutes one of 
the most frequent deficits secondary to brain injury. The present review describes the 
visually mediated planning and control of eye movements, hand movements, and their 
coordination, with a particular focus on deficits that occur following neurovascular, neu-
rotraumatic, and neurodegenerative conditions. Following this review, we also discuss 
potential future research directions, highlighting objective EHC as a sensitive biomarker 
complement within acute and chronic neurological disease processes.
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iNTRODUCTiON

Acute and chronic disease processes that lead to cerebral injury can often be clinically challeng-
ing diagnostically, prognostically, and therapeutically. Neurodegenerative processes are one such 
elusive diagnostic group, given their often diffuse and indolent nature, creating difficulties in 
pinpointing specific structural abnormalities that relate to functional limitations. Historically, 
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TABle 1 | literature search strategy details.

Key words Articles 
surveyed

Articles 
utilized

Eye hand coordination acute brain injury 3 2
Eye hand coordination chronic brain injury 2 2
Eye hand coordination subacute brain injury 0 0
Eye hand coordination ABI 1 1
Eye hand coordination stroke 14 5
Eye hand coordination acute stroke 14 5
Eye hand coordination chronic stroke 0 0
Eye hand coordination CVA 14 5
Eye hand coordination cerebrovascular accident 14 5
Eye hand coordination traumatic brain injury 5 3
Eye hand coordination TBI 1 1
Eye hand coordination traumatic injury 6 3
Total listed items 74 32
Total articles (duplicate articles removed) 20 8
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experiments have concentrated on cerebral lesion-based 
approaches, significantly improving our understanding of the 
neurophysiology and underscoring the sensitivity of behav-
ioral biomarkers to detect as well as predict the outcomes of 
cerebral injury. These focal lesion-based models and associated 
biomarkers can be combined synergistically and have significant 
potential in shedding light on acute and chronic neurological 
disease processes.

Eye–hand coordination (EHC) can be defined as the complex 
relationship between our visual system and our manual motor 
system. Visually guided reaching, grasping, and object manipu-
lation depend on the ability to visually decipher environmental 
details and finely coordinate motor responses of the eye and 
hand to produce controlled, rapid and accurate movements. 
Independent deficits of either ocular or manual motor control 
have been studied extensively after acquired brain injury (ABI). 
More recently, the coordination between eye and hand move-
ments in patients with central nervous system injury, as related 
to neurovascular, neurotraumatic, and neurodegenerative condi-
tions, has been highlighted as a critical concept in understanding 
brain-behavior relationships.

Over the course of the past two decades, a number of studies 
have demonstrated that EHC deficits (i.e., eye–hand incoordina-
tion or dyssynergia) resulting from ABI are important thematic 
concepts within the field of rehabilitation following neurological 
injury (1–3). In response, a focused review was performed on the 
PubMed database using a series of key words that included the 
following phrases and/or words: eye–hand coordination, acquired 
brain injury, stroke, cerebrovascular accident (CVA), traumatic 
brain injury, and brain injury (including acute, subacute, and 
chronic time scales). The research included articles published 
over the past two decades. A total of 74 articles were surveyed, 
which varied significantly in scope and merit.

The aim of this narrative review on EHC was to clarify 
its conceptual importance in the setting of ABI, to improve 
understanding neuroanatomically, and to address implications 
therapeutically. The articles reviewed were focused on EHC or the 
integration of visual input secondary to ocular motor control and 
manual motor output and related pathology, including neurovas-
cular, neurotraumatic, and neurodegenerative conditions. The 
overarching goal of this review is to engender dialogue between 
clinicians and scientists in a framework that will provide clarity, 
improve comprehension and precipitate translational, clinical 
research.

liTeRATURe SeARCH STRATeGY

Our literature review was performed by J.R. and E.W. on pub-
lications available in the National Center for Biotechnology 
Information’s PubMed database using key words containing 
the phrase “eye hand coordination” and key words relevant to 
ABI (specific key words are listed in Table 1). The search of the 
literature included seminal and contemporary peer-reviewed 
articles on EHC in the setting of ABI, including injuries that 
were either secondary to trauma or CVAs. The research articles 
spanned publication dates between 1998 and 2015. The quality 
and the relevance of the resultant literature varied significantly 

in caliber and applicability. Articles were utilized based on their 
pertinence to ABI and its associated effects on EHC. Pertinence 
was determined by consensus between two authors based on 
whether there was a thematic focus on EHC, and also discussion 
of at least one of the patient populations of interest. A total of 
74 articles were originally reviewed (surveyed); this compila-
tion was ultimately distilled to 8 pertinent (utilized) references  
(see Figure 1 and Table 2).

eHC DeFiNiTiON

Eye–hand coordination is the complex relationship between the 
visual and manual motor systems, at the intersection between 
vision and dexterity. EHC depends on vision to aid in directing 
goal-oriented hand movements, including pointing, reaching, 
grasping, object manipulation, and tool use, and encompasses 
many functionally relevant motor activities (4, 5). Optimal 
coordination relies on precise ocular motor control for high 
acuity visual perception and sound manual motor control, yield-
ing robust effector coaction (6, 7). This visuomotor integration 
requires complex motor programs and near continuous, mul-
timodal sensory feedback, and predictions thereof, to produce 
controlled and rapid task-specific movements (8).

eHC NeUROPHYSiOlOGY AND 
NeUROANATOMY

The visual System (eye)
Primary visual cortex (V1), also known as striate cortex, is the 
first cortical region that processes visual input. V1 is located in 
the posterior pole of the occipital lobe. It mainly serves to process 
primitive visual features, such as bars of a specific orientation or 
edges and contours of solid objects within a specific portion of 
the retina’s visual field. From V1, visual processing continues 
through a sequence of adjacent cortical regions known as extras-
triate cortex. A fundamental organizing principle of these visual 
areas is a topographic representation of the contralateral visual 
field. The spatial layout of a scene is represented in an orderly 
manner across a population of neurons that reflect input from 
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TABle 2 | Key comparisons of the articles utilized in the review following the literature search and selection process.

Author Year Journal Cohort Obj. eyea Obj. handb 

Caeyenberghs et al. (1) 2009 J Head Trauma Rehabil ABI [−] (+)/2D
Caeyenberghs et al. (210) 2010 Neuropsychologia TBI [−] (+)/2D
Brown et al. (215) 2015 BMC Sports Sci Med Rehabil TBI [−] (+)/2D
Gao et al. (2) 2010 J Rehabil Med CVA [−] (+)/2D
Ghika et al. (3) 1998 Clin Neurol Neurosurg CVA [−] (−)
Tsang et al. (142) 2013 Am J Phys Med Rehabil CVA [−] (+)/2D
Procacci et al. (106) 2009 Neurocase CVA [+] (+)/2D
Vesia et al. (74) 2012 Exp Brain Res Review [n/a] (n/a)

aObj. eye = objective eye recording was performed [+] or not performed [−].
bObj. hand = objective hand recording was performed (+) or not performed (−) and, if performed, were the recordings in 1D, 2D, or 3D.
ABI = acquired brain injury; TBI = traumatic brain injury; CVA = cerebrovascular stroke.

FiGURe 1 | Flow diagram of literature search.
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the retina. This population of neurons constitutes a visual field 
map whereby adjacent neurons represent adjacent points in space 
(9), preserving the spatial layout of the retinal image in each of 
these cortical areas. This systematic organization is computation-
ally and metabolically efficient as it shortens connection lengths 
between similarly tuned neurons. Interestingly, topographic 
organization extends beyond retinotopic coordinate space. 
Relevant for EHC, other areas represent space in head-centered 
coordinates (10–12), or a combination of coordinate systems 
(13, 14). The interactions between these areas likely facilitate 
sensorimotor transformations fundamental to EHC. Extrastriate 
regions (such as V2/V3), which emanate rostrally from V1, are 
believed to be responsible for processing features of progressively 
increasing complexity (15–17). This processing stream bifurcates 
into a ventral “what” pathway, processing object identity and 

visual features, and a dorsal “where” pathway, processing spatial 
attention and movement (15, 18). The dorsal pathway has also 
been implicated in processing visual input for predictive and 
anticipatory movements, including those coordinated between 
the eye and hand (17, 19, 20). The dorsal and ventral streams are 
thought to aid EHC (21, 22).

The Ocular Motor System
In order to examine our environment, we alternate between 
fixating a point of interest and making fast, darting eye move-
ments (saccades) from one point of interest to another. For well 
over a century, scientists have measured saccades to investigate 
the link between brain and behavior (23, 24). Broadly, along 
with the subcortical superior colliculus (SC), four cortical areas 
contribute to the control of saccades: the frontal eye field (FEF), 
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FiGURe 2 | lateral (upper) and midsaggital (lower) views of the human brain, labeled with neuroanatomical regions of interest related to eye–hand 
coordination. In both views, ocular motor areas are colored blue, manual motor areas red, and combined ocular-manual motor areas a blend of red and blue.
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the supplementary eye field (SEF), the parietal eye field (PEF), 
and the cingulate eye field (CEF). Each region appears to play 
a distinct role in controlling eye movements. The FEF, SEF, 
and PEF directly project to the SC, while the CEF influences 
ocular motor control more indirectly through connections with 
the FEF, SEF, and PEF (25–29). Additionally, the FEF connects 
directly to the brainstem ocular motor nuclei, which house the 
ocular motor neurons that innervate the extraocular muscles 
(Figure 2).

Frontal Eye Field
The FEF is crucial for the preparation and execution of voluntary 
saccades to either external (visually guided saccades) or internal 
targets (memory-guided saccades) (30–34). The majority of 
research characterizing the FEF has been with respect to the 
monkey ocular motor system, ever since Ferrier discovered that 
electrical stimulation of the FEF elicited eye movements (23). In 
the monkey, FEF is located in the anterior bank of the arcuate 
sulcus, just posterior to the principal sulcus (31). The FEF both 
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projects to and receives connections from numerous cortical and 
subcortical brain regions (35, 36). It is retinotopically organized 
and primarily comprised of neurons that contribute to the hold-
ing or shifting of gaze (fixation neurons and saccade neurons, 
respectively) or neurons that generally respond to stimuli within 
their receptive field (visual neurons) (37, 38). Neurons within 
the FEF also have a preference for the contralateral visual field 
(31). In monkeys, there is also a rough topographic organiza-
tion with regards to saccade amplitude. The superior portion of 
the FEF is responsible for generating larger amplitude saccades 
and shares connections with the dorsal visual stream, while 
the inferior portion of the FEF is responsible for generating 
smaller amplitude saccades and shares connections with the 
ventral visual stream (39). Interestingly, this topography and 
connectivity organized by dorsal and ventral streams has yet to 
be demonstrated in the human FEF. Instead, the putative human 
homolog of FEF, located in the superior precentral sulcus (SPCS), 
is organized into distinct visual field map clusters similar to early 
visual cortex (40).

Supplementary Eye Field
The SEF is involved in more indirect aspects of saccade control, 
such as monitoring the consequences or context of eye movements 
(41) and coordinating sequences of successive saccades (42, 43). 
Although believed to typically be found in the posteromedial 
part of the human superior frontal gyrus, there exists a great 
amount of variability between individuals in the exact location 
of the SEF, thus rendering it difficult to define by anatomy alone 
(44). The activity of neurons in the SEF is modulated by target 
position in multiple reference frames, aiding in maintaining eye 
position despite changes in body and head position (14, 45). 
This region receives both sensory and motor inputs and supplies 
outgoing connections to both the FEF and PEF (46). Although 
electrical stimulation of an FEF neuron elicits an eye movement 
of a fixed magnitude and direction, SEF stimulation elicits an 
eye movement to a fixed region of the visual field relative to 
the position of the head, irrespective of the starting position of 
the eye (47). Although much less is known about topographic 
organization in SEF, a recent human neuroimaging study sug-
gests it also contains an orderly map of continuous space similar 
to other visual areas (48).

Parietal Eye Field
Visual input is received by the PEF and aids in triggering reflex-
ive saccades toward visual stimuli found within the peripheral 
field of vision, as well as managing alterations in attention (49) 
and performing memory-guided saccades (40, 50). The PEF is 
located in the lateral intraparietal (LIP) area in monkeys and the 
intraparietal sulcus (IPS) in humans, and contains strong and 
reciprocal connections with the FEF. Similar to early visual areas, 
the IPS contains multiple visual field maps of contralateral space 
that have led to further parcelation (34, 51). These subregions are 
labeled numerically (IPS0, IPS1, IPS2, IPS3, etc.), starting from 
the most posterior area, IPS0, which borders V3A/V3B. Each of 
these subdivisions are activated during human neuroimaging 
studies involving eye movements (52). Therefore, which of these 
individual maps, if any, directly correspond to subdivisions of the 

monkey IPS (LIP, AIP, VIP, MIP) is still up for debate (52–55). It 
is also possible that some of the retinotopic IPS subdivisions are 
unique to humans.

Cingulate Eye Field
The CEF is involved in intentional but not reflexive saccade 
control (56), and projects to both the FEF and SEF (57). In non-
human primates, the CEF is located on the medial wall in each 
hemisphere, ventral and partly anterior to the SEF. In humans, 
however, the CEF is located more posterior and ventral to the 
SEF (57). In humans, lesions of the CEF impair many types 
of saccades, including sequences of visually-guided saccades, 
memory-guided saccades, and antisaccades (56). Compared to 
the other ocular motor regions listed here, the CEF is the least 
studied and least understood.

Superior Colliculus
The SC plays a crucial role in saccade execution, as it projects 
directly to the brainstem ocular motor nuclei. It receives projec-
tions from a multitude of areas including FEF, SEF, and PEF. Like 
FEF, electrical stimulation of SC elicits saccades of a particular 
magnitude and direction. SC is also organized similarly to FEF, 
except in a rostral-caudal, rather than an inferior–superior, 
gradient of increasing saccade amplitude. Recent human neu-
roimaging studies have demonstrated that human SC contains a 
retinotopic map of the entire contralateral visual field (58, 59). 
In non-human primates, lesions of the SC alone impair but do 
not abolish eye movements, but lesions of SC and FEF together 
have catastrophic consequences for eye movements that do not 
recover with time (60).

Other Areas
The aforementioned areas are clearly not an exhaustive list of 
brain regions associated with ocular motor control, although they 
are the most studied. For example, dorsomedial frontal cortex, 
sometimes referred to as the presupplementary motor area, is 
critical for inhibition of reflexive saccades in humans (61). It has 
also been implicated in selecting among competing movements 
during action selection (62). Additionally, V1 also plays a role in 
ocular motor control and has projections directly to the SC. In the 
rhesus monkey, electrical stimulation of V1 can elicit saccades, 
but the required level of stimulation is much higher than what is 
necessary to elicit saccades via FEF or SC stimulation (63).

The role of human dorsolateral prefrontal cortex (dlPFC) in 
ocular motor control is still unclear. Electrophysiological and 
lesion studies in non-human primates show that the dlPFC 
contains spatially selective neurons that are critical for memory-
guided saccades (64, 65). However, lesions to human dlPFC 
do not impair memory-guided saccades (34), and do not show 
spatial selectivity (34, 66). A handful of studies have examined 
the effects of transcranial magnetic stimulation (TMS) on dlPFC 
during a memory-guided saccade task (67–69). These results 
seem to parallel the results from non-human primate lesion 
studies, finding effects of TMS on memory-guided saccade 
performance. However, it is likely that the stimulation site in 
these studies overlapped with the FEF. All three papers used the 
identical method to localize and define dlPFC, first finding the 
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motor hand area and then moving anteriorly a few centimeters; 
this method has also been described as an effective way to 
localize the human FEF (70). A more recent study using TMS 
to disrupt activity in human dlPFC found no impairment on 
memory-guided saccades (48).

The Manual Motor System (Hand)
Within EHC, the end goal is to place the hand/finger(s) or the 
manual effector in the position required for motor program 
execution or, in a dynamic sense, to work seamlessly and recipro-
cally with the eye to build and actualize complex motor programs. 
The neuroanatomical reach network most directly responsible 
for voluntary movements of the arm and hand includes motor 
cortical regions such as primary motor cortex (M1) and the 
supplementary and premotor cortices. The primary motor cortex 
begins on the anterior wall of the central sulcus and continues 
rostrally to comprise what is the anterior paracentral lobule. It 
is the cortical region responsible for the collective generation of 
action potentials that relay neural information to the descending 
corticospinal tract to produce hand movements (71). The premo-
tor cortex (PMC) is located anterior to the primary motor cortex 
(M1) and in a lateral position from midline; this region is in close 
spatial proximity to the inferior precentral sulcus (70). PMC is 
the planning region for anticipatory movements, provides spatial 
guidance during hand movements, and processes the sensory 
input used to aid the guidance of hand movements. The sup-
plementary motor cortex is closer to the midline and anterior to 
the primary motor cortex, and is used to plan sequential manual 
movements. These motor areas supply the bulk of the neurons 
whose axons compose the corticospinal tract (in conjunction 
with smaller inputs from somatosensory, posterior parietal, and 
cingulate cortex), which travels through the internal capsule 
and pons, decussates at the level of the medulla, and ultimately 
activates the alpha motorneurons in the spinal cord (primarily 
the lower cervical and first thoracic levels) either directly or via 
spinal interneurons.

This cortical reach network is supplemented by a larger net-
work of cortical and subcortical regions, including the posterior 
parietal cortex (PPC), somatosensory cortex, basal ganglia, and 
cerebellum. The PPC is an associative region that translates visual 
information and input from the somatosensory cortex into motor 
commands (72, 73). Based on functional neuroimaging, TMS 
studies, and human case series with parietal injuries, a functional 
topography for reach, as it relates to the planning and control of 
visuomotor action, has been described within the human PPC 
(74). More specifically, midposterior intraparietal sulcus (mIPS), 
superior parietal occipital cortex (SPOC), and angular gyrus 
(AG) are reach-specific areas (Figure 2). Three main aspects in 
reach-dominant areas include effector specificity, hemispheric 
laterality and computational specificity. The area posteromedial 
to IPS contributes to the planning of reaching, while the area 
anterolateral to the IPS has a role in grasp-related information 
integration. Cortex anterior to the intraparietal area (AIP) is 
involved in object-directed hand grasping and hand preshaping. 
In hemispheric lateralization, bilateral activation due to reach-
ing with more emphasis on contralateral movements has been 
identified (75).

The anterior portion of IPS monitors the compatibility of a 
planned reach/grasp with outgoing movement commands and 
incoming sensory inputs (74, 76). Eye movements frequently 
take place before a hand movement and may be spatially fixated 
on the object of interest until the end of reaching to improve 
accuracy (77–79). Decoupling of eye and hand movements 
requires reach and saccade goal separation (80–83). SPOC is 
more active in reaches toward peripheral (non-foveal) targets 
independent of gaze signals, while mIPS is more active in reach 
toward foveated targets with spatial congruence between gaze 
and reach goal (74).

In cortical reach-dominant regions, the anterior precuneus 
(aPCu) area, expanding into the medial IPS, is equally active in 
visual and non-visual reaching. Medial, anterior intraparietal 
and superior parietal cortices are also activated in both visual 
and non-visual reaching; areas located in the anterior distribu-
tion are more active during hand movements in comparison 
to those in the posterior distribution, which are more active 
during combined eye and hand movements. Another area, at 
the superior end of the parieto-occipital sulcus (sPOS), is more 
active during visual reaching. Taken together, aPCu may be a 
sensorimotor area with a prominent proprioceptive sensory 
input and sPOS, a visuomotor area that receives visual feedback 
during reaching (84).

In addition to these cortical contributions, the cerebellum 
plays a critical role in the timing and control aspects of manual 
dexterity, particularly multijoint movements, through both recip-
rocal connections with frontal motor areas, and through connec-
tions to the descending motor pathway through the red nucleus 
(85). The cerebellum receives inputs from a cortical network 
composed of motor, somatosensory, and posterior parietal areas 
via the pons. These inputs allow the cerebellum to compare the 
desired consequences of a movement (e.g., touching an elevator 
button), with the future progression of the hand through space 
as predicted from current motor commands. The cerebellum is 
often said to act as a “forward modeler” of the arm/hand for this 
reason (it can predict the consequences of the descending motor 
commands sent to the arm) (86, 87). The cerebellum is then able 
to modulate the ongoing stream of motor commands to correct 
anticipated errors, either through connections to SMA, or via a 
more direct modulation of the descending motor pathway via 
the red nucleus (86). Cerebellar damage results in motor incoor-
dination, and a loss of the typical smoothness of manual motor 
trajectories through space (85, 88).

This highly interconnected reach network is further com-
plicated by additional interconnections with the basal ganglia, 
the set of subcortical structures including the striatum (caudate 
nucleus and putamen), globus pallidus, subthalamic nucleus, 
and substantia nigra. Inputs to this functional grouping of nuclei 
from reach-related cortical areas are received by the striatum and 
processed by the remaining basal ganglia before being returned to 
the cortex (SMA) via the thalamus. The basal ganglia have a com-
plex modulatory role in the reach motor network that appears to 
involve the choice of which movement to make, from among the 
possible alternatives, as well as the related function of assigning 
values to different possible movements (e.g., based on which are 
expected to be most rewarding) (89, 90).
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SeNSORiMOTOR CONTROl: OCUlAR 
(eYe) AND MANUAl (HAND)

Overview
In humans, sensorimotor control strategies are essential for 
skilled somatic behavior; object manipulation performance aids 
in characterizing the interactions between the body and the arti-
cle of interest (91). Before initiating a manual motor movement, 
the eyes very often fixate on the preferred object (92); however, a 
more invariant feature is that the eyes will spatially direct gaze on 
the target prior to the arrival of the hand (93), typically near the 
peak acceleration of the reach (94–96). The ocular motor system 
enables the needed visual information to direct the hand and  
successfully accomplish the task requirements; this is performed 
so fixations are “just in time,” providing information at the 
moment the additional foveal-based fine detail would be required 
for the task at hand (97). Change blindness and short-term 
memory limitations, features of normal visual function, support 
the notion that information acquired during prior fixations fac-
tors minimally into computation (98–100). The information that 
is integrated across the fixations when a visual scene, for example, 
is largely semantic in nature, i.e., the memory of an object’s iden-
tity but not specific features or the memory of a global scene but 
not particular details (101, 102). Therefore, eye movements are 
closely coupled to motor action in both time and space (103).

Sensorimotor coupling involves the fusion of visual perception 
and somatic motor control for action planning and behavioral 
execution; in fact, vision may best be understood through the 
“lens” of action production (104, 105). The line of sight is often 
directed at items of interest in an environment, upon which 
manual interactions may subsequently be focused. Based on the 
final goal of an intended manual interaction, grasping choices 
will be affected; this not only has relevance for motor control 
and planning requisite to finger position but also for eye fixation 
position, as gaze is paramount to precise manual action before 
execution (71). Eye fixations suggest a multitiered manual motor 
planning hierarchy. At the first level, it is determined where to 
grasp the object of interest, given the current descriptive content 
and the orientation of the object. If needed, at the second level 
the grasp is altered based on the type of secondary task to be 
accomplished with the grasped object, e.g., tool movement 
from location A to B. If needed, at the third level the movement 
plan incorporates a joint action component reflecting, e.g., the 
final resting place for the tool, handing it to a second person or 
placing it in a convenient location. Changes in the second and 
third levels of motor planning alter eye movement patterns and 
suggest a bidirectional sensorimotor coupling of eye to hand in 
coordinated activities (71).

The brain putatively plans visually guided action in the PPC, as 
suggested by neurophysiological studies in non-human primates, 
in imaging studies in healthy humans, and in human patients 
with cerebral injuries (74, 106–108). In non-human primate stud-
ies, electrophysiological results have revealed effector-specific 
regions in the PPC, with the parietal reach region relating to 
arm movements and the LIP area relating to saccadic activity. 
Given the relationship to effector preference but not dominance 
in these PPC subregions, functional imaging studies have sought 

to determine similar degrees of effector selectivity in human 
PPC, including area V7 and IPS areas 1 and 2 (IPS1 and IPS2) 
(109). Results indicate a limited degree of effector selectivity in 
the cortex and that transitions from the specificity surrounding 
one effector to another are gradual through the cerebral hierarchy 
in association with the frontal, parietal, and occipital cortices 
(109). In the visual cortex, there is a general preference noted 
for saccades, the PPC subregion, V7, has been specifically noted 
to activate relative to these fast eye movements. In the parietal 
cortex, IPS1 reflects a balance of saccade and reach activity, while 
IPS2 appears to be biased somewhat toward representing reach 
planning. In the frontal cortex, while regions near the central sul-
cus are more active for reach, FEF displays no effector preference 
(109), which may indirectly indicate a form of balance between 
eye and hand (Figure 2).

The PPC is of central importance given its strong feedforward 
connections to premotor and primary motor cortex (110). It has 
been suggested that the cytoarchitecture of networks between 
frontal and parietal cortices and their associative connections is 
ideal for integrating visual and somatic information (111). In fact, 
connections between the parietal and the dorsolateral (e.g., PMC) 
and medial (e.g., SMA) frontal motor areas may link vital neural 
information that assists in determining the visually deciphered 
target location and the somatic hand configuration required for 
execution (112). Expanding the integration network, the parieto-
occipital junction shows activation when hand-motor goals are 
directed by a combination of gaze-oriented and proprioceptive 
body cues, suggesting some level of segregation within the reach-
related regions of the PPC, while purely gaze-centered motor 
goals demonstrate activation in the anterior cuneus (113).

In visually guided reaching, studies in the macaque have 
shown that the ventral aspect of the parieto-occipital sulcus may 
act as a potential early node of the distributed eye–hand network, 
serving as a possible source of visual- and eye-position signals 
to parietal and frontal areas; this process has been described as 
re-entrant signaling, reciprocal associative connections leading 
to the interaction of eye and hand motor commands (110, 114).  
The ventral bank of the parieto-occipital sulcus, areas V6 and 
V6A, operates as an integrator of visual and somatic spatial 
information (115). There might be overlap between these two 
areas and the “parieto-occipital area” (PO) (116), but recent 
studies comparing the connections emphasize that V6Av (the 
ventral subregion of area V6A) is cytoarchitectonically and 
functionally distinct from the adjoining areas (V6 and V6Ad, the 
dorsal subregion) (117). More specifically, V6Av may serve as an 
integrator of visual and somatic/motor inputs (118). PPC is not 
only considered the sensorimotor interface for the planning and 
control of visually guided movements, but also conveys initial 
sensory-to-motor signals and online updates for the integration 
of sensory information from prior and current manual motor 
movement (119). The spatial position of the target is compared 
to the current spatial position of the hand which is thought to be 
represented in an eye-centered reference frame, mapping directly 
into motor error signals in a hand-centered reference frame; the 
superior parietal lobule (SPL) in the PPC is the primary location 
where these transformations are thought to occur with activation 
patterns mapped along a ventral–dorsal axis (119).

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


8

Rizzo et al. EHC in ABI

Frontiers in Neurology | www.frontiersin.org June 2017 | Volume 8 | Article 227

Coordinate Mapping Based on visual 
Cues
Visual cues that translate into retinotopically coded information 
must be converted into meaningful output for effector-specific, 
goal-directed activity. The PPC may direct and plan movement 
by establishing a head/body-centered coordinate system, through 
both visual input and motor/proprioceptive cues, or, in contrast, 
utilize an eye-centered coordinate system (120, 121). An eye-
centered frame of reference proves useful when considering 
the optimal dual-effector coordination, as eye movements are 
coded in eye-centered coordinates: extending this into PPC 
would ostensibly be strategic (122). In addition, the eye-centered 
reference frame used in PPC would help in accounting for online 
obstacles during visuomotor action and during error correction 
(123, 124). Evidence from macaque supports the concept of 
PPC operating under a common reference frame, where sen-
sory targets are computationally processed for transformation 
from head-, body-, eye-, and limb-based coordinates into one 
eye-centered representation; this simplifies inter-effector motor 
planning (122).

The brain maintains a dynamic map of memory-based, geo-
metric space in a gaze-centered coordinate system (125). On a 
cellular level, in the primate parietal cortex, the receptive fields 
of neurons have been shown to shift transiently in anticipation 
of an eye movement, predicting the sensory consequences of the 
intended eye movement (126). Given natural delays in sensory 
feedback and the anticipatory nature of this physiologic phenom-
enon, the mechanism is likely a forward model similar to what has 
been described for arm movements (87, 127, 128), which would 
combine sensory feedback with the predicted consequences of 
motor commands to facilitate online feedback control; addition-
ally, this may impact the process by which the brain monitors 
and stores memories of previous movement execution and 
performance (125, 129, 130).

iMPAiRMeNT OF THe viSUOMOTOR 
SYSTeM

Pathology and Clinical Disease
Pathology and clinical disease provides neuroanatomical and 
neurophysiological “knockouts” that can be diagnosed and 
characterized behaviorally, shedding light on cerebral function. 
Connecting empirical data on clinical deficits with neuroimaging 
and anatomical correlates yields greater understanding behind the 
nature of specific visuomotor pathologies and more significantly 
on relevant connections, associations, pathways, and networks. 
Optic ataxia (OA), as a clinical entity, is an archetype; patients 
demonstrate difficulty in executing visually guided reaching 
without additional sensory cues, accompanied by deficits in pre-
hension and hand orientation. As opposed to Balint’s syndrome 
or OA plus ocular apraxia and simultagnosia, an isolated optic 
ataxia often manifests with intact ocular motor function, full 
visual fields, normal depth perception, complete motor ability, 
and cerebellar function and no known cause of reaching ataxia. 
These clinical signs and disease patterns are attributed to lesions 
in the PPC or, more specifically, neurovascular injuries in the 

superior and inferior parietal lobule (SPL and IPL, respectively), 
around the IPS (131–134).

Optic ataxia, again defined as the inability to properly reach 
or grasp objects under visual control, particularly under periph-
eral vision, is associated neuroanatomically with dysfunction 
at the border of the SPL, near the IPS, but superior to the IPL, 
and behaviorally with poor motor performance when faced 
with moving targets that pose immediate motor programming 
challenges (135, 136). More precisely, the SPL receives afferent 
signals from the extrastriate areas of the occipital lobe and has 
reciprocal connections to and from the premotor and primary 
motor cortices of the frontal lobe, serving as a multisensory 
integration hub planning motor commands (137, 138). Optic 
ataxia has been interpreted as a combinatorial dysfunction in 
the ability of parietal neurons to integrate retinal, eye, and hand 
signals utilized for EHC (134). The neural mechanisms of hand 
movement corrections given rapid target changes shed light on 
the functional abilities of the eye and hand to maintain coupling 
and assist in further understanding the pathology of optic 
ataxia, highlighting clinical deficits that manifest as an inability 
to quickly adjust in-flight hand movement trajectories aimed at 
moving objects (132).

Sensorimotor impairment
Cerebrovascular accident leads to sensorimotor impairments 
that result in a myriad of deficits in visually guided reaching 
and pointing movements, impairments that are noted in both 
the contralateral and ipsilateral hands (2, 139–145). The focus 
post-injury has been to examine the hand objectively during 
visually guided action without objective eye movement assess-
ment, leaving one to question the abnormalities that may exist 
between effectors. In fact, the ocular motor system, when objec-
tively assessed, has been shown to be a powerful tool in clinical 
neuroscience, serving as a marker of cerebral function (146–148). 
Recently, eye movements have been shown in stroke investiga-
tions to be a sensitive biomarker for cognitive and motor recovery  
(149, 150). Additionally, poststroke patients display unique 
pathophysiologic phenotypes that may include tactile deficits 
(151–153), proprioceptive losses (154, 155), hemiparesis and 
related motor synergies (156–158), and spasticity (159–161), 
which would suggest that these new sensory and motor “states” 
postinjury create new relationships between receptor and effec-
tor, requiring the need for re-integration (162–164).

In fact, poor visuomotor performance (EHC) has been associ-
ated with poorer accuracy and longer movement times in visu-
ally guided action poststroke, and these deficits have correlated 
significantly with impairments at the sensory and motor level; 
more specifically, poor chronometric and spatial performance in 
the more affected limbs of stroke subjects have correlated with 
tactile insensitivity, handgrip strength deficits and more severe 
motor impairment scores, as assessed by the Fugl-Meyer (2). It is 
well known that reaching depends on inputs from both vision and 
proprioception; tactile sensation is a component of propriocep-
tion, particularly when proprioceptive inputs may be impaired  
(165, 166). Evidence of this sensori-motor coupling in control 
physiology during multi-joint action tasks is well documented 
(167, 168). Optimality in functionally oriented somatic movements 
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of the upper extremity is demonstrated through hand paths that 
are straight, smooth, and with bell-shaped velocity profiles that 
scale with distance, implying advance planning (169, 170). These 
control markers set comparative baselines for investigations into 
impairment and not surprisingly suggest impairments in motor 
control programming at the planning level and at the sensori-
motor interface level (162, 171, 172).

Following stroke, sensorimotor uncoupling is a byproduct 
of new relationships between impaired sensory input and poor 
motor output (163). As these new relationships are learned, the 
execution of limb movements is altered, above and beyond what 
would be expected from the individual deficits themselves: take 
for example a velocity curve that has an earlier peak and a pro-
longed deceleration phase, allowing greater opportunity for feed-
back mechanisms to improve endpoint accuracy (141, 163, 173).  
An intriguing experimental paradigm is the double-step sac-
cade task (174), in that goal-directed action can be tested while 
a  spatial target is displaced between two locations during the 
primary saccade, a period in which there is no visual perception. 
This paradigm can be deployed as a part of a visually guided 
reach to point task and will decrease the performance of the 
arm movement without mechanical perturbation or cognitive 
understanding of the manipulation. It has been suggested that 
during visually guided rapid arm-movement control, in which 
saccadic double-stepped targets are implemented, that spatial 
corrections of the hand are driven by ocular motor corrections 
following spatial target shifting (175).

Vision is essential to the sensori-motor integration required 
for visuomotor action. Gaze position is a consequence of ocular 
motor control and supports hand movement planning. These spa-
tial locations or fixations often mark key positions for fingertip 
placement and are a byproduct of the functional requirements 
of the task at hand (91, 176). Furthermore, vision-based hand 
feedback is vital to motor adjustments during online control, as 
saccadic behavior updates spatial understanding and improves 
goal localization (177); in fact, it has been suggested that there 
is parallel processing between effectors (77, 178). This could be 
particularly problematic in patients with ABI with eye movement 
deficits (179–185), in addition to somatic motor deficits (e.g., 
hemiparesis). While manual motor deficits are typically evident 
on clinical examination, ocular motor deficits frequently require 
objective recording techniques (186–194) for identification and 
prognostication (181, 183, 195). Nevertheless, even if eye move-
ments are found to be sound post-ABI, clinically and subclini-
cally, following objective recordings, an impaired limb with poor 
functional performance may lead to maladaptive ocular motor 
behavior to compensate for lost task ability.

An eye-hand dyssynergia, or a lack of coordination between 
effectors, may operate in suboptimal modes to re-establish 
premorbid skill level, impeding recovery. This sensorimotor 
impairment may by multifactorial and compromised second-
ary to not only ocular motor deficits but also visuospatial and 
visuoperceptual abnormalities (196–200), in addition to balance 
deficits; in fact, decreases in balance have been noted during EHC 
tasks with stroke patients (142). This may all be of significant 
interest given the increased sensitivity during poststroke periods 
to sensory reweighting (201).

Deficits of Predictive Control
Our visual world is ever changing and prediction is a necessary 
part of object manipulation and consequently an important 
aspect of eye–hand control. Catching a ball or grasping a pen 
being handed to you requires anticipating the motion and 
direction of the object, and planning a motor response that will 
intersect successfully with the predicted trajectory. If the affer-
ent end of visual processing or perception was simply used to 
generate spatial cues for EHC, our hand would consistently miss 
the spatial target; rather, an integrated construct replete with 
anticipation and prediction is pivotal to successful outcomes, 
which translate into functional performance (202). Superior skill 
in sports demonstrates finely tuned ocular motor control that 
drives complex somatic motor control (203–207). For example, 
soccer goalkeepers at the expert level demonstrate more accurate 
soccer ball prediction during anticipation tasks, as compared to 
novice level players; differences also include efficient and more 
effective strategies during visual search, which consist in part of 
longer fixations that are less frequent and directed at disparate 
regions of interest (208, 209).

In ABI, including injuries secondary to neurovascular and 
neurotraumatic insults significant predictive control deficits have 
been demonstrated during dynamic EHC tasks in the absence of 
deficits during static visuomotor tasks, highlighting diffi culties 
in rapidly processing sensory information rather than motor 
execution errors. Delaying or inefficiently managing sensory 
information may not only lead to problems with target anticipa-
tion during dynamic tasks (feedforward impairment), but also 
the use of sensory feedback for error correction (1, 210). In fact, 
studies have demonstrated ocular motor deficits in predictive 
control within ABI for moving targets with and without inter-
mittent stimulus blanking, and these impairments have been 
correlated with cognitive performance (211–213). Moreover, 
increasing cognitive load during predictive ocular motor tasks 
degrades performance in ABI and may suggest an “overload” to 
the impaired neural network (214).

This opens several broader questions, as patients with ABI 
who suffer from impaired eye movements, or even decreases in 
exploratory eye movements, may have perceptual limitations 
that hampers the understanding of scenes and spatial relation-
ships between objects. This, in combination with loss of sensory 
feedback systems typically in place during action production, 
may increase the cognitive complexity of the task at hand (3). 
This may be more problematic in tasks for which EHC needs 
to flexibly convert from coupled function to uncoupled or 
decoupled function. For example, consider reaching for your 
cell phone while reading a newspaper, thus executing a somatic 
motor movement toward one spatial target while simultaneously 
executing saccades during the reading task elsewhere (74). Even 
asymptomatic post-ABI patients have shown difficulty in visually 
guided action when there is a level of dissociation between the 
visual information used to guide the required motoric action, 
decoupling the eye and the hand and perhaps increasing the 
task complexity. Similarly, multidomain tasks that encompass 
cognitive and motoric skill are effective at “pushing” the brain 
during functionally relevant performance; these constructs must 
be viewed on a spectrum. A cognitive “load” in such dual tasks 
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can be experimentally manipulated and made more or less chal-
lenging for more effective screening; at the mild end, this may be 
accomplished by increasing the cognitive difficulty (e.g., visually 
guided pointing coupled with a serial sevens countdown), or 
decreased for those on the severe end by decreasing the cognitive 
difficulty (e.g., adding an easily predictable element to a spatial 
sequence of visually guided pointing) (215).

These predictive control deficits are provocative when framed 
in neurovascular and neurotraumatic conditions, particularly 
when visually guided action is uncoupled and spatial targets are 
dynamic. However, in the setting of neurodegeneration, whether 
one considers vascular dementia following repeated multistepped 
strokes or chronic traumatic encephalopathy following repeated 
traumatic brain injuries, these constructs are even more compel-
ling, given the cognitive impairments that may be superimposed 
on ocular motor and/or visual deficits (216–219).

Disorders in visuomotor Planning
Predictive control is a central element of visuomotor planning; 
this is particularly relevant during dynamic motor tasks with 
spatial targets that are in motion and that require anticipation 
for successful interaction (202). However, at a more basic level, if 
one considers motor programming or feedforward control during 
tasks without dynamically moving targets, the planning of hand 
movements during reach is impaired after stroke or post-ABI 
(171, 172, 220, 221). Impaired planning results in an inability 
to program sequences of motor action in space and time (139, 
222–225). As the environment undergoes incessant change, our 
body must adapt, a fundamental element to spatially accurate 
motoric action. During adaptation, previously observed errors 
in one’s own performance inform the correction of future motor 
plans. It has been suggested that sensory prediction errors are a 
primary input for motor programming revisions, during which 
planning is adjusted following a comparison between motor out-
put and the predicted sensory outcomes of the original plan (226).

While planning is contingent on sensory information, e.g., 
vision and proprioception, laterality may also play a significant 
role. It has been even suggested that hemispheric specialization is 
paramount, producing dissociable differences in poststroke motor 
control. The left hemisphere is theorized to be motor-planning 
dominant for feedforward control while the right hemisphere is 
theorized to be feedback dominant for error correction during 
position control. Following this construct, a limb stabilized on 
a visual target may leverage right hemisphere resources, while a 
limb attempting to catch a moving ball may leverage left. In con-
cert, optimizing ongoing action is undoubtedly the integration of 
feedforward and feedback control, and ABI has revealed deficits in 
initial trajectory profiles in left-brain injury and deficits in spatial 
accuracy in right-brain damage (227–230). Thorough assessment 
and targeted treatment of planning deficits may lead to improved 
motor relearning and functional recovery in ABI (221).

Clinical implications and Outcome 
Measures
Acute and chronic disease processes that lead to cerebral injury are 
often challenging from a diagnostic and therapeutic standpoint; 

this is particularly true with neurodegenerative disorders second-
ary to their often diffuse and indolent nature, constraining our 
ability to isolate specific structural abnormalities with associations 
to functional limitations (231). To improve our understanding of 
neurophysiology and enhance our understanding of the clinical 
implications, experiments have historically concentrated on focal 
lesion-based approaches. These lesion-based models and associ-
ated biomarkers can be combined synergistically with the goal 
of detecting and characterizing the preclinical evolution of the 
neurobiological events that precede the cognitive impairments 
associated with neurodegeneration (232–235).

Objective eye movement recordings, when approached with 
methodological rigor, have already proven valuable as a research 
tool within ABI (236–238). In fact, ocular motor recordings have 
been used for their screening utility in a diagnostic capacity 
(211–214). As a response, rapid, vision-based performance meas-
ures that depend on time taken and errors made during visually 
presented number reading or object naming have been developed 
and extensively studied in the setting of ABI (239–244). More 
broadly, eye movements and visuomotor skill of the upper limb 
have been sensitive markers of cerebral injury (245). Taken 
further, eye and arm function following acute ABI has demon-
strated good predictive capacity for outcomes in the subacute and 
chronic stages following injury with superior performance when 
compared to health status on self-report or based on neuropsy-
chologic assessment (1, 246, 247). These prognostic capabilities 
have also enabled the identification of individuals who are poor 
responders or those who may require more aggressive inter-
vention (248, 249). Ocular motor performance has even been 
demonstrated to be a biomarker of cognitive recovery beyond 
the times at which apparent full recovery had been deemed, as 
assessed by conventional metrics (150). While the literature is 
more extensive for neurovascular and neurotraumatic etiologies, 
the evidence base does extend into neurodegeneration (250, 251).

Given this framework, it is not difficult to see that there are 
extensive opportunities for translational ocular motor investiga-
tions that extend beyond the research setting and into the clinic. 
These opportunities are multiplied when ocular motor investiga-
tions are juxtaposed with manual motor investigations in ABI. 
While the clinical implications are significant, the literature has 
yet to see objective ocular motor and somatic motor control 
recordings enter the setting of ABI for unconstrained, coordi-
nated eye and hand movements and frequently the motor output 
that is quantified during visually guided action is simply somatic 
in nature (Table 2). Though examples certainly exist where these 
two effectors have been objectively recorded, the movements 
have been constrained to one or two spatial dimensions, limit-
ing the ecological validity; such constrained movements may 
require altered programmatic control between effectors, as a 
limb restricted to execute somatic motor output in an unnatural 
mode may have problematic effects on the ocular motor output, 
restricting comparisons. In the present narrative review, there was 
only one study that simultaneously recorded ocular and manual 
motor activity; the remaining manuscripts quantified movements 
of a single effector system (Table 2).

In fact, objective EHC tasks have already been designed for 
neurodegenerative disease processes, incorporating simultaneous 
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ocular and manual motor recordings (252, 253). These investiga-
tions focused on integrated eye and hand assessments have 
yielded promising results and used simple tasks during which 
subjects are merely asked to perform a “look and reach,” revealing 
quantifiable deficits in visually guided action (254). Additionally, 
and perhaps more promising, are tasks that have combined 
more cognitively demanding elements, e.g., antisaccades and 
antitapping, as part of an effort to increase the diagnostic power 
of the measures (252, 253, 255). While it has been suggested that 
objectified visuomotor tasks and related deficits may assist in 
diagnosing prodromal neurodegenerative disease entities and 
monitoring their progression, similar tasks that further increase 
complexity with distractors and/or feedback perturbations may 
assist in preclinical detection.

Currently, a central focus of rehabilitative interventions for 
cerebral injury is to restore motor ability and increase function. 
However, the return of motor ability often does not ensure eco-
logically valid, meaningful gains in function (222, 256). A clearer 
characterization of ocular motor control and its relationship to 
manual motor control will improve our understanding of EHC 
in a functional context. The quantitative relationships and motor 
outputs from both effectors are likely to yield metrics that can be 
correlated and compared to existing assessments and outcome 
measures utilized in current care models. Positive relationships 
will yield significant opportunities on the diagnostic, prognostic 
and therapeutic fronts, driving toward the development of algo-
rithmic approaches with tailored, patient-specific management 
plans.

CONClUSiON

During goal-directed movement, first-rate function often requires 
that visual perception, under precise ocular motor control, be 
translated optimally into somatic action. Leveraging focal lesion-
based models and associated eye–hand biomarkers is a robust 

approach toward significantly improving our understanding of 
acute and chronic neurological disease processes. In recent years, 
a number of studies have focused on EHC in ABI. The present 
review describes a series of studies that directly or indirectly 
highlight EHC in ABI and the neuroanatomic, computational, 
and broader clinical implications. While there is ample evidence 
to suggest that coupling is essential to EHC and that it is a sensi-
tive biomarker for cerebral injury, visually guided action in the 
experimental setting has typically been limited to quantifying one 
effector or two effectors in a limited or constrained fashion. As 
such, it is recommended that future studies addressing related 
behavior should concurrently objectify ocular and manual motor 
control in unconstrained and natural modes. These studies, while 
technically more challenging, are likely to further characterize 
coupling and potentially yield high-impact results along the care 
spectrum from diagnosis to neurorehabilitative treatment in the 
setting of neurovascular, neurotraumatic, and neurodegenerative 
pathology.
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