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Abstract

In the problem of multiple attributes group decision making (MAGDM), the probabilistic lin-

guistic term sets (PLTSs) is an useful tool which can be more flexible and accurate to

express the evaluation information of decision makers (DMs). However, due to the lack of

time or knowledge, DMs tend to provide the evaluation information by incomplete PLTSs

(InPLTSs) which contain missing information. The process to estimate the missing informa-

tion of InPLTSs is essential, which is called the normalization of InPLTSs. By analyzing the

previous methods, the existing defect is that the original uncertainty information of InPLTS

can be hardly retained after normalizing. Moreover, the literature that considers the normali-

zation method from perspective of entropy change is absent. Thus, to overcome the short-

coming and fill the research blank, we propose two optimization models based on minimum

entropy change of InPLTSs, which can remain the original uncertainty information of

InPLTSs to the greatest extent. Inspired by entropy measure of PLTSs, the novel concepts

related to entropy measure of InPLTS are developed. In addition, based on the novel nor-

malization method, a decision model is constructed to solve the MAGDM problem. To verify

the feasibility and superiority of the proposed method and model, a case about the selection

of five-star scenic spots is given and we conduct to have comparative analysis with other

methods.

1. Introduction

In real world, the decision problems become complex increasingly [1]. Single person difficultly

makes accurate and scientific decision owing to the limited time and the lack of knowledge or

experience [2]. In this sense, to achieve the efficient and reasonable decision result, the group

decision making (GDM) is propounded [3–5], which has been applied to different fields, e.g.,

supplier selection [6], medical resource management [7] and the selection of investment

brands [8]. As we all know, it may contain many attributes in the decision scenario, e.g., mate-

rial transportation selection including fee cost, time, security and so on. The situation of deci-

sion is called multi-attribute group decision making (MAGDM), which has been also applied
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broadly to many fields, e.g., green logistics risk assessment [9], the selection of automobiles for

customers [10] and portfolio allocation [11]. For the MAGDM problem, three steps are con-

ducted generally [12]: (1) collection of evaluation information, (2) information aggregation,

(3) ranking process.

However, in most cases, when facing various alternatives and attributes, experts are not

able to give complete and accurate evaluations due to the vagueness and hesitance of human

cognition as well as the complexity of issue [13]. To model the fuzzy and hesitant information,

Zadeh [14] proposed the fuzzy sets (FSs) in decision making. Subsequently, the concept of hes-

itant fuzzy sets (HFSs) was introduced by Torra [15], in which experts can use several possible

values with corresponding membership degrees to describe their preferences. Actually, when

facing the decision problem, people prefer to use linguistic terms to express their preferences

intuitively rather than crisp numbers [16, 17]. Thus, Zadeh [18] firstly proposed the concept of

linguistic valuables (LVs), which describes the preference information by using linguistic

words such as ‘good’, ‘medium’, ‘bad’. Afterward, on the basis of HFSs and LVs, Rodriguez

et al. [19] developed the hesitant fuzzy linguistic term sets (HFLTSs) so that decision makers

(DMs) could utilize a set of linguistic terms to describe their preferences and it well expresses

the hesitance and vagueness of DMs. But the defect of HFLTSs is that the importance or

weights of linguistic terms are identical as default. In reality, the importance of every linguistic

term provided by DMs is different because of the cognitive complexity of human and the dis-

tinct preference degrees over schemes [20]. Moreover, HFLTSs can not be used to describe the

evaluation information of group. For example, when evaluating a scheme, 20% of DMs sup-

port alternative A and 30% of DMs reject alternative A and 50% of DMs express neutrality.

Hence, it can not use HFLTSs to precisely describe this situation with different proportional

information. To overcome the shortcomings of HFLTSs, Pang et al. [5] developed the concept

of probabilistic linguistic term sets (PLTSs) that the set contains not only various linguistic

terms but also the corresponding probabilities. PLTSs can largely retain the ambiguous infor-

mation of DMs and reflect the importance distribution of LTs. In recent years, PLTSs has

become the research focus due to its advantages and potential. For a PLTS, it contains one or

more linguistic terms and the sum of probabilities of all linguistic variables may be not equal

to 1, i.e.,
X#LðpÞ

k¼1
pðkÞ � 1 (where #L(p) denotes the number of linguistic terms in a PLTS).

There are numerous literature involving the PLTSs since the theory was proposed, and some

open and potential research problems of PLTSs have been also revealed. Xu et al. [21] gave an

overview of probabilistic-based expressions from characteristic, technology, comparison meth-

ods, advantage and application. Liao et al. [22] and Mi et al. [23] reviewed the research status

of PLTSs from some aspects and provided the existing problem and future directions respec-

tively. Considering that DMs interpret the linguistic information in different ways, Wan et al.

[24] proposed a novel expression model based on individual semantics, which takes the cogni-

tive differences and psychological behavior of decision makers into account. On the problems

of PLTS operators, Xu et al. [25] considered whether the elements are independent and pro-

posed some novel operators of PLTS, which were used to fuse DMs’ information in group

decision making. Wan et al. [26] developed a new possibility degree to rank PLTSs and defined

some operational laws on the basis of Archimedean copulas and co-copulas.

Among the researches on PLTSs, the normalization method of PLTSs is an essential issue.

Different normalization methods will influence the original preference information provided

by DMs and the final decision results. Therefore, how to design a scientific and reasonable

normalization method is a meaningful research topic. The main tasks of PLTSs normalization

contain two aspects [5]: (1) estimate the unknown probabilities if the sum of linguistic terms

probabilities is less than 1, i.e.,
X#LðpÞ

k¼1
pðkÞ < 1; (2) unify the number of LTs when comparing
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or operating between two PLTSs. For the second task above, the common method is to make

#L1(p) = #L2(p) (where #L1(p) represents the number of LTs in L1(p)). If #L1(p)<#L2(p), add

the minimum elements into L1(p) whose probabilities are set 0 and vice versa. It is not more

meaningful to study the second problem so this paper mainly focuses on the first task. For the

first task, Pang et al. proposed a normalization method that unknown probabilities are

assigned averagely into the known LTs. Pang’s normalization method is most popular due to

its simplicity of calculation. Moreover, there are four other approaches to normalize PLTSs

[23]: (1) Full-set assignment; (2) Power-set assignment; (3) Envelope assignment; (4) Attitudes

assignment. Recently, Wang et al. [27] summarized the incomplete PLTS (InPLTS) as two

types, namely, InPLTS with missing LTs (MLT-InPLTS) and InPLTS with missing probabili-

ties (MP-InPLTS), and constructed several optimization models to estimate the missing infor-

mation based on preference consistency. For the two types of InPLTSs, some scholars

proposed many corresponding methods. To solve the problem of MLT-InPLTS, Song [28] and

Song et al. [29] proposed a probability computing model to estimate the missing probabilities

respectively. Tian et al. [30] developed a personalized normalization method through the two-

stage decision-making process, which integrated three types of individual risk attitudes. For

the MP-InPLTS, Gao et al. [31, 32] utilized the emergency fault tree analysis (EFTA) to esti-

mate the missing probabilities in emergency decision making. However, there exist many limi-

tations in previous normalization methods, which are shown as follows:

1. Although it is straightforward and simple to use Pang’s method, the defect is that it ignores

the situation that the missing probabilities may belong to the unknown LTs. Moreover, it

can not be applied in some special cases. Thus, it is not reasonable and scientific to use

Pang’s method.

2. For the above approach (1) ~ (3), the process of calculation is very difficult owing to the

massive added elements, especially when dealing with the complex decision problem. For

approach (4), it only applies to the situation that considers the risk preferences of DMs.

Hence, the application area of approach (4) is narrow.

3. Although some estimation models are proposed in [27] to reasonably solve the

MLT-InPLTS and MP-InPLTS, the calculations are more cumbersome. It can not be

applied to the situation of single InPLTS. In other words, the method can be only applied to

some specific scenarios that consider the consistency and group consensus.

4. To the best of our knowledge, the literature of normalization method that considers from

the angle of entropy change is absent. In previous studies, it ignores that the original uncer-

tainty information of InPLTS may change after the normalization process. And the change

of uncertainty information of InPLTS will influence the final results of decision. Thus, it is

necessary to consider the change of uncertainty information when conduct the normaliza-

tion of InPLTS.

The entropy was originally used to measure the uncertainty of probabilistic information

[33]. Afterward, it was extended to express the uncertainty information of fuzzy set [34, 35].

To incorporate the subjectivity in the fuzziness measure, a weighted fuzzy entropy was intro-

duced [36]. Xu et al. [37] introduced the concepts of entropy and cross-entropy for hesitant

information and discussed their properties. Subsequently, Xu et al. [38] reviewed the existing

entropy measure for hesitant fuzzy elements and adopted the two-tuple model to represent the

uncertainty in some special cases. To express the uncertainty of PLTSs, Liu et al. [33] intro-

duced the concepts of fuzzy entropy, hesitant entropy and total entropy of PLTSs. Generally, it

contains two kinds of entropy, namely, fuzzy entropy and hesitant entropy. The fuzzy entropy
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mainly describes the distance distribution between LTs and the middle LT in a LTS, and the

hesitant entropy describes the dispersion degree among the LTs in a LTS. Lin et al. [39] pro-

posed the concept of PLTS information entropy and gave its formula, but it only used the

probability information of PLTS, which may lead to the inaccuracy of uncertainty information

measure. To overcome the shortcoming, Xu et al. [40] proposed some improved entropy mea-

sure methods of PLTS from the perspective of expected value including hesitant entropy, fuzzy

entropy and cross entropy of PLTS. Entropy is an important tool to measure the uncertainty

information of PLTSs. Considering the existing defects of previous normalization methods of

InPLTS, one important principle is to remain the original information of PLTS as much as

possible. Hence, we develop two optimization models to estimate the missing probabilities

based on minimum change of entropy. The proposed method can remain the original uncer-

tainty information of InPLTS to the greatest extent.

The main work and contributions in this paper are as follows:

1. Inspired by previous entropy measure of PLTS, we give some definitions of InPLTS

entropy, which includes fuzzy entropy and hesitant entropy of InPLTS. The computing

methods of entropy change of InPLTS are proposed on the basis of Liu’s method. Besides,

we also define the concepts of entropy change of InPLTS.

2. To estimate the MLT-InPLTS and MP-InPLTS, we construct two optimization models

based on minimum change of entropy. The models can cope with any InPLTS, which can

retain the original uncertainty information of InPLTS and need not depend on other addi-

tional information.

3. We design a novel MAGDM model based on the proposed normalization method of

InPLTS, adopting the aggregation operator and expected value of PLTS in the process of

information fusion and ranking, respectively. The model can solve the MAGDM problems

faster and more accurately.

4. The proposed MAGDM model is used to solve the problem of five-star scenic spot selec-

tion, and we make a comparative analysis with other methods.

The remaining contents are arranged as follows. In section 2, there are some basic concepts

and definitions including LTSs, PLTSs, InPLTSs, Entropy measure of PLTSs and so on. After

that, we give some definitions of InPLTS entropy and propose the normalization methods of

InPLTSs based on minimum entropy change in section 3. In section 4, a MAGDM model is

constructed to solve the decision problem. A case about the selection of five-star scenic spots is

conducted to illustrate the MAGDM model in section 5 and we have a comparative analysis in

section 6. Finally, the conclusion is given in section 7.

2. Preliminaries

In this subsection, some basic concepts are given including LTSs, PLTSs, InPLTSs and some

equations of PLTS entropy measure.

2.1 LTS and PLTSs

Zadeh [18] put forward the concept of linguistic valuables(LVs) so that DMs can utilize the lin-

guistic valuables to depict their preferences. LTS is a set consisted of linguistic elements, and

its mathematical form as follows:

Definition 1 [41, 42] Let S be a set, S = {sα|α = 0, 1, 2, . . ., 2τ}, where τ is a positive integer

and odd, and the element sα represents the corresponding linguistic variable, such as ‘s0 =
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terrible, ‘s1 = indifference, s2 = perfect’. Thus, the set S is called a LTS, which has some proper-

ties below:

1. sa>sb, if a>b.

2. Neg(sα) = s2τ-α, where Neg is the symbol of negation operator.

To reflect well the distinct distribution of probabilities, Pang et al. [5] proposed the concept

of PLTS, which is more flexible and accurate than HFLTS to describe the preferences of DMs.

Definition 2 [5] Let S be a LTS, S = {sα|α = 0, 1, 2, . . ., 2τ}. Suppose that L(p) is a PLTS:

LðpÞ ¼ fLðkÞðpðkÞÞ j LðkÞ 2 S; pðkÞ � 0; k ¼ 1; 2; . . . ;#LðpÞ;
X#LðpÞ

k¼1
pðkÞ � 1g;

where L(k) denotes the k th LT of S and p(k) is the probability of L(k). #L(p) is the number of LTs

in the L(p). When
X#LðpÞ

k¼1
pðkÞ < 1, the PLTS needs to be converted to the normalized form

and the normalized PLTS is noted as NPLTS. The form of NPLTS is given by

_LðpÞ ¼ fLðkÞð _pðkÞÞ j k ¼ 1; 2; . . . ;#LðpÞg;

where _pðkÞ ¼ pðkÞ=
X#LðpÞ

k¼1
pðkÞ.

Remark 1 Although the above normalized method seems much simple in the process of cal-

culation, it has evident defects in some cases. The nature of this method is to enlarge all the

existing elements in PLTS in equal proportion, which often produces contradiction, e.g., two

PLTS L1(p) = {s0(0.2), s1 = (0.3)} and L2(p) = {s0(0.4), s1(0.6)}. After the normalization process,

L1(p) is changed to _L1ðpÞ ¼ fs0ð0:4Þ; s1ð0:6Þg, which is equal to L2(p). Obviously, it is unrea-

sonable. Besides, when several PLTSs have only one LT with incomplete probability, e.g., L3(p)

= {s0(0.4)}, L4(p) = {s0(0.5)}, L5(p) = {s0(0.6)}. Then, according to the above normalization

method, the results are _L3ðpÞ ¼ fs0ð1Þg,
_L4ðpÞ ¼ fs0ð1Þg,

_L5ðpÞ ¼ fs0ð1Þg. Hence, the nor-

malized results by using the method in literature [5] are not scientific and reasonable.

For the convenience of operating among PLTSs directly, Mao et al. [43] proposed the con-

cept of ascending ordered PLTS as follows:

Definition 3 Given a PLTS L(p) = {L(k)(p(k))|L(k) 2 S, p(k)� 0, k = 1, 2, . . ., #L(p)}, where r(k)

represents the subscript of linguistic term L(k), and an ascending ordered PLTS can be derived

by the following steps:

1. If all values of r(k)p(k) in a PLTS are different, then all elements are arranged according to

the value of r(k)p(k) in an ascending order;

2. If there are two or more identical values of r(k)p(k) in a PLTS, then

a. When the subscripts r(k) are different, r(k)p(k) are arranged according to values of r(k) in

an ascending order;

b. When the subscripts r(k) are identical, r(k)p(k) are arranged according to values of p(k) in

an ascending order.

Moreover, some basic operations of PLTSs are provided in literature [5].

1. L1ðpÞ � L2ðpÞ ¼ [LðkÞ
1
2L1ðpÞ;L

ðkÞ
2
2L2ðpÞ
fpðkÞ1 LðkÞ1 � pðkÞ2 LðkÞ2 g;

2. L1ðpÞ � L2ðpÞ ¼ [LðkÞ
1
2L1ðpÞ;L

ðkÞ
2
2L2ðpÞ
fðLðkÞ1 Þ

pðkÞ
1 � ðLðkÞ2 Þ

pðkÞ
2 g;

3. lLðpÞ ¼ [LðkÞ2LðpÞlp
ðkÞLðkÞ; l � 0;
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4. LðpÞl ¼ [LðkÞ2LðpÞfðL
ðkÞÞ

lpðkÞ
g.

Because it contains the probabilities in PLTSs, the expected values are often used to com-

pare two PLTSs or rank alternatives and the calculation process is easy. Pang et al. [5] firstly

gave the equation of PLTS expected value.

Definition 4 [5] Let L(p) be a PLTS, the expected value is given by

EðLðpÞÞ ¼
X#LðpÞ

k¼1
IðskÞp

ðkÞ=
X#LðpÞ

k¼1
pðkÞ; ð1Þ

where I(sk) represents the extraction function which can get the subscript of sk.
To achieve the collective information, we conduct it with the aid of the aggregation technol-

ogy. The aggregation operator is a simple and frequently-used tool. For the aggregation of

PLTS, Pang et al. [5] introduced many aggregation operators but we may only use the probabi-

listic linguistic weighted averaging operator(PLWA) in this paper.

Definition 5 [5] Let LiðpÞ ¼ fL
ðkÞ
i ðp

ðkÞ
i Þ j k ¼ 1; 2; . . . ;#LðpÞgði ¼ 1; 2; . . . ; nÞ be n PLTSs,

then

PLWAðL1ðpÞ; L2ðpÞ; . . . ; LnðpÞÞ ¼ w1L1ðpÞ � w2L2ðpÞ � . . .� wnLnðpÞ

¼ [LðkÞ
1
2L1ðpÞ
fw1p

ðkÞ
1 LðkÞ1 g � [LðkÞ

2
2L2ðpÞ
fw2p

ðkÞ
2 LðkÞ2 g � . . .� [LðkÞn 2LnðpÞ

fwnp
ðkÞ
n LðkÞn g;

ð2Þ

where LðkÞi denotes the kth linguistic term in Li(p), and pðkÞi denotes the probability of LðkÞi . The

wi (i = 1, 2, . . ., n) is the corresponding weight of Li(p). Thus, PLWA is called the probabilistic

linguistic weighted averaging operator.

2.2 InPLTSs

In the above, we review some basic knowledge about PLTSs. However, when facing the real

decision problem, due to the lack of knowledge or time, DMs are not able to provide the com-

pleted PLTSs in most cases, which lead to the missing information of occurrence probabilities

in PLTSs. To depict this situation, Gao et al. [32] developed the concept of incomplete probabi-

listic linguistic term sets (InPLTSs).

Definition 6 [32] Let S = {sα|α = 0, 1, 2, . . ., 2τ} be a LTS, where τ is a positive integer. Then

the InPLTS is given by

LðxÞ ¼ fLðkÞðxðkÞÞ j LðkÞ 2 S; xðkÞ � 0; k ¼ 1; 2; . . . ;#LðxÞ;
X#LðxÞ

k¼1
xðkÞ � 1g;

where L(x) represents an InPLTS with unknown probabilities. L(k) and x(k) denote the kth LT

and its uncertain occurrence probability. And L(k)(x(k)) represents the probabilistic linguistic

element(PLE).

Remark 2 In section Introduction, two kinds of InPLTS are reviewed, namely,

MLT-InPLTS and MP-InPLTS [27]. For the MLT-InPLTS, an example is L1(p) = {s0(0.2), s1 =

(0.3)}, where the sum of occurrence probabilities is less than 1 so we need assign the remaining

probabilities to the known or unknown LTs. Pang et al. [5] assign the missing probabilities to

the known elements. In reality, the remaining probabilities should belong to all the possible

elements in LTSs [27] and in this paper we consider that it only belongs to one unknown LT sr,
sr2S where r is a discrete value. For the MP-InPLTS, the example is L6(p) = {s0(0.2), s1(x1),

s2(x2)}, where the occurrence probabilities of s1 and s2 are unknown but x1 +x2 = 0.8

(0.8 = 1–0.2). Besides, we do not consider the situation that there is only one unknown occur-

rence probability such as L7(p) = {s0(0.2), s3(x3)} because it can be attained by 1 �
X#LðxÞ

k¼1
xðkÞ

(x(k) represents the known probability) [27].
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To distinguish between incomplete PLTSs and complete PLTSs, Wang et al. [27] intro-

duced the concept of complete PLTSs (CPLTSs).

Definition 7 [27] Suppose that �LðxÞ ¼ f�LðkÞðxðkÞÞ j k ¼ 1; 2; . . . ;#�LðxÞg is an InPLTS,

when all the LTs (�LðxÞ) and their occurrence probabilities (x(k)) are complete and known, i.e.,
X#�LðxÞ

k¼1
xðkÞ ¼ 1, the InPLTS is called complete PLTS(CPLTS).

In the process of normalization, the purpose is to transform the InPLTS into CPLTS so the

CPLTS can be regarded as the normalized PLTS. Moreover, in this paper, we do not consider

the second task of normalization [5] because the numbers of LTs between two PLTSs can be

processed straightforwardly to be same, i.e., #L1(p) = #L2(p).

2.3 Entropy measure of PLTS

Entropy is an useful tool to represent the uncertainty of PLTS because the PLTS contains vari-

ous LTs and occurrence probabilities. Liu et al. [33] developed some methods of entropy mea-

sure of PLTS and we review them in the following.

Definition 8 [33] Suppose that L(p) = {L(k)(p(k)) | k = 1, 2, . . ., #L(p)} is a PLTS, then the

fuzzy entropy is denoted as EF. The calculation is given by

EFðLðpÞÞ ¼ 1 �
X#LðpÞ

k¼1
pðkÞj1 � 2bkj; ð3Þ

where βk = I(sk)/g, g = #L(p)-1.

Definition 9 [33] Let L(p) = {L(k)(p(k)) | k = 1, 2, . . ., #L(p)} be a PLTS, then the hesitant

entropy is denotes as EH. The calculation is given by

EHðLðpÞÞ ¼

X#LðpÞ

k¼1

X#LðpÞ

l¼kþ1
4pðkÞpðlÞf ðrklÞ ;#LðpÞ � 2

0 ;#LðpÞ ¼ 1

;

8
<

:
ð4Þ

where rkl = |βk−βl|, f ðrklÞ ¼ rqkl.
Remark 3 For the entropy measure of PLTS, Liu et al. [33] proposed six approaches and six

formulas to compute the fuzzy entropy and hesitant entropy, respectively. Among them, we

choose the relatively simple ones, i.e., Eqs (3) and (4), because the focus in this paper is to

explore the entropy change before and after the normalization of PLTS. In addition, for the

convenience of calculation below, the value of q is set 1 in Eq (4).

3. Novel normalization method of PLTS based on minimum entropy

change

The normalization of PLTS is an important process in decision making and some methods are

stated in the section Introduction. In this section, based on the idea of minimum entropy

change, we propose a novel method to normalize the InPLTS, in which the original uncertainty

information of InPLTS can be retained to the greatest extent.

3.1 Entropy measure of InPLTS

Motivated by fuzzy entropy and hesitant entropy of PLTS [33], the new concepts of InPLTS

fuzzy entropy and InPLTS hesitsnt entropy are developed and we design the formulas of

entropy measure according to Eqs (3) and (4).

Definition 10 Let LðxÞ ¼

fLðkÞðxðkÞÞ j LðkÞ 2 S; xðkÞ � 0; k ¼ 1; 2; . . . ;#LðxÞ;
X#LðxÞ

k¼1
xðkÞ � 1g be an InPLTS, then the
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fuzzy entropy of InPLTS is denoted as EF(L(x)). The calculation formula is given by

EFðLðxÞÞ ¼ 1 �
X#LðxÞ

k¼1
xðkÞj1 � 2bkj; ð5Þ

Theorem 1 For any two InPLTSs La(x) and Lb(x), if LðkÞa ¼ LðkÞb , xðkÞa ¼ xðkÞb , LðkÞa ðx
ðkÞÞ and

LðkÞb ðxðkÞÞ belong to the known elements, then EF(La(x)) = EF(Lb(x)).

Proof Let La(x) and Lb(x) be two InPLTSs.

EFðLaðxÞÞ ¼ 1 � ½x1
aj1 � 2a1

aj þ x2
aj1 � 2a2

aj þ . . .þ xðkÞa j1 � 2aðkÞa j�

¼ 1 � x1
aj1 � 2�

IðL1
aÞ

g
j þ x2

aj1 � 2�
IðL2

aÞ

g
j þ . . .þ xðkÞa j1 � 2�

IðLðkÞa Þ

g
j

� �

EFðLbðxÞÞ ¼ 1 � ½x1
bj1 � 2a1

bj þ x2
bj1 � 2a2

bj þ . . .þ xðkÞb j1 � 2a
ðkÞ
b j�

¼ 1 � x1
bj1 � 2�

IðL1
bÞ

g
j þ x2

bj1 � 2�
IðL2

bÞ

g
j þ . . .þ xðkÞb j1 � 2�

IðLðkÞb Þ

g
j

" #

;

where LðkÞa ¼ LðkÞb , xðkÞa ¼ xðkÞb , LðkÞa ðx
ðkÞÞ and LðkÞb ðxðkÞÞ belong to the known elements. Thus,

EF(La(x)) = EF(Lb(x)).

Example 1 Suppose that S = {s0, s1, s2, s3, s4} is a LTS, L1(x) = {s0(0.3), s1(0.4), s2(x2), s3(x3)},

L2(x) = {s0(0.3), s1(0.4)}, sα2S. Because the probabilities of s2 and s3 are unknown, the x2 and x3

are not considered when computing the fuzzy entropy of InPLTS. Then,

EFðL1ðxÞÞ ¼ 1 �
X#LðxÞ

k¼1
xðkÞj1 � 2bkj

¼ 1 � 0:3j1 � 2�
0

5
j þ 0:4j1 � 2�

1

5
j

� �

¼ 0:46

Similarly, EF(L2(x)) = 0.46. Here, we can also attain the fuzzy entropy of L2(x) by Theorem

1.

Although the final results of EF(L1(x)) and EF(L2(x)) are identical, they represent two differ-

ent types of InPLTS that L1(x) is the MP-InPLTS and L2(x) is the MLT-InPLTS. We can see

that there are four LTs in L1(x) and s2, s3 are known elements even though their probabilities

are unknown. However, in L2(x), there are only two LTs and the missing probabilities are not

able to know certainly which LT to belong to. Thus, the same fuzzy entropy of InPLTSs only

means that the two InPLTSs have the identical original uncertainty information.

According to Definition 6 and Eq (3), the fuzzy entropy of CPLTS is given by

EFð
�LðxÞÞ ¼ 1 �

X#�LðxÞ

k¼1
xðkÞj1 � 2bkj; ð6Þ

Where �LðxÞ is a CPLTS,
X#�LðxÞ

i¼1
xðkÞ ¼ 1. For simplify, the fuzzy entropy of CPLTS is denoted

as �EF .

Definition 11 Let LðxÞ ¼ fLðkÞðxðkÞÞ j LðkÞ 2 S; xðkÞ � 0; k ¼ 1; 2; . . . ;#LðxÞ;
X#LðxÞ

k¼1
xðkÞ �

1g be an InPLTS, then the hesitant entropy of InPLTS is denoted as EF(L(x)). The calculation
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formula is given by

EHðLðxÞÞ ¼

X#LðxÞ

k¼1

X#LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞ ;#LðxÞ � 2

0 ;#LðxÞ ¼ 1

;

8
<

:
ð7Þ

where f ðrklÞ ¼ rqkl, q = 1.

Theorem 2 For any two InPLTSs La(x) and Lb(x), if LðkÞa ¼ LðkÞb , xðkÞa ¼ xðkÞb and LðkÞa ðx
ðkÞÞ and

LðkÞb ðxðkÞÞ belong to the known elements, then EH(La(x)) = EH(Lb(x)).

Proof Let La(x) and Lb(x) be two InPLTSs.

If #La(x) = #Lb(x) = 0, then EH(La(x)) = EH(Lb(x)) = 0

If #La(x)� 2, #Lb(x)� 2, then

EHðLaðxÞÞ ¼ 4xð1Þa xð2Þa f ðr12
a Þ þ 4xð1Þa xð3Þa f ðr13

a Þ þ � � � 4x
ð1Þ
a xðkÞa f ðr1k

a Þ

þ4xð2Þa xð3Þa f ðr23
a Þ þ 4xð1Þa xð2Þa f ðr12

a Þ þ � � � þ 4xð2Þa xðkÞa f ðr2k
a Þ þ � � � þ 4xðk� 1Þ

a xðkÞa f ðrk� 1;k
a Þ

¼ 4xð1Þa xð2Þa j
IðLð1Þa Þ

g
�

IðLð2Þa Þ

g
j þ 4xð1Þa xð3Þa j

IðLð1Þa Þ

g
�

IðLð2Þa Þ

g
j þ � � � þ 4xðk� 1Þ

a xðkÞa j
IðLðk� 1Þ

a Þ

g
�

IðLðkÞa Þ

g
j

EHðLbðxÞÞ ¼ 4xð1Þb xð2Þb f ðr12
b Þ þ 4xð1Þb xð3Þb f ðr13

b Þ þ � � � þ 4xð1Þb xðkÞb f ðr1k
b Þ

þ4xð2Þb xð3Þb f ðr23
b Þ þ 4xð2Þb xð4Þb f ðr24

b Þ þ � � � þ 4xð2Þb xðkÞb f ðr2k
b Þ þ � � � þ 4xðk� 1Þ

b xðkÞb f ðrk� 1;k
b Þ

¼ 4xð1Þb xð2Þb j
IðLð1Þb Þ

g
�

IðLð2Þb Þ

g
j þ 4xð1Þb xð3Þb j

IðLð1Þb Þ

g
�

IðLð3Þb Þ

g
j þ � � � þ 4xðk� 1Þ

b xðkÞb j
IðLðk� 1Þ

b Þ

g
�

IðLðkÞb Þ

g
j

;

where LðkÞa ¼ LðkÞb , xðkÞa ¼ xðkÞb , LðkÞa ðx
ðkÞÞ and LðkÞb ðxðkÞÞ belong to the known elements. Thus,

EH(La(x)) = EH(Lb(x)).

Example 2 Following example 1, according to Eq (7), the hesitant entropy of L1(x) and

L2(x) are as follows:

EHðL1ðxÞÞ ¼ 4� 0:3� 0:4�
1

5
¼ 0:096

Similarly, EH(L2(x)) = 0.096.

According to Definition 6 and Eq (3), the fuzzy entropy of CPLTS is given by

EHð
�LðxÞÞ ¼

X#�LðxÞ

k¼1

X#�LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞ ;#�LðxÞ � 2

0 ;#�LðxÞ ¼ 1

;

8
<

:
ð8Þ

where �LðxÞ is a CPLTS,
X#�LðxÞ

k¼1
xðkÞ ¼ 1. For simplify, the hesitant entropy of CPLTS is

denoted as �EF .

Remark 4 It should be noted that we propose the calculation formula of InPLTS entropy by

using Liu’s method, namely, Eqs (5), (6) and (7). However, the difference between Eqs (5) and

(3) is that Eq (5) is used to measure an InPLTS with the unknown probabilities or linguistic

terms while the Eq (3) is used to measure a PLTS without missing information. In Eq (5), we

see that x(k) represents both known probabilities and unknown probabilities in an InPLTS. In

Eq (3), p(k) only represents known probabilities of PLTS. And, the difference between Eqs (7)

and (4) is the same.

For the fuzzy entropy change, hesitant entropy change and total entropy change of InPLTS,

we give the definitions below.
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Definition 12 Let LðxÞ ¼ fLðkÞðxðkÞÞ j LðkÞ 2 S; xðkÞ � 0; k ¼ 1; 2; . . . ;#LðxÞ;
X#LðxÞ

k¼1
xðkÞ �

1g be an InPLTS. EF(L(x)) is the fuzzy entropy of InPLTS and EHð
�LðxÞÞ is the fuzzy entropy of

corresponding CPLTS. Then the fuzzy entropy change of InPLTS after normalization is given

by

DEFðLðxÞÞ ¼ jEFð
�LðxÞÞ � EFðLðxÞÞj; ð9Þ

where ΔEF(L(x)) represents the fuzzy entropy change.

Definition 13 Let LðxÞ ¼ fLðkÞðxðkÞÞ j LðkÞ 2 S; xðkÞ � 0; k ¼ 1; 2; . . . ;#LðxÞ;
X#LðxÞ

k¼1
xðkÞ �

1g be an InPLTS. EH(L(x)) is the hesitant entropy of InPLTS and EHð
�LðxÞÞ is the hesitant

entropy of corresponding CPLTS. Then the hesitant entropy change of InPLTS after normali-

zation is given by

DEHðLðxÞÞ ¼ jEHð
�LðxÞÞ � EHðLðxÞÞj; ð10Þ

where ΔEH(L(x)) represents the fuzzy entropy change.

Obviously, it is easy to know that the total entropy change of an InPLTS can be derived by

Eqs (9) and (10), which is shown below:

DETðLðxÞÞ ¼ DEFðLðxÞÞ þ DEHðLðxÞÞ; ð11Þ

where ΔET(L(x)) represents the total entropy change.

Wang et al. [27] classified the InPLTS into two types specifically, namely, MP-InPLTS and

MLT-InPLTS. Generally, the entropy of InPLTS will be changed in the process of normaliza-

tion. Based on the idea of minimum entropy change before and after normalization of InPLTS,

we propose two optimization models in section 3.2 and section 3.3, which can retain the origi-

nal information of InPLTS to the greatest extent.

3.2 Estimation model of MP-InPLTS

For the MP-InPLTS, it only contains the missing probabilities of known LTs, such as L1(x) =

{s0(0.3), s1(0.4), s2(x(2)), s3(x(3))}. Thus, we only need to consider how to estimate the missing

probabilities. And the situation that there only a missing probability in MP-InPLTS is

excepted, e.g., L(x) = {s1(0.5), s2(x(2))}.

Firstly, calculating the change of fuzzy entropy ΔEF according to Eq (9),

DEFðLðxÞÞ ¼ jEFð
�LðxÞÞ � EFðLðxÞÞj ¼ j

X#LðxÞ

k¼1
xðkÞj1 � 2b

ðkÞ
j �
X#�LðxÞ

i¼1
xðkÞj1 � 2b

ðkÞ
jj ð12Þ

Secondly, computing the change of hesitant entropy ΔEH, according to Eq (10),

DEHðLðxÞÞ ¼ jEHð
�LðxÞÞ � EHðLðxÞÞj

¼ j
X#�LðxÞ

k¼1

X#�LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞ �

X#LðxÞ

k¼1

X#LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞj

ð13Þ

Finally, the total entropy change of InPLTS can be derived by Eqs (11), (12) and (13).

DETðLðxÞÞ ¼ DEFðLðxÞÞ þ DEHðLðxÞÞ

¼ j
X#LðxÞ

k¼1
xðkÞj1 � 2bkj �

X#�LðxÞ

i¼1
xðkÞj1 � 2bkjj

þj
X#�LðxÞ

k¼1

X#�LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞ �

X#LðxÞ

k¼1

X#LðxÞ

l¼kþ1
4xðkÞxðlÞf ðrklÞj

ð14Þ
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Thus, we construct the optimization model to estimate the missing probabilities. The main

idea is to minimize the total entropy change of InPLTS, i.e., min ΔET. The model is

MinDET ¼ DEF þ DEH

s:t:

X#�LðxÞ

k¼1
xðkÞ ¼ 1

#�LðxÞ ¼ #LðxÞ

#xðkÞ � 2

0 < xðkÞ < 1

8
>>>>>>>><

>>>>>>>>:

ð15Þ

In model (15), the objective function ensures that the change of entropy is minimum after

the normalization of InPLTS. The first constraint is to guarantee the sum of probabilities is

complete after the normalization. The second and third constraint ensure that the InPLTS is a

MP-InPLTS. The final constrain limits the range of x(k). The constraints above are given to

ensure that there exist feasible solutions.

The number of decision variables in model (15) is more than 1 because #x(k)� 2. It is easy

to solve the model, especially when there are only two decision variables. If there are many

decision variables, we can use the software LINGO.

To illustrate clearly the model (15) and its merits, we give an example below and have a

comparative analysis with Pang’s method.

Example 3 Following example 1, Suppose that S = {s0, s1, s2, s3, s4} is a LTS, L1(x) = {s0(0.3),

s1(0.4), s2(x(2)), s3(x(3))}, sα2S. Obviously, L1(x) belongs to MP-InPLTS because there only exist

unknown probabilities x(2) and x(3).

Firstly, we normalize the L1(x) by Pang’s method that the unknown probabilities are aver-

agely assigned into the known linguistic terms. Thus, the normalized result is

�L1ðxÞ ¼ fs0ð0:3Þ; s1ð0:4Þ; s2ð0:15Þ; s3ð0:15Þg. According to Eqs (12)–(14), we calculate the

total entropy change of L1(x) and the computation processes are as follows:

DEFðL1ðxÞÞ ¼ jEFð
�L1ðxÞÞ � EFðL1ðxÞÞj ¼ 0:15;

DEHðL1ðxÞÞ ¼ jEHð
�L1ðxÞÞ � EHðL1ðxÞÞj ¼ 0:51;

DETðL1ðxÞÞ ¼ DEFðL1ðxÞÞ þ DEHðL1ðxÞÞ ¼ 0:66:

Thus, the total entropy change of L1(x) by using Pang’s method is o.66. Subsequently, we

use the proposed model (15) to normalize the L1(x). After computing by Eqs (12)–(14) and

pre-process, the optimization model is given by

MinDET ¼ x2 þ 2:2x3 þ x2x3

x2 þ x3 ¼ 0:3
:

(

The feasible solution of the model is x(2) = 0.3, x(3) = 0 and the normalized result is

�L1ðxÞ ¼ fs0ð0:3Þ; s1ð0:4Þ; s2ð0:3Þ; s3ð0Þg. The total entropy change derived by the model (15)

is ΔET(L1(x)) = 0.3. Thus, comparing with Pang’s method, the proposed method can reduce

the entropy change of InPLTS after normalization process. In other words, the proposed

method can better retain the original uncertainty information of InPLTS. In fact, the entropy

change of InPLTS is never considered in previous researches so it is a novel and important

idea to normalize the InPLTS from the perspective of entropy change.
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3.3 Estimation model of MLT-InPLTS

The other type of InPLTS is MLT-PLTS, which is also the most common form. For a

MLT-PLTS, there exits unknown linguistic term because of the missing probabilities, i.e.,
X#LðxÞ

k¼1
xðkÞ < 1. In reality, the rest probability should belong to any possible LT in PLTS [27].

Moreover, we suppose that the rest probability is only assigned to one additive LT because

more additive LTs will lead to inaccuracy and distortion of original information.

To estimate the MLT-PLTS, we propose another optimization model which is shown in

model (16) according to Eqs (12) and (13).

MinDET ¼ DEF þ DEH

s:t :

X#�LðxÞ

k¼1
xðkÞ ¼ 1

_sr 2 S

#�LðxÞ ¼ #LðxÞ þ 1

0 < xðkÞ < 1

;

8
>>>>>>><

>>>>>>>:

ð16Þ

where _sr represents the additive LT, and suppose that the additive LT is a discrete integer. In

model (16), the objective function is the same as the one in model (15), which ensures the min-

imum change of entropy. The second and third constrains guarantee that there exist only one

additive LT and it belongs to all the LTS S. The first and final constrains are to get the CPLTS

with the complete probability.

In model (16), there is only one decision variable _sr, so the model (16) is easier than model

(15) to so solve. To verify the effectiveness and superiority of the model (16), we also give an

example below and have a comparative analysis with Pang’s method.

Example 4 Following example 1, suppose that S = {s0, s1, s2, s3, s4} is a LTS, L2(x) = {s0(0.3),

s1(0.4)}, sα2S. We can see that L2(x) belongs to MLT-InPLTS.

Firstly, according to the proposed method, the normalized form of L2(x) is

�L2ðxÞ ¼ fs0ð0:3Þ; s1ð0:4Þ; srð0:3Þg, where sr 2 S. According to Eqs (12)–(14), we can get fuzzy

entropy change DEFð
�L2ðxÞÞ, hesitant entropy change DEHð

�L2ðxÞÞ and total entropy change

DETð
�L2ðxÞÞ of L2(x), which are shown as follows:

DEFðL1ðxÞÞ ¼ jEFð
�L1ðxÞÞ � EFðL1ðxÞÞj ¼ � 0:3� j1 � 0:5rj;

DEHðL2ðxÞÞ ¼ jEHð
�L2ðxÞÞ � EHðL2ðxÞÞj ¼ 0:09r þ 0:12� j1 � rj;

DETðL2ðxÞÞ ¼ DEFðL2ðxÞÞ þ DEHðL2ðxÞÞ ¼ 0:09r þ 0:12� j1 � rj � 0:3� j1 � 0:5rj:

Then, by using the model (16), we construct an optimization model,

MinDET ¼ 0:09r þ 0:12� j1 � rj þ 0:3� j1 � 0:5rj

s:t:

X#�LðxÞ

k¼1
xðkÞ ¼ 1

_sr 2 S

#�LðxÞ ¼ #LðxÞ þ 1

0 < xðkÞ < 1

8
>>>>>>><

>>>>>>>:
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The optimal solution is r = 1 and �L2ðxÞ ¼ fs0ð0:3Þ; s1ð0:4Þ; s1ð0:3Þg, namely,

�L2ðxÞ ¼ fs0ð0:3Þ; s1ð0:7Þg. When r = 1, the total entropy change DETð
�L2ðxÞÞ of L2(x) is 0.24.

Subsequently, we use Pang’s method to normalize L2(x) and compute the total entropy

change. According to the idea of Pang’s method, the normalized form of L2(x) is

�L2ðxÞ ¼ fs0ð0:43Þ; s1ð0:57g. By using Eqs (12)–(14), the entropy change of L2(x) can be

derived as follows:

DEFðL1ðxÞÞ ¼ jEFð
�L1ðxÞÞ � EFðL1ðxÞÞj ¼ 0:215;

DEHðL2ðxÞÞ ¼ jEHð
�L2ðxÞÞ � EHðL2ðxÞÞj ¼ 0:125;

DETðL2ðxÞÞ ¼ DEFðL2ðxÞÞ þ DEHðL2ðxÞÞ ¼ 0:340:

Obviously, the total entropy change of L2(x) derived by the model (16) is less than the result

derived by Pang’s method. Thus, when processing the normalization of MLT-InPLTS, the

model (16) can reduce the entropy change to the greatest extent. In other words, it can retain

the original uncertainty information of InPLTS to the greatest extent by using the proposed

method.

4. Model application in multiple attribute group decision making

Based on model (15) and (16), a decision model is constructed to solve the MAGDM problem,

which mainly conducts to normalize the incomplete PLTSs of experts. In a MAGDM problem,

some mathematical symbols are as follows:

the set of alternatives: X = {x1, x2, . . ., xm};

the set of attributes: C = {c1, c2, . . ., cn};

the weight vector of attributes: W = (w1, w2, . . ., wn)T;

the set of experts: E = {e1, e2, . . ., ep};
the weight vector of experts:ω = (ω1, ω2, . . ., ωp)T.

In our research, suppose that the attribute weights and expert weights are known in

advance. There are three steps in the model of MAGDM as follows.

Step 1. Estimate the incomplete evaluation information in PLTS. Experts provide the evalu-

ation information over alternatives associated to attributes by the PLTS. The evaluation infor-

mation from every expert are described as a decision matrix:

Dk ¼

Lk
11

Lk
12

. . . Lk
1n

Lk
21

Lk
22

. . . Lk
2n

. . . . . . . . . . . .

Lk
m1

Lk
m1

. . . Lk
mn

2

6
6
6
6
4

3

7
7
7
7
5

Where Dk represents the decision matrix of expert ek, k = 1, 2, . . ., m, and Lk
ij denotes the prob-

ability linguistic information of expert ek over alternative i associated to attribute j in the form

of PLTSs. Due to limited time or the lack of knowledge, experts may provide incomplete infor-

mation in the form of InPLTSs. We need find out which type the InPLTS belongs to,

MP-InPLTS or MLT-InPLTS. If it is a MP-InPLTS, we use the model (15) to estimate the miss-

ing information, and otherwise, using the model (16) to estimate MLT-InPLTS.

Step 2. Integrate the evaluation information of experts. By step 1, we attain the normalized

PLTSs (CPLTSs). In this step, the aggregation operator PLWA (Eq (2)) is utilized to integrate

the expert’s decision matrices. Subsequently, the decision matrices are integrated into the
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decision vector DT = (L1, L2, . . ., Lm)T where Li represents the collective evaluation over alter-

native i.
Step 3. Rank all alternatives and attain the optimal one. The collective evaluation is

described by PLTS so we need compare the PLTSs in DT. To conduct that, according to Eq (1),

we compute the expected values of PLTSs. Then, the ranking results will be achieved through

the comparison of expected values of PLTSs and attained the optimal alternative eventually.

In order to intuitively understand the overall decision frame, the flow chart of decision

making is given in Fig 1.

5. Case study

Tourism is one of the important industries of social and economic development, in which sce-

nic spots are the key components of tourism development. It is not only a special tourism com-

modity, but also an important place to carry out various tourism activities. Among all scenic

spots, the ones with high stars tend to attract more tourists. Thus, star rating is very important

for the development of scenic spots, especially for the rating of five-star. In China, the docu-

ment regulations related to star rating of scenic spots have been issued, in which three impor-

tant rating indicators are listed as follows:

1. Service quality and environmental quality;

2. Landscape quality;

3. Tourist opinions.

In this way, the rating of five-star can be regarded as a MAGDM problem, in which one

optimal scenic spot will be selected as the five-star scenery from all alternatives. Now, suppose

that five experts from the tourism field are invited to participate the decision making. Five sce-

nic spots to be selected are Ritan Park, Temple of Heaven Park, Badaling Great Wall, Beijing

Olympic Park, and the Summer Palace. Through the evaluations of experts, one of them will

become the five-star scenery. However, due to the limited knowledge and experiences, experts

can hardly give explicit evaluation information. Therefore, to well depict experts’ preferences,

DMs are advised to utilized PLTS as the evaluation expression model. Before processing the

MAGDM problem, some symbols are defined mathematically as follows:

1. The five scenic spots are denoted as five alternatives X = {x1, x2, x3, x4, x5}, where x1 = ‘Ritan

Park’, x2 = ‘Temple of Heaven Park’ and x3 = ‘Badaling Great Wall’, x4 = ‘Beijing Olympic

Park’, x5 = ‘the Summer Palace’.

2. The three indicators are regarded as three attributes C = {c1, c2, c3}, where c1 = ‘Service qual-

ity and environmental quality’, c2 = ‘Landscape quality’ and c3 = ‘Tourist opinions’.

3. Considering that c1 is the most important attribute, its attribute weight is the biggest. Thus,

the corresponding weight vector of attributes is preset as W = (0.5, 0.3, 0.2)T;

4. The five experts are denoted as E = {e1, e2, e3, e4, e5} and the weight vector of experts is ω =

(0.3, 0.2, 0.2, 0.2, 0.1)T.

Experts use the linguistic term set LTS with five granularity, namely, S = {sα|α = 0, 1, 2, 3,

4}, where s0 = ‘exactly bad’, s1 = ‘bad’, s2 = ‘indifferent’, s3 = ‘good’, s4 = ‘exactly good’. The deci-

sion matrices provided by experts are given in Tables 1–5 respectively.

According to the proposed MAGDM model in section 4, we solve the decision problem

and the steps are as follows:
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Fig 1. Flowchart of decision making.

https://doi.org/10.1371/journal.pone.0268158.g001
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Table 1. The decision matrix of e1.

e1 c1 c2 c3

x1 {s0(0.2), s1(0.8)} {s1(0.3), s2(0.5)} {s2(1)}

x2 {s1(0.4), s2(x2), s3(x3)} {s3(1)} {s2(0.3), s3(0.7)}

x3 {s2(1)} {s2(0.5), s3(0.5)} {s1(0.4), s2(0.6)}

x4 {s1(0.6), s2(0.4)} {s0(1)} {s1(1)}

x5 {s0(0.3), s2(0.7)} {s2(1)} {s1(0.5), s2(0.5)}

https://doi.org/10.1371/journal.pone.0268158.t001

Table 2. The decision matrix of e2.

e2 c1 c2 c3

x1 {s0(0.5), s1(0.5)} {s1(0.6), s2(0.4)} {s1(0.7), s2(0.3)}

x2 {s3(1)} {s2(1)} {s2(0.4), s3(0.6)}

x3 {s2(1)} {s2(0.5), s3(0.5)} {s2(1)}

x4 {s1(0.7), s2(0.3)} {s1(0.4), s2(0.6)} {s1(1)}

x5 {s2(1)} {s1(1)} {s2(0.5), s3(0.5)}

https://doi.org/10.1371/journal.pone.0268158.t002

Table 3. The decision matrix of e3.

e3 c1 c2 c3

x1 {s1(1)} {s1(0.5), s2(0.5)} {s0(0.5), s1(x1), s3(x3)}

x2 {s2(0.4), s3(0.6)} {s2(1)} {s2(0.5), s3(0.5)}

x3 {s3(1)} {s2(0.5), s3(0.4)} {s2(1)}

x4 {s2(0.5), s3(0.5)} {s2(1)} {s2(0.5), s3(0.5)}

x5 {s1(0.4), s2(0.6)} {s1(1)} {s0(1)}

https://doi.org/10.1371/journal.pone.0268158.t003

Table 4. The decision matrix of e4.

e4 c1 c2 c3

x1 {s3(1)} {s2(1)} {s0(0.5), s1(0.5)}

x2 {s1(0.5), s2(0.5)} {s3(0.7), s4(0.3)} {s2(0.3), s3(0.7)}

x3 {s2(0.2), s3(0.8)} {s0(1)} {s2(1)}

x4 {s2(1)} {s2(0.5), s3(0.5)} {s1(0.5), s2(0.5)}

x5 {s0(1)} {s3(1)} {s1(1)}

https://doi.org/10.1371/journal.pone.0268158.t004

Table 5. The decision matrix of e5.

e5 c1 c2 c3

x1 {s2(1)} {s2(0.7), s3(0.3)} {s1(1)}

x2 {s1(0.5), s2(0.5)} {s3(1)} {s2(0.5), s3(0.5)}

x3 {s3(1)} {s0(0.3), s1(0.7)} {s1(0.3), s2(0.7)}

x4 {s2(1)} {s2(1)} {s3(1)}

x5 {s3(0.7), s4(0.3)} {s0(1)} {s2(1)}

https://doi.org/10.1371/journal.pone.0268158.t005
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Step 1. Find out the PLTS with missing information in decision matrices, namely, the

InPLTSs. In Tables 1–5, we can see that L1
12

, L1
21

, L3
13

and L3
32

are InPLTSs. The decision matrices

of expert e2, e4, and e5 are complete. Evidently, L1
21
¼ fs1ð0:4Þ; s2ðxð2ÞÞ; s3ðxð3ÞÞg and L3

13
¼

fs0ð0:5Þ; s1ðxð1ÞÞ; s3ðxð3ÞÞg belong to MP-InPLTS while L1
12
¼ fs1ð0:3Þ; s2ð0:5Þg and L3

32
¼

fs2ð0:5Þ; s3ð0:4Þg belong to MLT-InPLTS. Thus, we estimate L1
21

and L3
13

by using model (15)

and estimate L1
12

, L3
32

by using model (16). The calculation processes are shown below.

Firstly, we use the model (15) to normalize L1
21

and L3
13

. We take L1
21

as an example. Accord-

ing to Eqs (12)–(14), DEFðL1
21
Þ, DEHðL1

21
Þ and DETðL1

21
Þ can be derived:

DEFðL
1

21
Þ ¼ jEFð

�L1

21
Þ � EFðL

1

21
Þj ¼ 0:5xð3Þ

DEHðL
1

21
Þ ¼ jEHð

�L1

21
Þ � EHðL

1

21
Þj ¼ 0:4xð2Þ þ 0:8xð3Þ þ xð2Þxð3Þ

DETðL
1

21
Þ ¼ DEFðL

1

21
Þ þ DETðL

1

21
Þ ¼ 0:4xð2Þ þ 1:3xð3Þ þ xð2Þxð3Þ

By using the model (15), we construct the optimal model:

min DETðL1
21
Þ ¼ 0:4xð2Þ þ 1:3xð3Þ þ xð2Þxð3Þ

xð2Þ þ xð3Þ ¼ 0:6

(

The feasible solution is x(2) = 0.6 and x(3) = 0. Thus, �L1
21
¼ fs1ð0:4Þ; s2ð0:6Þ; s3ð0Þg, namely,

�L1
21
¼ fs1ð0:4Þ; s2ð0:6Þg. Subsequently, the normalized result of L3

32
can be also attained,

�L3
13
¼ fs0ð0:5Þ; s1ð0:5Þg.

Then, according to the model (16), we can get the normalized forms of L1
12

and L3
32

. Take L1
12

as an example. Suppose that the normalized form of L1
12

is L1
12
¼ fs1ð0:3Þ; s2ð0:5Þ; srð0:2Þg,

where sr 2 S. By using Eqs (12)–(14), DEFðL1
12
Þ, DEHðL1

12
Þ and DETðL1

12
Þ can be derived:

DEFðL
1

12
Þ ¼ jEFð

�L1

12
Þ � EFðL

1

12
Þj ¼ 0:2� j1 � 0:5rj

DEHðL
1

12
Þ ¼ jEHð

�L1

12
Þ � EHðL

1

12
Þj ¼ 0:06� j1 � rj þ 0:1� j2 � rj

DETðL
1

12
Þ ¼ DEFðL

1

12
Þ þ DETðL

1

12
Þ ¼ 0:2� j1 � 0:5rj þ 0:06� j1 � rj þ 0:1� j2 � rj

Subsequently, we construct the optimal model as follows:

MinDET ¼ 0:2� j1 � 0:5rj þ 0:06� j1 � rj þ 0:1� j2 � rj

s:t:

X#�LðxÞ

k¼1
xðkÞ ¼ 1

_sr 2 S

#�LðxÞ ¼ #LðxÞ þ 1

0 < xðkÞ < 1

8
>>>>>>><

>>>>>>>:

The optimal solution of r is r = 2. Thus, L1
12
¼ fs1ð0:3Þ; s2ð0:7Þg. And the normalized result

of �L3
32

is �L3
32
¼ fs2ð0:5Þ; s3ð0:5Þg.

Step 2. Integrate the experts’ decision matrices into a collective decision matrix. For the

convenience of calculation and aggregation, we transform the PLTSs into the ordered normal-

ized PLTSs according to Definition 3 and the results are shown in Table a in S1 Appendix. The
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weight vector of experts is ω = (0.3, 0.2, 0.2, 0.2, 0.1)T. By using PLWA operator (Eq (2)), we

aggregate the evaluation information of experts and the results are shown in Table 6.

Again, we use the PLWA operator to aggregate the collective decision matrix and the aggre-

gation weight is the attribute weight, namely W = (0.5, 0.3, 0.2)T. After aggregating the collec-

tive decision matrix, we can get a decision vector, which is shown below:

DT ¼ ðfs0:54ð0:65Þ; s0:09ð0:35Þg; fs1:62ð0:82Þ; s0:09ð0:18Þg; fs1:63ð0:83Þ; s0:15ð0:17Þg;

fs1:47ð0:76Þ; s0:12ð0:24Þg; fs1:28ð0:67Þ; s0:23ð0:33ÞgÞ
T

Step 3. Compute the expected values of PLTSs in DT by Eq (1). The results are E(L1) =

0.3825, E(L2) = 1.3446, E(L3) = 1.3784, E(L4) = 1.146, E(L5) = 0.9335. Then, the ranking of

alternatives is x3� x2� x4�x5�x1.

Therefore, the alternative x3 is optimal. Namely, according to the evaluations of three

experts, Badaling Great Wall is the best scenery and it should be selected as the five-star scenic

spot.

6. Comparative analysis

In this section, we give the comparative analysis to verify the feasibility and superiority of the

proposed method.

(1) Comparison with Pang’ normalization method of PLTS

In section 5, we see that the incomplete PLTSs are L1
12

, L1
21

, L3
13

and L3
32

. Among that, L1
21

and L3
32

belong to MP-InPLTS while L1
12

and L3
32

belong to MLT-InPLTS. The idea of Pang’s normaliza-

tion method is to averagely assign the rest probabilities to the existing LTs (see Definition 2),

namely,

_LðpÞ ¼ fLðkÞð _pðkÞÞ j k ¼ 1; 2; . . . ;#LðpÞg;

where _pðkÞ ¼ pðkÞ=
X#LðpÞ

k¼1
pðkÞ.

Although Pang’s method seems very simple and straightforward, the existing defects of

Pang’s method are evident. Firstly, it is not scientific and accuracy. As we see, the unknown

probabilities do not mean that they must belong to the known linguistic terms. In some cases,

people may not ensure that the rest probabilities should be assigned to which element. Thus,

Pang’s method is rough and inaccuracy. Secondly, Pang’s method can only cope with the

MLT-InPLTS while it does not consider the situation of MP-InPLTS. For L1
21

and L3
32

in section

5, we can not use Pang’s method to solve. Hence, Pang’s method is limited. Thirdly, the nor-

malized results derived by Pang’s method are counter-intuitive. Especially, if there only exists

one element with unknown probability, the probability will be directly normalized as 1. For

example, L1(p) = {s0(0.5)} and L2(p) = {s0(0.8)}, according to Pang’s method, the normalized

Table 6. The collective decision matrix.

c1 c2 c3

x1 {s0.69(0.69), s0(0.31)} {s0.96(0.51), s0.49(0.49)} {s1.05(0.75), s0.3(0.25)}

x2 {s2.22(0.8), s0.28(0.2)} {s1.7(1)} {s1.83(0.61), s0.78(0.39)}

x3 {s2.2(1)} {s1.5(0.5), s1(0.5)} {s1.76(0.88), s0.12(0.12)}

x4 {s1.96(0.71), s0.65(0.29)} {s1.23(0.68), s2.5(0.32)} {s2.15(0.63), s0.98(0.37)}

x5 {s2.34(0.65), s1.8(0.35)} {s1.38(0.5), s0.98(0.5)} {s0.56(0.85), s0(0.15)}

https://doi.org/10.1371/journal.pone.0268158.t006
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results are �L1ðpÞ ¼ fs0ð1Þg and �L2ðpÞ ¼ fs0ð1Þg. Probabilities of two PLTS are identical after

normalization, which are not in accord with our intuition. Fourthly, it will largely change the

original uncertainty information of PLTS by using Pang’s method.

Comparing with Pang’s method, the proposed normalization method in this paper is more

scientific and accuracy. For the four shortcomings of Pang’s method above, the model (15)

and model (16) can overcome.

(2) Comparison with Wang’s normalization method of PLTS

Wang et al. [27] proposed a two-stage process to estimate the missing information for incom-

plete probabilistic linguistic preference relations(InPLPRs). In stage 1, the programming

model is constructed based on maximum preference consistency. To ensure that there exist

feasible solutions, in stage 2, it develops one optimization model based on the minimum

uncertainty (minimum entropy) overall. It is more scientific and accuracy than Pang’s

method.

However, the existing defects in Wang’s method should not be ignored. For Wang’s nor-

malization method, it mainly applies to the case that experts use the PLPR to compare any two

alternatives and it is based on the individual preference consistency. Thus, its scope of applica-

tion is relatively small. Moreover, the calculation process is much complicated because it con-

tains many models in two stages and need compute all preference values in decision matrix. At

length, although the entropy is considered in Wang’s method, it does not take the entropy

change into account. Thus, it can not retain the original uncertainty information of InPLTS by

using Wang’s method. The problems can be solved by using the proposed method in this

paper.

(3) Comparison with other normalization methods of PLTS

In addition to the comparison with the above two methods, we analyze other normalization

methods and compare. The comparative results are shown in Table 7.

Comparing with other normalization methods, there are two main advantages for the nor-

malization method proposed in this paper, which are summarized as follows:

1. The proposed method can remain the original uncertainty information of InPLTSs to the

greatest extent based on the idea of minimum entropy change of PLTS.

Table 7. The comparison with different normalization methods of PLTS.

Literature Normalization

Method

Computational

complexity

Scope of

application

Additional conditions Whether

considering

entropy

Whether considering

change of uncertainty

information

Literature

[5]

Averagely assign Low MP-InPLTS No No No

Literature

[27]

Optimization models High MP-InPLTS and

MLT-InPLTS

Probabilistic linguistic preference

relations(PLPR); PLPR consistence;

group consensus

Yes No

Literature

[23]

Full-set Low MP-InPLTS No No No

Power-set High MP-InPLTS No No No

Envelope-set Low MP-InPLTS No No No

Literature

[30]

Personalized

normalization

method

Common MP-InPLTS Considering individual consistence

and group consensus; personal risk

attitude

No No

This paper Minimum entropy

change

Low MP-InPLTS and

MLT-InPLTS

No Yes Yes

https://doi.org/10.1371/journal.pone.0268158.t007
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2. No more additional conditions need to be considered so the method is applied universally.

The two types of InPLTSs basically cover all situations that there exist missing information

in a PLTS. Thus, the normalization method can be used to solve the GDM with PLPRs,

MAGDM and other decision problems.

Besides, in order to compare the ranking results of the proposed MAGDM model, we

respectively use the decision methods in literature [5, 27]. It is worth noting that the attribute

weight and the expert weight are given so that we do not need to decide them in literature [5,

27]. The final ranking results are shown in Table 8.

The ranking result by Pang’s method and the one by the proposed method in this paper are

same except for alternative x4 and x5. In Wang’s method, the optimal alternative is x4, which is

different from the result by the proposed method. The reason may be that the results of PLTS

normalization between Wang’s method and this paper’s are distinct. Of course, there are possi-

bly other reasons leaded to the result in the process of decision making. Different from Pang’s

method and Wang’s method, when processing the InPLTSs, we use the optimization models

based on minimum change of PLTS entropy. It can retain the uncertainty information of

experts to the greatest extent and the decision results will be more accurate.

7. Conclusions

The normalization method of InPLTS is an important research topic of PLTS. However, there

exist many limitations in previous methods, which lead to the loss of uncertainty information

and the inaccuracy of decision results. Entropy is an useful tool to measure uncertainty infor-

mation of PLTS so we give the definitions about fuzzy entropy, hesitant entropy of InPLTS

with aid of Liu’s method. Considering that the entropy of InPLTS will be changed after the

normalization process, based on the idea of minimum entropy change, we propose two opti-

mization models to estimate the missing information of MP-InPLTS and MLT-InPLTS respec-

tively. On the basis of entropy measure, we give some definitions of entropy change. The

proposed normalization method can retain the original uncertainty information of InPLTSs to

the greatest extent. Moreover, it does not need any other additional conditions so it can be

applied to most cases of InPLTSs. To apply this normalization method to the MAGDM prob-

lem, we construct a decision model based on the idea of minimum entropy change of InPLTS.

According to the case analysis and comparison with other methods, it is more effective and

superior to use the proposed method when processing the MAGDM problems with InPLTSs.

However, there are some limitations in this paper. Firstly, we use the simple formulas to

define the entropy measure of InPLTSs, which may be rough. Secondly, for the optimization

model of MLT-InPLTS, we suppose that the missing LTs are discrete in the LTSs, which may

not attain the optimal solution. Finally, in the model of MAGDM, we preset subjectively the

experts’ weights and attribute weights, which need to be further derived by some objective

methods. Of course, the idea of minimum entropy change in InPLTS is firstly proposed in this

paper, so the main work is to apply this idea to the normalization process of InPLTS and solve

the MAGDM problems. For the existing defects in the normalization method, we will have a

Table 8. The ranking results from different methods.

Method Ranking result

Pang’s method [5] x3� x2� x5� x4 � x1

Wang’s method [27] x4� x2� x3� x5 � x1

This paper x3� x2� x4� x5 � x1

https://doi.org/10.1371/journal.pone.0268158.t008
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further study in next work. Besides, in future, we will also explore how to use this normaliza-

tion method to solve reliable InPLTSs and apply it to the environment of large-scale group

decision making.
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4. Merigó JM, Palacios-Marqués D, Zeng S. Subjective and objective information in linguistic multi-criteria

group decision making. European Journal of Operational Research 2016; 248:522–531.

5. Pang Q, Wang H, Xu Z. Probabilistic linguistic term sets in multi-attribute group decision making. Infor-

mation Sciences 2016; 369:128–143.

6. Zhang X, Xing X. Probabilistic Linguistic VIKOR Method to Evaluate Green Supply Chain Initiatives.

Sustainability 2017; 9.

7. Bai C, Zhang R, Qian L, Wu Y. Comparisons of probabilistic linguistic term sets for multi-criteria decision

making. Knowledge-Based Systems 2017; 119:284–291.

8. Liu P, Li Y. An extended MULTIMOORA method for probabilistic linguistic multi-criteria group decision-

making based on prospect theory. Computers & Industrial Engineering 2019; 136:528–545.

9. Liu P, Li Y. An improved failure mode and effect analysis method for multi-criteria group decision-mak-

ing in green logistics risk assessment. Reliability Engineering & System Safety 2021; 215.

10. Wu Q, Liu X, Qin J, et al. A linguistic distribution behavioral multi-criteria group decision making model

integrating extended generalized TODIM and quantum decision theory. Applied Soft Computing 2021;

98.

11. Wu Q, Liu X, Qin J, Zhou L. Multi-criteria group decision-making for portfolio allocation with consensus

reaching process under interval type-2 fuzzy environment. Information Sciences 2021; 570:668–688.

12. Krishankumar R, Ravichandran K, Ahmed M, et al. Probabilistic Linguistic Preference Relation-Based

Decision Framework for Multi-Attribute Group Decision Making. Symmetry 2018; 11.

13. Liu P, Li Y. Multi-attribute decision making method based on generalized maclaurin symmetric mean

aggregation operators for probabilistic linguistic information. Computers & Industrial Engineering 2019;

131:282–294.

14. Zadeh LA. Fuzzy Sets*. Information and Control 1965; 8:338–353.

15. Torra V. Hesitant fuzzy sets. International Journal of Intelligent Systems 2010; 25:529–539.

16. Wu J, Chiclana F, Herrera-Viedma E. Trust based consensus model for social network in an incomplete

linguistic information context. Applied Soft Computing 2015; 35:827–839.

17. Dong Y, Li C, Herrera F. An optimization-based approach to adjusting unbalanced linguistic preference

relations to obtain a required consistency level. Information Sciences 2015; 292:27–38.

18. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning. Information

Sciences 1975; 8(3):199–249.

PLOS ONE The research for PLTS normalization method based on minimum entropy change

PLOS ONE | https://doi.org/10.1371/journal.pone.0268158 May 6, 2022 21 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268158.s001
https://doi.org/10.1371/journal.pone.0268158


19. Rodriguez RM, Martinez L, Herrera F. Hesitant Fuzzy Linguistic Term Sets for Decision Making. IEEE

Transactions on Fuzzy Systems 2012; 20:109–119.

20. Zhang Y, Xu Z, Liao H. A consensus process for group decision making with probabilistic linguistic pref-

erence relations. Information Sciences 2017; 414:260–275.

21. Xu Z, He Y, Wang X. An overview of probabilistic-based expressions for qualitative decision-making:

techniques, comparisons and developments. International Journal of Machine Learning and Cybernet-

ics 2018; 10:1513–1528.

22. Liao H, Mi X, Xu Z. A survey of decision-making methods with probabilistic linguistic information: biblio-

metrics, preliminaries, methodologies, applications and future directions. Fuzzy Optimization and Deci-

sion Making 2019; 19:81–134.

23. Mi X, Liao H, Wu X, Xu Z. Probabilistic linguistic information fusion: A survey on aggregation operators

in terms of principles, definitions, classifications, applications, and challenges. International Journal of

Intelligent Systems 2020; 35:529–556.

24. Wan S, Zou W, Dong J, Martı́nez L. A probabilistic linguistic dominance score method considering indi-

vidual semantics and psychological behavior of decision makers. Expert Systems with Applications

2021; 184.

25. Xu G, Wan S, Li X, Feng F. An integrated method for multiattribute group decision making with probabi-

listic linguistic term sets. International Journal of Intelligent Systems 2021; 36:6871–6912.

26. Wan S, Huang Cheng W, Dong J. Interactive multi-criteria group decision-making with probabilistic lin-

guistic information for emergency assistance of COVID-19. Applied Soft Computing 2021; 107.

27. Wang P, Liu P, Chiclana F. Multi-stage consistency optimization algorithm for decision making with

incomplete probabilistic linguistic preference relation. Information Sciences 2021; 556:361–388.

28. Song Y. Deriving the priority weights from probabilistic linguistic preference relation with unknown prob-

abilities. PLoS One 2018; 13:e0208855. https://doi.org/10.1371/journal.pone.0208855 PMID:

30532157

29. Song Y, Hu J. Large-scale group decision making with multiple stakeholders based on probabilistic lin-

guistic preference relation. Applied Soft Computing 2019; 80:712–722.

30. Tian Z, Nie R, Wang J. Consistency and consensus improvement models driven by a personalized nor-

malization method with probabilistic linguistic preference relations. Information Fusion 2021; 69:156–

176.

31. Gao J, Xu Z, Ren P, Liao H. An emergency decision making method based on the multiplicative consis-

tency of probabilistic linguistic preference relations. International Journal of Machine Learning and

Cybernetics 2018; 10:1613–1629.

32. Gao J, Xu Z, Liang Z, Liao H. Expected consistency-based emergency decision making with incomplete

probabilistic linguistic preference relations. Knowledge-Based Systems 2019; 176:15–28.

33. Liu H, Jiang L, Xu Z. Entropy Measures of Probabilistic Linguistic Term Sets. International Journal of

Computational Intelligence Systems 2018; 11:45–57.

34. Luca AD, Termini S. A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory. Infor-

mation and Control 1972; 20:301–312.

35. Ebanks BR. On measures of fuzziness and their representations. Journal of Mathematical Analysis &

Applications 1983; 94 (1):24–37.

36. Pal NR, Bezdek JC. Measuring Fuzzy Uncertainty. IEEE Transactions on Fuzzy Systems 1994; 2

(2):107–118.

37. Xu Z, Xia M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making.

International Journal of Intelligent Systems 2012; 27:799–822.

38. Zhao N, Xu Z, Liu F. Uncertainty Measures for Hesitant Fuzzy Information. International Journal of Intel-

ligent Systems 2015; 30:818–836.

39. Lin M, Chen Z, Liao H, Xu Z. ELECTRE II method to deal with probabilistic linguistic term sets and its

application to edge computing. Nonlinear Dynamics 2019; 96:2125–2143.

40. Xu G, Wan S, Dong J. An Entropy-Based Method for Probabilistic Linguistic Group Decision Making

and its Application of Selecting Car Sharing Platforms. Informatica 2020:621–658.

41. Dong Y, Xu Y, Li H. On consistency measures of linguistic preference relations. European Journal of

Operational Research 2008; 189:430–444.

42. Herrera F, Herrera-Viedma E. Choice functions and mechanisms for linguistic preference relations.

European Journal of Operational Research 2000; 120 (1):144–161.

43. Mao X, Wu M, Dong J, et al. A new method for probabilistic linguistic multi-attribute group decision mak-

ing: Application to the selection of financial technologies. Applied Soft Computing 2019; 77:155–175.

PLOS ONE The research for PLTS normalization method based on minimum entropy change

PLOS ONE | https://doi.org/10.1371/journal.pone.0268158 May 6, 2022 22 / 22

https://doi.org/10.1371/journal.pone.0208855
http://www.ncbi.nlm.nih.gov/pubmed/30532157
https://doi.org/10.1371/journal.pone.0268158

