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Background. Osteosarcoma is the most prevalent bone cancer that affects young adults and adolescents. It is the most frequent
malignancy of the bone. In spite of the fact that complete surgical resection and chemotherapy have increased the overall survival
of osteosarcoma patients considerably, the prognosis remains dismal in patients with recurring and/or metastasized osteo-
sarcoma. +us, finding predictive biomarkers representing osteosarcoma’s biological variability may result in more effective
treatment for osteosarcoma patients.Methods. In this research, RNA data and clinical information were obtained from TARGET
database. +e risk score was calculated using a technique that incorporated both univariate and multivariate Cox regression. A
variety of statistical methods were employed to assess the risk score’s accuracy. +ese included ROC curves, nomograms, and
Kaplan-Meier curves. Following that, bioinformatics studies were carried out in order to investigate the possible biological
processes that influence the prognosis of osteosarcoma patients. GSEA was used to investigate the variations in pathway en-
richment among the different groups of genes. To examine the disparities in the immune microenvironment, the analytical
methods CIBERSORTand ssGSEA were employed. Results. We discovered three differentially expressed lncRNAs (RPARP-AS1,
AC009159.3, and AC124312.3) that are linked to osteosarcoma prognosis. Kaplan-Meier analysis showed the presence of a
signature of high-risk lncRNAs linked with a poor prognosis for osteosarcoma. Furthermore, the AUC of the lncRNAs signature
was 0.773, indicating that they are useful in predicting osteosarcoma prognosis in certain cases. In predicting osteosarcoma
prognosis, our risk assessment approach outperformed conventional clinicopathological characteristics. In the high-risk group of
people, GSEA showed the presence of tumor-related pathways as well as immune-related pathways. Furthermore, TARGET
revealed that immune-related functions such as checkpoint, T-cell coinhibition, and costimulation were significantly different
between the high-risk and low-risk groups. LAIR1, LAG3, CD44, and CD22, as well as other immune checkpoints, were shown to
be expressed differentially across the two risk groups. Conclusion. +is study established that pyroptosis-derived lncRNAs had a
significant predictive value for osteosarcoma patients’ survival, indicating that they may be a viable target for future therapy.

1. Introduction

Osteosarcoma is a bone cancer that most often affects
teenagers and young adults. One-fifth of the patients had
metastases, with micrometastases probably appearing in the
majority of the other patients, and chemotherapy and
surgical excision are the standard treatments [1, 2]. Despite
the fact that chemotherapy with cisplatin, doxorubicin, and
methotrexate slightly increased the survival rate when
compared to surgery alone, metastatic osteosarcoma was

frequently recurrent and had a dismal prognosis, with only
30% of patients surviving for more than a year after diag-
nosis [3, 4]. In response to this unmet need, we have
concentrated our efforts on the discovery of new prognostic
targets for osteosarcoma.

A kind of RNA that has a length of more than 200
nucleotides and comes from the genome’s noncoding
region is known as long noncoding RNA (lncRNA) [5, 6].
At the transcription and posttranscriptional phases,
lncRNAs regulate gene expression and perform a range of
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biological functions [7, 8]. Numerous studies have shown
that long noncoding RNAs have a role in the development
of osteosarcoma [9, 10].

Pyroptosis is a kind of programmed cell death that is
linked with the production of proinflammatory mediators
and cell disintegration [11, 12]. Pyroptosis causes in-
flammatory alterations in normal cells that promote car-
cinogenesis and create tumor microenvironments that are
favorable for tumor growth [13, 14]. By stimulating the
ERK 1/2 pathway, HMGB1, which is generated by
pyroptotic epithelial cells, has been shown to accelerate the
development of colorectal cancer in patients with colitis
[15]. According to recent research, the induction of
pyroptosis in the hypoxic core of the tumor has been
shown to accelerate tumor growth and is linked with
shorter overall survival [13, 16]. +e ability to predict the
outcome of malignancies has been shown in a number of
studies, and more studies into the mechanism of pyrop-
tosis may provide new therapeutic targets to guide future
research.

Several studies have demonstrated that pyroptosis-de-
rived lncRNAs influence solid tumor cells (such as cervical
cancer, digestive cancers, and breast cancer) [17–19]. +e
function of lncRNAs derived from pyroptosis in osteosar-
coma remains unknown. In this research, we hypothesize
that many long noncoding RNAs are associated with
pyroptosis genes and may help predict the prognosis of
osteosarcoma patients. We can more effectively show the
heterogeneity of osteosarcoma by integrating clinicopath-
ological kinds and tumor molecular features, and we can
provide a theoretical basis for osteosarcoma clinical diag-
nosis and prognosis. In order to accurately assess patients’
prognosis, we developed a new scoring system based on
three lncRNAs linked with pyroptosis.

2. Materials and Methods

2.1. Data Collection. +e Xena website at the University of
California, Santa Cruz (UCSC), was used to obtain high-
throughput RNA-seq data and clinical characteristics from
the TARGETdatabase for 88 patients with osteosarcoma and
396 normal skeletal muscle samples from the GTEx project.
+e FPKM normalized estimate and log2-based transfor-
mation were used to quantify the gene expression patterns.
Due to the scarcity of data on normal skeletal muscle tissue
in the TARGET cohort, we used GTEx data to detect DEGs
between normal and malignant tissues. Before comparing
the two datasets, the expression data was standardized to
FPKM values.

2.2. Differentially Expressed Genes in the TARGET Database.
+irty-three genes linked to pyroptosis have been obtained
in the literature published (Table S1). DEGs were identified
using the R software package “limma” with an absolute value
of |log2FC|> 0.5 and an adj. p value <0.05. Following that,
heatmaps were utilized to demonstrate the differences in
pyroptosis-related gene expression between osteosarcoma
and normal skeletal muscle tissues.

2.3. PPI Network. We used the Search Tool for Interaction
Genes (STRING) database to create a PPI network in order
to examine the differentially expressed 20 pyroptosis-related
genes. A minimum gene interaction score of 0.7 was used as
a criterion for genes in the center of the PPI network.

2.4. Identification of Pyroptosis-Associated lncRNAs and
Development of a Prognostic Model. A Pearson correlation
analysis was conducted in order to identify lncRNAs related
to pyroptosis. +e association between lncRNAs and
pyroptosis genes was determined using their expression
values. |R2|> 0.6 and p< 0.001 were our selection criteria.
We used univariate Cox regression and multivariate Cox
regression to generate the pyroptosis-related lncRNA sig-
nature. Using that data, we found three lncRNAs that are
involved in pyroptosis to be potential signatures for the
prognostic signature model. +e model for predicting
pyroptosis-associated lncRNAs was constructed utilizing
three lncRNAs linked to pyroptosis that were derived using a
previously established formula:

risk score � 
n

i�1
expi∗ βi. (1)

In the formula, exp (i) and β (i) indicate the expression
value and estimated regression coefficient of each pyrop-
tosis-related lncRNA, respectively.

2.5. Assessment and Verification of Accuracy of Predictive
Signatures. To demonstrate the connection between high-risk
and low-risk populations, we utilized Kaplan–Meier survival
curves. After analyzing the expression data and plotting the
results, we utilized heatmaps and scatter plots to illustrate gene
expression and prognosis in various groups. ROC curves were
used to evaluate the predictive accuracy of the forecasts. To
verify the connection between the risk score and clinico-
pathological features of patients, a correlation study was
conducted. We conducted univariate and multivariate Cox
regression studies to validate our prediction model.

2.6. Developing a Predictive Nomogram. A nomogram was
developed to provide a reliable predictive tool for patients
with osteosarcoma at 1, 3, and 5 years based on risk values
and other clinicopathological characteristics. Calibration
curves were then used to assess the degree of agreement
between the expected and observed patient populations.

2.7. GSEA Analysis. +e gene expression features of three
pyroptosis-related lncRNAs as well as the genetic charac-
teristics of the individuals classified into the high- and low-
risk groups were evaluated in the TARGET cohort by using
GSEA. +e false discovery rate (FDR) was <0.25, and the p

value was <0.05.

2.8. Immune Cell Characteristics Examination. +e
CIBERSORT website provides an annotation of the gene
signature matrix (LM22) and defines 22 immune cell
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subtypes as listed in an annotation. To improve the accuracy
of the deconvolution technique for each file, the CIBER-
SORT p-value and root mean square error were calculated
using 100 permutations of the standard signature matrix.
+e CIBERSORT p-value< 0.05 was used to select and
further process the osteosarcoma tissue data. +e immune
cell composition of the sample of TARGET cohort osteo-
sarcoma has been examined using the CIBERSORTprocess.

2.9. Statistical Analysis. R version 4.0.2 and different R
packages were used for statistical analysis, with a 2-tailed
p-value of 0.05 signifying statistical significance. +e uni-
variate and multivariate Cox regression analyses were car-
ried out using the “survival” package, respectively. +e
LASSO Cox regression analysis was performed using the
“glmnet” package, and 10-time cross-validation was used to
determine the best penalty parameter lambda.+e “survival”
package was used for Kaplan-Meier analysis and survival
curves. +e nomogram and calibration curve were produced
using the “rms” program. +e “timeROC” program con-
ducted time-dependent ROC curve studies. On the basis of
FDR, the Benjamini-Hochberg technique was employed to
discover differentially expressed lncRNAs. Using “GSVA,”
the ssGSEA-normalized osteosarcoma DEGs were com-
pared to a genome (R-package).

3. Results

3.1. Pyroptosis-Related Genes Are Expressed Differently in
Osteosarcoma and Normal Muscle Tissues. To discover the
differentially expressed genes and associated activities of
pyroptosis-related genes in osteosarcoma, we utilized the
TARGETdatabase to examine 88 osteosarcoma patients and
396 normal muscle tissues from the GTEx database. Table S2
contains the full clinical features of the individuals in the
TARGET database. +e expression of pyroptosis-related
genes differed substantially between osteosarcoma and
normal muscle tissues, according to our findings
(Figure 1(a)). +e connection between genes linked to
pyroptosis was next sought to be clarified. We constructed a
PPI network comprising 20 pyroptosis-related genes using
the STRING database (Figure 1(b)), and the number of
nodes is displayed in Figure 1(c). Figure 1(d) depicts the
connection between these genes. PRCARD was identified as
the central gene in the network, and it was discovered to
interact with a total of 11 additional genes. When the
connection with other genes was moderated, we discovered
that PRCARD and SCAF11 had the greatest link
(Figure 1(e)). +e aforementioned findings showed that
pyroptosis-related genes interacted with one another in
osteosarcoma.

3.2. Enrichment Analysis of Genes Associated with Pyroptosis.
We discovered 20 DEGs associated with pyroptosis (14
downregulated and 6 upregulated; Table S3). BP participated
in pyroptosis, positive regulation of IL-1β production, and
defense response to bacterium. MF mainly participated in
cysteine-type endopeptidase activity involved in apoptotic

process, phosphatidylinositol bisphosphate binding. CC
were mainly involved in inflammasome complex, specific
granule lumen, and endocytic vesicle. KEGG-based analysis
revealed that the DEGs were mainly involved in lipid and
atherosclerosis, legionellosis, salmonella infection, and
NOD-like receptor signaling pathway (Figure 2).

3.3. Identification of Prognostic Pyroptosis-Related lncRNAs.
Using Pearson correlation analysis to assess correlations
between the lncRNAs and the pyroptosis-associated genes,
we identified 329 lncRNAs linked to pyroptosis with se-
lection criterion of |R2| >0.6 and p< 0.001 (Table S4).
Cytoscape was utilized to decipher the network of lncRNA-
mRNA coexpression in osteosarcoma (Figure S1). In
combination with clinical survival data, the results of the
univariate Cox regression analysis showed a statistically
significant relationship between the expression of six
lncRNAs and the survival time of osteosarcoma patients
(p< 0.001; Figure 3(a)). +ree well-characterized lncRNAs
(RPARP-AS1, AC009159.3, and AC124312.3) were filtered
using multivariate Cox regression to create the predictive
signature (RPARP-AS1, AC009159.3, and AC124312.3)
(Figure 3(b)). Among the three lncRNAs, RPARP-AS1 and
AC124312.3 had HR> 1, whereas AC009159.3 had HR1.
RPARP-AS1 and AC124312.3 were both shown to be cor-
related with decreased survival and AC009159.3 was linked
with improved survival (Figure 3(c)).

3.4. Verifying the Accuracy of �ree lncRNAs Associated with
Pyroptosis as a Prognostic Marker. Patients with osteosar-
coma were classified into two groups based on a median cut-
off value: high-risk and low-risk groups. Patients in the low-
risk group had a substantially longer life and better prog-
nosis than those in the high-risk group, according to a study
of Kaplan-Meier survival curves (Figure 4(a)). With all AUC
values greater than 0.7 (Figure 4(b)), the ROC curve shows
that the use of risk scores to predict the prognosis of os-
teosarcoma patients at 1, 3, and 5 years is reliable. Fur-
thermore, the signature’s 5-year AUC was 0.773,
demonstrating superior performance to traditional clini-
copathological features in predicting the prognosis of os-
teosarcoma patients (Figures 4(c) and 4(d)). Patients with
osteosarcoma were then categorized based on risk ratings
derived from the prognostic profile of pyroptosis-related
lncRNAs (Figure 4(e)). +e scatter plot shows the associa-
tion between survival and risk score in osteosarcoma pa-
tients, with those with higher risk scores having shorter
survival times (Figure 4(f)). In the low-risk group, lncRNAs
linked with prognostic markers were expressed differently
than in the high-risk group, according to the heatmap. Risk
factors were higher in high-risk patients (RPARP-AS1 and
AC124312.3), whereas protective variables (AC009159.3)
were higher in low-risk patients (Figure 4(g)).

3.5. Examining the Potential of Predicting theRisk Signature of
Pyroptosis-Related lncRNAs Independently. +e pyroptosis-
related lncRNAs prognostic signature was then tested using
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Figure 1: Identification of osteosarcoma and normal tissues with differently associated pyroptosis genes. (a) Heatmap graphically il-
lustrating the differences between the two groups in the expression of genes associated with pyroptosis. (b, c) Network of protein-protein
interactions (PPI) demonstrating interaction between genes expressed differently among genes linked to pyroptosis. (d) +e correlation
network of genes associated with pyroptosis is expressed differently. +e correlation coefficients are shown in various colors. (e) Pearson’s
study of pyroptosis-related differential expression.
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univariate and multivariate Cox regression analysis to see
whether it was an independent predictor of osteosarcoma in
patients. With the exception of gender (p � 0.304) and age
(p � 0.770), univariate analysis revealed that metastasis
(p< 0.001) and pyroptosis-related lncRNAs prognostic risk
score (p< 0.001) were significantly associated with survival
(Figure 5(a)). In multivariate analysis, both pyroptosis-re-
lated lncRNAs prognostic risk score (p � 0.001) and me-
tastasis (p< 0.001) were significantly associated with survival
(Figure 5(b)). All of these statistical data showed that the risk

score for pyroptosis-related lncRNAs independently pre-
dicts prognosis in patients with osteosarcoma.

3.6. Nomogram-Based Quantification of Clinical Parameters
and Assessment of Risk Score Prognostic Accuracy. As part of
this section, we used the nomogram based on clinicopath-
ological characteristics as well as the prognostic signature of
the pyroptotic-related lncRNAs to generate a score that
could be used to evaluate the accuracy of the prediction
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Figure 3: Construction of pyroptosis-related lncRNAs signature by means of univariate and multivariate cox analysis. (a) Univariate cox
analysis. (b) Multivariate cox analysis. (c) Overall survival analysis of the three pyroptosis-related lncRNAs between high- and low-ex-
pression groups.
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model. For osteosarcoma patients, we developed a nomo-
gram (Figure 6(a)) that combined multiple clinicopatho-
logical characteristics such as age, gender, histological type,
grade, and the risk score associated with pyroptosis-related
lncRNAs in order to accurately predict their 1-, 3-, and 5-
year survival times. In the calibration study, the predicted
and observed OS at 1, 3, and 5 years for osteosarcoma
patients were in good agreement (Figure 6(b)).

3.7. Gene Set Enrichment Analyses. We performed GSEA
comparing the high-risk and low-risk groups to explain how
the pyroptosis-related signature lncRNAs involving devel-
opment of osteosarcoma might proceed and related func-
tions. +e findings revealed that pyroptosis-related lncRNA
signature was significantly enriched in natural killer cell
mediated cytotoxicity, T-cell receptor signaling pathway,
NOD-like receptor signaling pathway, complement and
coagulation cascades, amino sugar and nucleotide sugar
metabolism, apoptosis, primary immunodeficiency, and
apoptosis in the low-risk group (Figure 7). A number of

important insights were gained from our study, which will
be used in future research to find novel personalized
therapies and to accomplish full-process management of
osteosarcoma patients from various risk categories.

3.8. Gene Expression and Immunity. +e CIBERSORT
technique, in conjunction with the LM22 signature matrix,
has been used to evaluate differences between low-risk and
high-risk osteosarcoma patients in the infiltration of 22
distinct immune cell types. Figure 8(a) summarizes the
findings from TARGET’s 88 osteosarcoma patients. +e
percentage of macrophage M0 cells was greater in high-risk
patients, whereas the fraction of CD4 memory activated
T cells was lower (Figure 8(b)). APC coinhibition and
costimulation, CCR, checkpoint, cytolytic activity, HLA, and
T-cell coinhibition and costimulation were significantly
different between the low-risk and high-risk groups,
according to a correlation analysis based on ssGSEA of
TARGET data (Figure 8(c)). Given the significance of im-
munological checkpoints in both populations, between the
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two groups of patients, we discovered a significant variation
in the expression of LAIR1, LAG3, CD44, and CD22
(Figure 8(d)).

4. Discussion

Patients with osteosarcoma continue to have a poor prognosis
despite the fact that aggressive multidisciplinary treatment
(surgery, radiation, chemotherapy, and immunotherapy) has
significantly improved survival rates [20]. A patient’s prog-
nosis and treatment result may vary significantly even if they
have the same clinical risk factors. It is therefore essential to
find effective therapeutic targets for the diagnosis and

treatment of osteosarcoma. Pyroptosis has been discovered to
have a dual function in developing tumors and in treating
processes throughout recent years as a new type of pro-
grammed cell death [21]. Promotion of tumor cell pyroptosis,
on the other hand, may represent a novel therapeutic target.
In this research, we utilized the TARGET database and
STRING to examine variations in the expression of 33
pyroptosis-related genes in osteosarcoma, as well as protein
interactions. To the best of our knowledge, this is the first
comprehensive investigation of the involvement of pyroptosis
in the development of osteosarcoma.

LncRNAs are abundantly produced in human cells,
where they play an important role in a variety of biological
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processes, including genome expression and cell differen-
tiation [22, 23]. Increasing evidence suggests that aberrant
lncRNA expression may be associated with the incidence
and progression of a number of malignancies. Currently,
there is little research on pyroptosis-related lncRNAs. Re-
cent studies have shown that XIST may suppress the

development of non-small cell lung cancer by activating the
miR-335/SOD2/ROS signaling pathway [24]. +is signaling
pathway leads to cell death by pyroptosis through the
elongation of XIST, a long noncoding RNA (lncRNA) [25].
However, no studies have been conducted to investigate the
function of pyroptosis-related lncRNA in osteosarcoma.
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Figure 7: GSEA analysis for pyroptosis-related lncRNAs based on TARGET.
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In this study, we examined the connection between 329
lncRNAs associated with pyroptosis and the forecasts of
osteosarcoma. Furthermore, three pyroptosis-related
lncRNAs of prognostic significance were discovered. We
established a risk score to divide osteosarcoma patients into
high- and low-risk groups and found that general survival
rates were significantly different. A further finding is that a
risk score based on the expression of three pyroptosis-re-
lated lncRNAs may accurately predict patient prognosis
regardless of the presence or absence of traditional clinical
risk markers or molecular features. Current risk scoring
techniques for osteosarcoma rely mostly on whole genome
sequencing. Previous research on the potential of lncRNAs
as new tumor biomarkers has concentrated on individual
molecules. As a new kind of malignant tumor biomarker, a
lncRNA is not enough to use. As the lncRNAs are dem-
onstrated to be secreted in a range of body fluids such as
serum, saliva, and urine, the conclusion that lncRNAs are
available in human serum/plasma seems plausible. Many
research studies revealed the differential expression as a new

kind of biomarker for patient evaluation of long noncoding
RNAs in serum/plasma [26]. However, this is the first study
to provide a risk sampling model for osteosarcoma based on
three long RNAs with prognostic relevance linked to
pyroptosis. Bioinformatics study has previously shown
RPARP-AS1 and AC124312.3 in breast cancer [27, 28].

LncRNAs are also known to be involved in the immune
microenvironment of tumors. +e importance of immune-
related lncRNAs has been shown in a variety of cancers
[29, 30]. We examined the connection between tumor-in-
filtrating immune cells and the risk score in this study. +e
risk score was shown to be adversely associated with im-
mune function and numerous immunological checkpoints.
+is research, therefore, is the first to examine the link
between pyroptosis-related lncRNAs and tumor immunity
in osteosarcoma.

However, we acknowledge that this research has sig-
nificant limitations. +e dataset utilized for the first study,
for example, was inadequate. Because we obtained data only
through TARGET, we were unable to obtain data on
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Figure 8: A tumor-infiltrating immune cell correlation with the risk model. (a, b) Heatmap and barplot of tumor-infiltrating immune cell
types in low- and high-risk groups. (c) Immune-related activities in high- and low-risk groups based on ssGSEA. (d) Differences in immune
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expression levels of other lncRNAs that support osteosar-
coma, clinicopathological characteristics of patients, survival
rates, and followup. To increase the reliability of the pre-
diction findings, it is necessary to verify the newly built risk
score model using tissue level and in vitro and in vivo
studies. Overall, additional validation is necessary for the
prediction model established in this research.

5. Conclusion

+e prognostic model we have developed has been shown to
have independent predictive value and great reliability and
may provide some insight into future studies of lncRNA
pyroptosis-related mechanisms, as well as new resources to
better understand the immune cell specific gene mechanism
involved in cancer control.
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