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ABSTRACT

Deciphering the sequence-function relationship en-
coded in enhancers holds the key to interpreting non-
coding variants and understanding mechanisms of
transcriptomic variation. Several quantitative models
exist for predicting enhancer function and underlying
mechanisms; however, there has been no systematic
comparison of these models characterizing their rel-
ative strengths and shortcomings. Here, we interro-
gated a rich data set of neuroectodermal enhancers
in Drosophila, representing cis- and trans- sources
of expression variation, with a suite of biophysical
and machine learning models. We performed rigor-
ous comparisons of thermodynamics-based mod-
els implementing different mechanisms of activation,
repression and cooperativity. Moreover, we devel-
oped a convolutional neural network (CNN) model,
called CoNSEPT, that learns enhancer ‘grammar’ in
an unbiased manner. CoNSEPT is the first general-
purpose CNN tool for predicting enhancer function
in varying conditions, such as different cell types
and experimental conditions, and we show that such
complex models can suggest interpretable mecha-
nisms. We found model-based evidence for mecha-
nisms previously established for the studied system,
including cooperative activation and short-range re-
pression. The data also favored one hypothesized
activation mechanism over another and suggested
an intriguing role for a direct, distance-independent
repression mechanism. Our modeling shows that
while fundamentally different models can yield sim-
ilar fits to data, they vary in their utility for mech-
anistic inference. CoNSEPT is freely available at:
https://github.com/PayamDiba/CoNSEPT.

INTRODUCTION

Transcriptional regulation in metazoans is mediated by pro-
teins called transcription factors (TF) that bind to specific
sites in regulatory regions called enhancers (1), via TF-
DNA interactions and cooperative DNA binding (2). Many
TFs that occupy their respective binding sites interact with
each other and with the transcription start site over long
and short distances to influence the recruitment of tran-
scription machinery and transcription initiation (3). These
simultaneous interactions establish a complex regulatory
code that drives a gene’s expression in varying cellular con-
ditions or cell types.

Gene regulatory mechanisms encoded in an enhancer can
be fairly complex and have been the subject of numerous
studies, notably the detailed experimental dissection of de-
velopmental enhancers in Drosophila (4–6). Such studies
have significantly advanced our understanding of regula-
tory mechanisms. For example, certain TFs that are known
to inhibit transcription (‘repressors’) have been found to
function only if bound at short distances from activator
binding sites (7–9). As another example, TFs that are re-
sponsible for promoting transcription (‘activators’) have
been shown in some cases to contribute synergistically to
the gene’s expression (10,11), possibly due to cooperative
DNA-binding by TFs to adjacent binding sites. These com-
plex regulatory mechanisms may be mirrored in rules un-
derlying the arrangement of binding sites in an enhancer,
a phenomenon sometimes called cis-regulatory ‘grammar’
(12–15). Precise characterization of the sequence-function
relationship encoded in enhancers therefore requires in-
terpreting how a collection of binding sites for one or
more TFs works together and how such combinatorial ac-
tion is influenced by site arrangements as well as varying
TF concentrations in different cellular contexts. The chal-
lenge goes beyond a general understanding of the under-
lying principles (e.g. ‘TF X is a short-range repressor’ or
‘TFs X and Y activate synergistically’): often, one seeks a
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quantitative model capable of predicting a given enhancer’s
regulatory output in varying cellular conditions and the
effect of sequence variations such as disease-related non-
coding polymorphisms within the enhancer (16). Indeed,
such ‘sequence-to-expression models’ are an active area of
research today (17).

The most direct efforts to deciphering the cis-regulatory
code of enhancers have been through experiments that
record expression readouts of many variants of an enhancer
(14,18) or many enhancers under similar control (12,19,20).
Often, the variants are synthetic constructs that manifest
a diversity of TF binding site composition and arrange-
ment; in some cases, their functions (expression level) are
determined in a single cellular context (12) while occasion-
ally the expression readout is obtained in varying cellular
contexts, for example, nuclei of the early Drosophila em-
bryo (5,20–22) or Ciona embryos. Such data sets are then
analyzed through a specialized mathematical model whose
structure incorporates mechanistic hypotheses and whose
parameters represent quantitative details of those mecha-
nisms, such as activation strength and distance-dependence
of cooperative and repressive interactions among binding
sites (17,18,21,23–27). The most effective frameworks for
such mathematical mechanistic modeling have been based
on equilibrium thermodynamics (14,28,29), although non-
equilibrium models have also been motivated and proposed
(30–32).

Different thermodynamics-based models implement reg-
ulatory mechanisms in different ways. For example, some
models accord the activation by a TF exclusively to its
DNA-binding ability (18,25), while others (24,28) model
activation by additional free parameters (beyond those for
TF-DNA binding) that explicitly represent long-range in-
teractions between activators and the basal transcription
machinery (BTM). Similarly, different models employ var-
ious representations of short-range repression, for exam-
ple, via quenching of a bound activator or mediating local
chromatin remodeling through recruitment of co-repressors
(18,21,25,28), and some even accommodate longer-range
repression via direct inhibitory interaction between the
bound repressor and BTM (28,33). Typically, an enhancer
dataset is analyzed using a mathematical model with a pre-
determined structure (qualitative mechanisms) and its pa-
rameters are tuned to fit the data. It is rare for the same
study to investigate models with varying assumptions about
regulatory mechanisms to determine those best supported
by the data. Here, we sought to bridge this gap by asking if
various existing formalisms differ in their ability to model
sequence-to-expression relationships.

In addition to thermodynamics-based models, statisti-
cal and machine learning (ML) models have also pro-
vided useful quantitative descriptions of cis-regulatory en-
coding (34,35). Such models typically avoid strong pre-
conceptions about underlying mechanisms, providing a
‘data-driven’ approach to quantitative modeling of en-
hancers, as a counterpoint to the ‘hypothesis-driven’ ap-
proach of thermodynamics-based models. Recently, Avsec
et al. (36) trained a deep neural network model on TF–
DNA binding data and showed how interrogating the
trained model can reveal mechanistic insights. While neu-
ral network models have been frequently applied to TF–

DNA binding and epigenomic data (37–39), their utility
for sequence-to-expression modeling remains to be demon-
strated. This is partly because data sets with direct expres-
sion measurements on enhancers (14,18,28) in diverse con-
ditions are of relatively modest sizes and the models tend
to be heavily parameterized. Thus, the second major mo-
tivation of this study was to test if ML models and espe-
cially neural network models provide a practical alternative
to thermodynamics-based models for enhancer sequence-
function relationships, and to assess their relative merits and
weaknesses.

Motivated by the above considerations, we tested a
suite of quantitative models, including linear models,
thermodynamics-based models, and a newly developed
convolutional neural network (CNN) model, on a rich
sequence-expression data set previously reported by Sayal
et al. (14). The data include expression measurements of
an enhancer that drives expression of the rhomboid (rho)
gene in the Drosophila melanogaster embryo, along with
several synthetic variants of the enhancer and several en-
dogenous enhancers with similar regulatory function. The
spatial expression patterns driven by these enhancers are
known to be regulated by two activators, Dorsal (DL) and
Twist (TWI) and one repressor, Snail (SNA) (4,14). Impor-
tantly, the dataset not only represents variation of enhancer
sequences, it also includes changes in cellular conditions.

We used rigorous model comparisons and prior mecha-
nistic studies of this regulatory system to evaluate the suite
of quantitative models. The thermodynamics-based mod-
els we tested included two different activation mechanisms,
three repression mechanisms, and the presence or absence of
cooperative activation via proximal binding sites. We tested
linear and generalized linear models that combine binding
site contributions additively, as well as an extension where
pairwise TF interactions were allowed. Finally, we devel-
oped and tested a new neural network model for the expres-
sion driven by a given enhancer sequence in varying cellular
conditions. This model, called ‘CoNSEPT’ (Convolutional
Neural Network-based Sequence-to-Expression Prediction
Tool), utilizes user-provided DNA binding motifs and
condition- or cell type-specific concentrations of TFs, and
can thus quantify the regulatory role of each TF. Impor-
tantly, it learns salient rules of binding site arrangement in
a purely data-driven manner, without presuming any par-
ticular distance-dependence function of TF–TF interaction
as is commonly done in thermodynamics-based models.

Our modeling shows that the three broad categories of
models are competitive with each other in terms of their
ability to fit the enhancer-expression data set. We found that
convolutional neural networks can be reliably trained on
relatively modest-sized training data and can learn aspects
of cis-regulatory grammar in a fully data-driven manner. To
our knowledge, this is the first demonstration of a CNN
predicting expression variation across sequences as well
as across conditions. Our thermodynamics-based modeling
showed that explicitly modeling the strength of activators
is advantageous compared to ascribing activator strength
solely to its DNA-binding, but that different biochemical
mechanisms of short-range repression cannot be reliably
distinguished based on the dataset. Both thermodynamics-
based and neural network models detected a significant role
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for cooperative interaction between activator sites. Intrigu-
ingly, both types of models suggested a potential role for a
direct repression mechanism that is not short-range, the pre-
dominant theory of repressor action for this system. Our
baseline linear models showed good agreement with data
but were, by design, limited in offering mechanistic insights
into the cis-regulatory code, including rules of binding site
arrangements and interactions. Overall, this work conveys a
positive outlook for the modeler, who has at their disposal a
variety of tools of varying complexity with which to under-
stand a regulatory system at the level of enhancer sequences.

MATERIALS AND METHODS

Linear models

We tested three variants of linear models, viz., basic Linear
Model (LM), Generalized Linear Model (GLM) and Gen-
eralized Linear Model with Quadratic terms (GLMQ).

LM model. Expression (E) driven by an enhancer is a
weighted sum of contributions from TFs that bind to the
enhancer:

E =
∑

t∈T

Wt [t] Ft + Wb

where T is the set of TFs, Wt is a TF-specific weight that
reflects its activating or repressive role and strength, Wb is a
‘basal’ expression parameter, [t] is the concentration of TF
t, and Ft reflects the total binding site presence of t on the
enhancer, defined as:

Ft =
∑

s∈St

exp
(
LLR (s) − LLR

(
St,opt

))

where St is the set of all putative binding sites of t in the en-
hancer, St,opt represents the strongest possible binding site
of t and LLR(x) denotes the log likelihood score of site x,
calculated using the given Position Weight Matrix (PWM)
of t and a provided background nucleotide distribution.
This definition of site strength follows (40).

GLM model. Expression driven by an enhancer is a sig-
moid function of the LM model:

E = 1

1 + exp
(−∑

t∈T Wt [t] Ft − Wb
)

GLMQ model. This defines the total contribution of TFs
as a non-linear function of their concentration [t] multiplied
by their site strength Ft and then applies a sigmoid function
to model saturation:

E = 1

1 + exp
(−Ê

)

Ê =
∑

t∈T

Wt [t] Ft +
∑

t∈T

Vt([t]Ft)
2 + UDL−TWI [DL][TWI]

×FDLFTWI + Wb

where Vt is a free parameter associated with t − t coop-
erative interaction. In addition to linear terms [t]Ft and

quadratic terms ([t]Ft)2 for each TF, this includes a term
for heterotypic cooperativity of DL and TWI, as suggested
in the literature (14,41), with a tunable weight UDL−TWI .

GEMSTAT model

We tested seven thermodynamics-based models named af-
ter their main mechanistic aspects, namely Activation by
Binding (AB), Activation by Potency (AP), repression by
Quenching (Q), repression by Neighborhood Remodel-
ing (NR), Direct repression (DIR), Cooperative binding
(COOP), and No Cooperative binding (NO-COOP) mod-
els. All of the thermodynamics-based models explored in
this work are implemented in GEMSTAT (28), except the
AB model, for which the implementation of Sayal et al. was
used (14). Thermodynamics-based modeling of gene ex-
pression involves enumerating all ‘microstates’ (henceforth,
states) of the enhancer under thermodynamic equilibrium.
A state is defined as a configuration specifying the bound or
non-bound status of each transcription factor binding site
(TFBS). Therefore, an enhancer containing n TFBSs has
2n states. In GEMSTAT, for each of these states the Basal
Transcriptional Machinery (BTM) may be in the bound or
non-bound state, making 2n+1 states. We define ‘ON’ states
of the system as those where BTM is bound; other states are
called ‘OFF’ states. The expression driven by the enhancer
is assumed proportional to the probability of the system be-
ing in ON state:

Expression ∝ Pr (ON state) =
∑

s∈SON
Q (s)

∑
s∈SON

Q (s) + ∑
s∈SOF F

Q (s)
(1)

where SON and SOF F denote the set of all ON and OFF
states of the enhancer, respectively, and Q(s) is the Boltz-
mann weight that prescribes the relative probability of state
s in equilibrium. (The denominator is the partition func-
tion.) For simplicity, we set the constant of proportionality
in the above equation to 1.

The Boltzmann weight of state s, Q(s), is calculated as the
product of terms representing each molecular interaction in
that state; these interactions include TF–DNA interactions
at binding sites, BTM-DNA interaction at promoter, TF-
BTM interactions representing activation or repression ef-
fects of TFs, and TF–TF interactions representing cooper-
ativity or antagonism between proximally DNA-bound TF
pairs. See Supplementary Table S3 for the parameters used
in different GEMSTAT models in this study.

TF–DNA interaction. The weight (term contributed to
Q(s)) of a TF–DNA interaction at site s for a TF t is given
by:

q (s, [t]) = [t] ktexp
(
LLR (s) − LLR

(
St,opt

))

where kt is a TF-specific free parameter that is learned from
the data and other terms are as defined above.

TF–BTM interaction. The weight (term contributed to
Q(s)) of a TF–BTM interaction is a TF-specific positive
constant which is >1 for activators (making the ON state
more favorable than corresponding OFF state) and <1 for
repressors. This TF-specific constant is referred to as the
TF’s ‘potency’ in the Results section. In this study, repres-
sor’s potency is present only in DIR model representing
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long-range repression. We employed the GEMSTAT’s ‘lim-
ited contact’ scheme of activation, where at most one bound
activator can interact with the BTM in any state.

TF–TF interactions. Any activator-activator or repressor-
repressor pair (i.e. DL–DL, TWI–TWI, SNA–SNA, DL–
TWI) bound within 50 bp of each other is modeled as inter-
acting, with the weight contributed to Q(s) being a learnable
free parameter. Such interactions may be configured to be
excluded from or included in the model, for example, when
comparing the ‘COOP’ and ‘NO-COOP’ settings of GEM-
STAT. Separately, an activator-repressor pair (i.e. DL-SNA,
TWI-SNA) bound within 100 bp of each other is modeled
as interacting, with a learnable weight (≤1). Such interac-
tions represent short-range repression by quenching, fol-
lowing Sayal et al. (14), and may be configured to be ex-
cluded or included in the model.

BTM-DNA interaction is modeled as a single learnable
parameter.

Activation by Binding (AB) model

We used the implementation of Sayal et al. (14) for the AB
model. Here, the bound or non-bound status of the BTM is
not part of the state definition, and expression is assumed
proportional to the probability of states with at least one
bound activator that is not repressed by a bound TF nearby.
The Boltzmann weight of a state is defined as the prod-
uct of terms representing TF–DNA and TF–TF coopera-
tive interactions, defined as in GEMSTAT. Terms involving
BTM interactions are not part of the model and in partic-
ular TF–BTM interaction parameters that capture activat-
ing and repressive influences in the GEMSTAT model are
not included. See (14) for details. We used the ‘binned’ in-
teraction scheme of their model, using one bin and setting
the ranges for TF-TF interactions to match those of GEM-
STAT (50 bp for cooperative interactions, 100 bp for short-
range repression).

Alternative repression mechanisms in GEMSTAT

In the GEMSTAT model used for testing the AP mech-
anism of activation, repression is modeled by short-range
(≤100 bp) activator-repressor interactions (DL-SNA, TWI-
SNA). This repression mechanism is referred to as ‘Q’
(for ‘quenching’). An alternative to this is the ‘Neighbor-
hood Remodeling’ (NR) mechanism of short-range repres-
sion, where any repressor site may be in one of three pos-
sible states (rather than two): ‘non-bound’, ‘bound-only’
and ‘bound-effective’ (28). In the bound-effective state, the
bound repressor modifies its neighborhood on the DNA
such that the neighboring chromatin becomes inaccessible
for other TFs to bind. This modification is assumed to oc-
cur within a fixed distance dr from the bound repressor site.
States where a repressor site is in the ‘bound-effective’ state
and another site (for any TF) within dr distance is in the
bound state are considered invalid. The ‘bound-only’ state
is akin to the usual ‘bound’ state of a site, with no restric-
tions on possible states of neighboring sites. A site in the
bound-effective state contributes an additional factor βr (a
TF-specific free parameter) to the Boltzmann weight of the

overall state; a higher value of βr (>1) leads to lower frac-
tional occupancy of proximal activator sites, thus achieving
greater repression. In this study we used a range parame-
ter of dr = 100 bp. A third alternative to the ‘Q’ and ‘NR’
mechanism is the ‘DIR’ (for ‘direct’ repression) mechanism,
modeled by a repressor-BTM interaction regardless of dis-
tance of repressor binding site from a bound activator site,
thus making this a ‘long-range’ repression mechanism (28).

CoNSEPT model

CoNSEPT (Convolutional Neural Network-based
Sequence-to-Expression Prediction Tool) is a neural
network model that predicts the enhancer activity as a
function of enhancer sequence and TF concentration
levels. The model is parameterized by user-provided PWMs
(motifs) representing TF binding preferences.

First, the enhancer sequence (of length L) is scanned
with user-defined PWMs to score the presence of each mo-
tif along the enhancer. The scanning module computes the
complementary sequence (negative strand) of the input en-
hancer and converts both strands into a one-hot encoded
representation by replacing each nucleotide (A, C, G or T)
with a 4D vector as follows:

A = [1, 0, 0, 0] , C = [0, 1, 0, 0] , G = [0, 0, 1, 0] , T = [0, 0, 0, 1]

User-defined PWMs are formatted into a set of K x 4 ma-
trices, mt for each TF t, representing the probability of each
nucleotide appearing at each position of the TF’s binding
site of length K . In this study, we used K = 10, and to do
so we had to expand the TWI and SNA PWMs we obtained
from Sayal et al. (14) by three and two bases, respectively,
with a probability of 0.25 over A, C, G and T.

Both encoded strands are then scanned with each motif
using a convolution operation:

bt
+ = S+ ∗ mt

bt
− =∼ (∼ S− ∗ mt)

where bt
+ and bt

− represent the binding score profiles of TF
t on the positive and negative strands, respectively, S+ and
S− denote the positive and negative encoded strands. More-
over, ∼ (.) represents a ‘flip’ operation that reverses the se-
quence. The flip operation mimics how the negative strand is
scanned for motif presence in previous work (14,25,26,28),
and as far as we know, this is the first time it has been in-
cluded in a neural network model of sequence-function.

Next, for each TF t, the positive and negative bind-
ing score profiles, represented by an L̇ x 2 matrix ( L̇ =
L − K + 1), are passed to a 2-dimensional max-pool layer
that extracts the strongest binding site score from the two
strands within a window of a certain width. Since we have
three TFs (DL, TWI and SNA) in this study, this step gives
us three L̈-dimensional vectors Bt, where L̈ < L̇ is the re-
duced length due to max-pooling. These vectors are then
integrated with the TFs’ concentration values to obtain ‘oc-
cupancy’ vectors Ft:

Ft = Bt × [t]

where Ft is the vector representing occupancy of TF t along
the enhancer, [t] denotes the concentration of TF t in a
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particular cellular context, and ‘x’ represents element-wise
product.

Next, CoNSEPT incorporates user-specified prior
knowledge of TF-TF interactions. To this end, for a
specified interacting pair, (t1, t2), an L̈ x 2 ‘TF pair feature
matrix’ is constructed by stacking Ft1 and Ft2 . The specified
interactions may correspond to homotypic or heterotypic
cooperativity or short-range repression. Each TF pair
feature matrix is passed to a separate 2-dimensional con-
volutional kernel that moves along the enhancer length
and captures the short-range patterns in occupancies,
producing an

...
L-dimensional vector �i (

...
L < L̈ is the

reduced length due to convolution):

�i = (
Fti,1 & Fti,2

) ∗ Ki

where i corresponds to a specified TF-TF interaction be-
tween ti,1 and ti,2, Ki denotes the convolution kernel for this
interaction and ‘&’ is the stacking operation. The outputs
�i of all convolutional kernels are stacked into a

...
L x N ma-

trix �, where N denotes the total number of user-defined
TF–TF interactions.

In this study, we used DL–DL, TWI–TWI and SNA–
SNA interactions, consistent with the homotypic cooper-
ativities in COOP model, also DL–TWI interaction, con-
sistent with the heterotypic cooperativity in COOP model,
and SNA–DL and SNA–TWI interactions, consistent with
the short-range repressions in COOP model. The output of
the convolutional kernels, �, is activated by a non-linear
function. We also tested passing this activated output into
two additional convolutional layers with different num-
ber of kernels and activated by a non-linear function af-
ter each layer to capture longer-range interactions. The ac-
tivated output of the last convolutional layer goes into a
dropout layer that is widely used for regularizing neural net-
work models (42). We did not use dropout in the previous
layers to maintain any positional feature on the enhancer
that might contribute to short-range and long-range regu-
lations. The output of the dropout layer is passed to a non-
overlapping max-pool layer that extracts the strongest sig-
nals. Finally, the output of this pooling layer is linearly com-
bined through a fully connected layer and goes into a final
activation function that outputs the expression value. For
this last activation function, we tested sigmoid and tanh
functions suitably modified to ensure positive expression
values upper-bounded by one.

We use the following naming conventions to fully demon-
strate CoNSEPT’s architecture:

BS: TF binding-site scanning module
P F Cα,β : Stacking of occupancy vector of each pair of
TFs and passing the resulting TF pair feature matrix to
a 2D convolutional kernel of size (α, 2) and stride (β, 2).
This unit generates the output � described above. In this
study we used α = β; i.e. non-overlapping convolution.

Pγ ,δ: a max-pool layer of size γ and stride δ
CNk : a 1-dimensional convolutional layer with k kernels of

size 3 and stride 1.
F C : a fully connected layer
DRp : a dropout layer with probability of p
LN : a layer-normalization layer (43)
σ : an activation function

×[T F ] : multiplication by TF concentration values to ob-
tain occupancy as described above

Architecture: BS − LN − Pγ,δ − × [TF ] − PFCα,α −
σ1 − {CNk1 − σ1 − LN}c − DRp − P3,3 − FC − σ2

Above, {.} represents an optional block of convolutional
kernels followed by activation and normalization and c de-
notes the number of blocks used in the model. Note that for
c = 0, the additional convolutional layers inside the braces
are not used. In this study, we tested 2016 different mod-
els for various settings of γ, δ, α, σ1, c, k1, p, and σ2 and se-
lected the best model based on the performance on a valida-
tion data set. See Supplementary Table S4 for the parameter
settings tested.

Training CoNSEPT

To train a CoNSEPT model we find the settings of param-
eters θ that minimize the mean squared error between the
model output (Ê) and the ground-truth expression (E) over
the training data:

θ = arg min
θ

1
N

N∑

i=1

(
Êi − Ei

)2

where N is the total number of training samples, each rep-
resenting a different combination of enhancer and cellu-
lar context (bin along DV axis). For optimization, we em-
ployed a stochastic gradient descent algorithm using Adam
optimizer (44) for 1000 epochs and a batch size of 20. The
learning rate of the gradient descent was scheduled to be
decreased during the training. An ensemble of 2016 CoN-
SEPT models with different hyperparameter settings was
constructed and the optimal hyperparameter setting was se-
lected based on training and validation set performances
(see the Results section).

Synthetic constructs for evaluation of DL–TWI synergistic
activation
In order to guide the training of CoNSEPT models towards
capturing the cooperative activation by DL and TWI, we
used data from Shirokawa et al. (41). We constructed a
DNA sequence mimicking that tested by Shirokawa et al.,
consisting of a TWI and a DL binding site located 6bp apart
on a construct of length 35 bp with the following sequence:

5’ NNNNNNNAACATATGAANNNNNNGGGAAAATCCNN 3’
TWIbindingsite DLbindingsite

where ‘N’ denotes a dummy base. The DL binding site
is slightly different than that used by Shirokawa et al. (41)
since we used the consensus DL binding site implied by the
PWMs we obtained from Sayal et al. study (14). Also, the
TWI site is four bp longer than that in Shirokawa et al. (41)
due to the padding of TWI PWM in our study.

Similar to the experiments of Shirokawa et al. (41), we
next created a sequence with five consecutive repeats of the
above block. Since CoNSEPT was trained on enhancers of
length 635 bp (see Supplementary Note S2), we expanded
this construct of length 175 to 635 bp by adding dummy
bases (‘N’) at both ends. To eliminate potential biases, we
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repeated this expansion with 80 different random distribu-
tions of dummy bases at the two ends; therefore, we ob-
tained 80 different constructs of length 635 bp that only dif-
fer in their distribution of dummy bases at the two ends.

Next, we selected the hyper-parameter settings of CoN-
SEPT with the highest validation set performance (referred
to as ‘best-validated’ CoNSEPT model) among the ensem-
ble of 2016 settings described above. Using these hyper-
parameter settings, we re-trained an ensemble of 200 CoN-
SEPT models on the training data with different random
initializations of free parameters. We examined the predic-
tion of each of these 200 trained models on the synthetic
constructs defined above, assuming DL and TWI concen-
trations in a 3:1 expression ratio (similar to that in exper-
iments of Shirokawa et al. (41)) as well as in the presence
of only one of the TFs and a basal level in the absence of
both TFs. For each model, the predicted expression val-
ues were averaged over the 80 constructs to obtain four ex-
pression values corresponding to the four conditions of TF
presence/absence––Basal, DL, TWI, DL & TWI.

Synthetic constructs for evaluation of distance-dependent in-
teractions

To characterize distance-dependent interactions learned by
CoNSEPT models, we examined their predictions on ad-
ditional synthetic constructs containing pairs of DL–TWI,
DL–SNA, TWI–SNA or DL–DL binding sites at progres-
sively increasing separations (from 5bp to 195bp), located at
a random location in a 635 bp long sequence. Thus, a collec-
tion of 3900 synthetic enhancers was tested, corresponding
to 39 different inter-site spacings and 100 different locations
of the site pair in the enhancer. The TF binding sites were
set to consensus sites of corresponding PWMs and the re-
maining bases of the enhancers were set to the dummy base
‘N’ (see above). It is worth mentioning that we did not eval-
uate TWI–TWI distance dependent interactions since the
training enhancers contain a maximum of two binding sites
for this TF (Figure 1A), potentially preventing the reliable
learning of their distance-dependent interactions.

We used the trained CoNSEPT models to predict expres-
sion driven by each synthetic construct with relative levels
of DL, TWI, and SNA set to of 0.4, 0.3 and 0.4 respectively
(reflecting the sixth of the 17 ‘bins’ along the V-D axis; this
bin was selected as it represents the dorsal boundary of SNA
expression; Figure 1B). For each TF pair at a specific inter-
site spacing, we averaged the predicted expression over all
100 constructs with different placements of the TF pair. We
evaluated the GEMSTAT model (NR/COOP) on the same
constructs containing pairs of TFs; however, we replaced
the dummy bases ‘N’ with random draws from the set of
four nucleotides (A, C, G, and T) with equal probability.

RESULTS

A gene expression data set with cis and trans variations

We analyzed a data set generated and first modeled by
Sayal et al. (14). It includes expression levels driven by a
well-studied enhancer of the gene rhomboid (rho) (Figure
1A, henceforth called the rho enhancer) in the early D.
melanogaster embryo. This enhancer is regulated by three

transcription factors (TFs): Dorsal (DL), Twist (TWI) and
Snail (SNA). DL and TWI are known to activate and SNA
represses rho expression (4,14). Binding sites of these TFs in
the rho enhancer are well mapped and shown in Figure 1A.
The expression levels of rho driven by the wild-type (WT)
enhancer were measured by Sayal et al. as a function of
cellular (nuclear) position along the ventral–dorsal (V–D)
axis of the embryo (Figure 1B), using reporter assays. The
enhancer’s expression profile is quantitatively represented
by a 17-dimensional vector, where the 17 dimensions rep-
resent uniformly spaced positions or ‘bins’ along the V-D
axis from the ventral end to 40% of the V–D axis length.
Concentration profiles of the three TFs are also available,
as 17-dimensional vectors analogous to the enhancer ex-
pression profiles (Figure 1B). Moreover, similar expression
profiles were generated for 37 synthetic variants of the WT
rho enhancer, where each variant was constructed by mu-
tagenesis of one or multiple TF binding sites (Figure 1C).
(Our nomenclature for the enhancers is different from that
of Sayal et al., see Supplementary Table S1.) Thus, the data
set captures expression variation across different trans con-
texts (cells at different V–D axis positions, with varying TF
levels) as well as different cis contexts (WT enhancer and
synthetic variants).

Figure 1D reports on a selection of the synthetic en-
hancers – those representing DL and/or TWI site deletions,
showing the difference in activation by each enhancer com-
pared to the WT enhancer. Interestingly, deleting the two
sites with smallest individual effects (‘D3’ and ‘D4’) simul-
taneously has the largest effect among all variants. Two
other sites––‘D2’ and ‘T1’––individually have at least as
much contribution as D3 and D4 individually, but their si-
multaneous deletion has a substantially smaller effect than
the D3–D4 double deletion. This and other aspects of Fig-
ure 1D suggest non-linear regulatory contributions (Figure
1E) from sites in the rho enhancer, and present an interesting
challenge for current mathematical models of cis-regulatory
encoding: can existing models capture the subtle variations
of function encoded in these variant enhancers, and if so,
can they reveal new insights about the underlying regula-
tory mechanisms?

To meet the above challenge, we trained diverse mathe-
matical models that map TF concentration profiles and en-
hancer sequence to the enhancer’s expression profile, for all
38 enhancers (WT and 37 variants, henceforth called the
‘training set’) simultaneously. The accuracy, or ‘goodness-
of-fit’, of a model was measured by the root mean squared
error (RMSE) between predicted and real expression pro-
files along the V–D axis, over all enhancers; this is referred
to as the ‘train error’ below. The data set also includes ex-
pression profiles of 13 other enhancers that have expres-
sion profiles similar to rho (Supplementary Figure S1); these
are orthologs of the rho enhancer from other Drosophila
species or enhancers of other D. melanogaster genes with a
neuroectodermal expression pattern similar to rho. We used
these 13 enhancers, which represent greater sequence diver-
sity than do the 38 enhancers in the ‘training set’ (above),
as the ‘test set’. The RMSE of a model on these enhancers
is referred to as ‘test error’ below. By fitting, evaluating and
comparing various models that differ in their explicit encod-
ing of biophysical mechanisms, we hoped to draw inferences
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Figure 1. Overview of the data used in this study. (A) Schematic of the wild-type (WT) enhancer of the Drosophila rhomboid (rho) gene. Binding sites of the
three TFs were identified using the PWMs employed in (14). All annotated sites agree with those found in (14) and except for D1 and S2 all the sites match
with the in vitro footprinted sites characterized previously (14). (B) The levels of the three regulators and the expression of rho driven by the wild-type
enhancer in 17 equidistant points along 0–40% of ventral-dorsal (V-D) axis. (C) The expression of rho driven by perturbed enhancers (shown in brown)
representing mutagenesis of binding sites of one or more TFs. Each panel’s title denotes the TF(s) whose sites were mutagenized. (D) Each activator’s
site deletion (or combination thereof) is expected to reduce peak expression of rho (at bin 8 on the V–D axis); we therefore defined the effect of a variant
enhancer (Y-axis) as the difference between the expression driven by it and the wild-type expression at this position of the axis. The effect of T2 single site
deletion is not shown due to its overlap with the SNA site S5.(E) Schematic of synergistic activation, where the activation driven by two bound activators
(right) is greater than the sum of their individual activation effects (left and middle).
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about specific mechanisms that are supported by the data
set.

Linear models provide a good phenomenological baseline

We first trained a linear model (LM) to assess the base-
line explanatory power of statistical models on the Sayal
et al. data set. In these models (35), expression driven
by an enhancer is the sum of contributions from all TFs
(Figure 2A). The contribution of a TF is the product of
the TF’s concentration, its binding site strength at the en-
hancer estimated using its Position Weight Matrix (PWM)
(see Materials and Methods) and a tunable parameter
that represents the TF’s regulatory strength and direction
(activator/repressor). We also tested a generalized linear
model (GLM) (23,45), where expression is a sigmoidal func-
tion of the sum of TF contributions (see Materials and
Methods), such that the response of a gene is less sensitive
to the concentration of its regulators at very low or high
concentrations. Both LM and GLM have only one free pa-
rameter per TF and are the simplest of the models evalu-
ated here. To impose our prior knowledge of TF roles, the
trainable weights for DL and TWI were restricted to posi-
tive values and the weight for SNA was restricted to negative
values. For LM we computed the globally optimal parame-
ters (on the training set) while for GLM an ensemble of 100
models was trained.

Figure 2B shows the train and test errors (RMSE) and
correlation coefficient between real and predicted expres-
sion profiles, for LM as well as the ensemble of GLM mod-
els. The GLM model with the smallest train error (hence-
forth is referred to as ‘best-fit’ model) was selected from
the ensemble and its performance was compared against
the LM model (Figure 2C). The GLM model clearly shows
better fits than LM model in terms of error (RMSE) and
correlation on both train and test data sets. Examining its
predictions more closely (Figure 2D, E), we find that the
GLM model often correctly predicts the main features of
an enhancer’s readout, for example, location of expression
peak along the axis, but is also prone to predicting excessive
expression at the dorsal end, which is due to inaccurate es-
timation of the basal transcription level (the intercept term
in the linear function).

The above models consider each enhancer as a ‘bag of
sites’ (46) where multiple TFs and TF sites contribute ad-
ditively to the regulatory output. In an attempt to cap-
ture any non-additive contributions from pairs of TFs, as
is believed to arise from cooperative activity (11), we ex-
tended the GLM model (‘GLMQ’) to include quadratic
terms that represent products of TF concentrations (see
Materials and Methods). Though the training RMSE im-
proved compared to GLM due to the additional parame-
ters, the test RMSE and test correlation deteriorated sub-
stantially (Figure 2C). Notably, GLMQ shows a negative
trained coefficient corresponding to DL-TWI interaction
(see Supplementary Table S2 for trained parameters) which
contradicts the previous findings of the synergistic activity
between these two activators reported in literature (41). In
summary, cooperative interactions were not reliably learnt
by simply adding quadratic terms to the generalized linear
model. This is not surprising, since this approach to mod-

eling TF cooperativity does not consider dependence of the
interactions on inter-site distances (2).

Thermodynamics-based models reveal biochemical mecha-
nisms

We next employed thermodynamics-based models of gene
expression (14,28) that explicitly incorporate biochemical
mechanisms of gene regulation, including TF-DNA bind-
ing affinities, activation and repression mechanisms, syn-
ergistic activity of multiple TFs, and distance-dependent
interactions between TFs bound at proximal sites. Differ-
ent models, representing different combinations of mech-
anisms, were implemented as variations of the same
thermodynamics-based sequence-to-expression modeling
framework, called GEMSTAT (28). Evaluation of differ-
ent GEMSTAT model variations was performed with the
same parameter fitting techniques, and the compared mod-
els typically shared many parameters, differing only in the
desired mechanistic aspect, making their comparison more
controlled.

Activation mechanisms. We first examined and compared
two different activation mechanisms that have been imple-
mented in past modeling studies. In both mechanisms, ac-
tivation is due to binding of activator TFs to the enhancer
and stronger binding leads to greater activation. In one class
of models, for example, that used by Sayal et al. in their orig-
inal analysis of the data set (14), the contribution of an acti-
vator binding site depends only on the binding affinity of the
site for its cognate TF and the TF’s concentration. (For now,
we ignore effects of other binding sites on this site’s contri-
bution.) These two factors together determine the fractional
‘occupancy’ of the site by the TF, and its contribution to
expression depends solely on its occupancy. In the second
class of models, the site’s contribution additionally depends
on the particular TF’s ‘potency’, which may be different for
different TFs. That is, two sites with the same fractional oc-
cupancy by their respective TFs may contribute to the acti-
vation to different extents. This adds additional freedom to
the model, in the form of one extra tunable parameter per
TF. The mathematical formalisms of the two mechanisms
outlined here, called AB (Activation by Binding) and AP
(Activation with Potency), are illustrated in Figure 3A, B
and explained in Materials and Methods.

We sought to determine if the AP and AB models dif-
fer in their ability to explain the data set. In the AP model,
an activator’s potency was modelled by stipulating an in-
teraction between a DNA-bound activator and the basal
transcriptional machinery (BTM), as in GEMSTAT. (This
interaction is represented by a single free parameter per
TF.) Other mechanistic details such as cooperative binding,
short-range repression, etc. are identical between the two
models. For a rigorous comparison, we trained ensembles of
100 AB models and 100 AP models on the train set of 38 en-
hancers and evaluated them on the test set of 13 enhancers.
Figure 3C shows the accuracy of all models on train and test
sets and Figure 3D reports on the best-fit model (smallest
train error) in both ensembles. In Figure 3D we note that the
AP model achieves lower error on the training set, which is
not surprising given that it has additional parameters (TF’s
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Figure 2. Linear and generalized linear models of gene expression. (A) Schematic representation of linear model (LM). Each TF’s ‘feature’ is obtained by
aggregating the strengths of all of its binding sites in the enhancer. Expression is modeled as the weighted (w) sum of all TF features multiplied by their
corresponding concentration profile ([.]). (B) Train and Test RMSE for LM and the ensemble of GLM (generalized linear model) and GLMQ (GLM with
quadratic terms) models. (C) RMSE and correlation scores of LM and best-fit (smallest train RMSE) GLM and GLMQ models in train and test data. (D)
Predictions of best-fit GLM model on select train enhancers (brown curves) shown versus true expressions (blue curves). Left-most panel corresponds to
the Wild-Type enhancer and the remaining panels correspond to perturbed enhancers titled by the site deletion they represent (e.g. ‘D2-T1’ corresponds
to simultaneous deletion of DL site D2 and TWI site T1). (E) Predictions of best-fit GLM model on select test enhancers (brown curves) shown versus
true expressions (blue curves).

potency and basal transcription level). More importantly,
it achieves a substantially lower error (RMSE of 0.16 ver-
sus 0.32) and higher correlation (correlation of 0.59 versus
0.20) on the test set than the AB model, where the additional
parameters do not confer an advantage. This performance
gap on test data is apparent at the ensemble level also (Fig-
ure 3C), suggesting that it is not an artifact of the optimiza-
tion step. For both models, the test error values are overall
higher than training error, but this is likely to be because the
test enhancers are biologically more distinct from the train-

ing enhancers than the variation within the training set. The
gap between training and test errors is much smaller for the
AP model, which has more free parameters, which is con-
trary to what we would expect if the gap was primarily due
to overfitting.

A few illustrative examples of our evaluations are shown
in Figure 3E, F, where each panel compares AP and AB
model predictions to the real expression profiles. While
both models exhibit similar accuracy on training enhancers
(Figure 3E), the AB model predicts ectopic expression in
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Figure 3. Evaluations of activation mechanisms. (A) Schematic representation of AB model for an enhancer containing only one binding site for an activator
TF. Shown are the two possible configurations for this enhancer depending on whether the activator is bound or not. The statistical weights (relative
probabilities) of the two configurations are k (bound) and 1 (not bound), and expression is proportional to probability of the bound configuration. (B)
Schematic representation of AP model for an enhancer containing only one binding site for an activator TF. Shown are the four possible configurations for
this enhancer depending on whether the activator and the BTM are bound (or not). Expression is proportional to total probability of the two configurations
in which BTM is bound. (C) Train and Test RMSE for the ensemble of 100 AB and 100 AP models. (There is extensive overlap of models (points) in each
ensemble.) (D) RMSE and correlation scores of best-fit AB and AP models in train and test data. (E) Predictions of best-fit AB and AP models on select
train enhancers (solid curves) are shown along with true expression profiles (dashed curves). (F) Predictions of best-fit AB and AP models on select test
enhancers (solid curves) are shown along with true expression profiles (dashed curves).
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the ventral region (bins 0–5) for test enhancers ‘dmbrks’
(D. melanogaster enhancer of gene brk) and ‘dmvnl’ (D.
melanogaster enhancer of gene vn), while the AP model cor-
rectly predicts the neuroectodermal peak (bins 7–10) of ex-
pression for all shown test enhancers (Figure 3F, Supple-
mentary Figure S2). In light of the above observations, we
infer that the data set supports the AP model over the AB
model, arguing for separate ‘potency’ for each activator TF,
beyond its DNA-binding strength, as an important aspect
of the underlying activation mechanism.

Repression mechanisms. Previous studies have shown that
SNA is a ‘short-range’ repressor whose effect is mediated
by a co-repressor named CtBP (47,48). CtBP can bind to
histone deacetylases, which in turn causes DNA to wrap
around the histone more tightly and prevents nearby TFs
from binding to DNA (49,50). It implies that a DNA-bound
repressor co-bound with CtBP is likely to be the only re-
cruited TF within a small window (∼100 bp) around its
binding site. Such a mechanism for short-range repression
is implemented in GEMSTAT (28), and we will refer to it as
‘neighborhood remodeling’ (‘NR’, Figure 4B) below. In this
model, the bound repressor makes the neighboring chro-
matin (within 100 bp in our tests) inaccessible for activa-
tors to bind at. An alternative formulation of short-range
repression is the ‘quenching’ mechanism (‘Q’, Figure 4A)
(14,18), which states that a bound repressor will diminish
or ‘quench’ the effectiveness of an activator bound nearby;
in the thermodynamic model this is achieved by a decreased
equilibrium probability of the configuration where both the
activator and repressor are bound (see Materials and Meth-
ods). We tested if the data set can discriminate between the
NR and Q models of short-range repression using their im-
plementations within the GEMSTAT framework. We also
tested a model with so-called ‘direct’ repression (‘DIR’, Fig-
ure 4C), which, unlike NR and Q, is not a short-range mech-
anism. Here, the regulatory effect of a bound repressor is
due to interactions with the BTM (similar to how activa-
tion is modeled in the AP model), and the binding site does
not have to be within a short range of any activator bind-
ing site for its repressive effect to materialize. Although lit-
erature evidence points to short-range repression by SNA
(18), we considered it worthwhile to test the direct repres-
sion model as a simple phenomenological baseline against
which more realistic short-range repression models may be
compared in light of the available data. DIR and NR are
the least complex of the three models, modelling repression
using three free parameters for SNA (DNA-binding, repres-
sion potency, and homotypic cooperativity), while Q uses
four free parameters (see Materials and Methods).

Figure 4D compares the performance of trained ensem-
bles of NR, Q and DIR models and Figure 4E summarizes
the performance of the best-trained model in each ensem-
ble. We found both short-range repression models (NR and
Q) to yield comparable fits and predictive ability, with the
NR model being slightly better in terms of both correla-
tion (0.62 versus 0.59) and RMSE (0.16 versus 0.15) on test
enhancers (with one less free parameter than Q model). In-
terestingly, predictions of the DIR model are as accurate as
NR––they show the same RMSE and better correlation on
test enhancers, and a significantly better correlation (0.76

versus 0.68) on train enhancers while using the same num-
ber of free parameters. Moreover, correlation values on test
enhancers are substantially better with the DIR model than
with the Q model. This suggests that in addition to short-
range repression, SNA may have long-range repressive ef-
fect on transcription of rho. We revisit this hypothesis below
when we discuss the predictions of our Neural Network-
based model.

Cooperative activation mechanisms. An important mech-
anism studied in the context of enhancer function is that
of cooperative DNA binding by multiple TFs at proximally
located binding sites (2), which results in a synergistic ef-
fect greater than the sum of the individual site contributions
(11,41,51). To test if such effects are reflected in the data, we
compared a version of GEMSTAT that models cooperativ-
ity between activators (‘COOP’ model, Figure 5B) with one
that does not (‘NO-COOP’, Figure 5A). To implement co-
operativity, GEMSTAT includes TF–TF interaction energy
terms in configurations where two TFs are bound within a
certain distance (set to 50 bp here) of each other. Such terms
were presumed for DL–DL, TWI–TWI and DL–TWI inter-
actions, each represented by a free parameter, in the COOP
model. (Both tested versions use the NR model for repres-
sion and include homotypic interaction for the repressor
SNA).

We trained ensembles of models for COOP and NO-
COOP separately. The best-trained COOP and NO-COOP
models show train error of 0.09 and 0.11 and test error of
0.15 and 0.16 respectively (Figure 5C), thus providing some
evidence in favor of the former. To tease apart their differ-
ences further, we used a complementary evaluation metric:
the ability of trained models to predict the effects of activa-
tor site deletions (Figure 1D). We defined a model’s ‘effect-
error’ as the difference between the predicted effect of the
site deletion(s) represented by an enhancer and the real ef-
fect captured in the data set. (Here, ‘effect’ is calculated in
the same way as in Figure 1D, that is, the difference in peak
expression between wild type and variant enhancer.) Fig-
ure 5D compares the effect-error of the best-trained COOP
and NO-COOP models on each enhancer shown in Figure
1D, where one or two activator sites in the wild type rho en-
hancer have been mutagenized. For all enhancers, the effect-
error in COOP is smaller or as low as that in NO-COOP. In
particular, in the highlighted region where the effect-error
of the COOP model is relatively small (smaller than 0.1),
we note several enhancers where the NO-COOP model’s
effect-error is substantially worse. These results support the
hypothesis that cooperative DNA-binding at proximally lo-
cated activator binding sites plays a significant role in regu-
latory function of the rho enhancer.

CoNSEPT: a neural network model of enhancer function

For our final modeling of the data set, we implemented a
model called CoNSEPT (Convolutional Neural Network-
based Sequence-to-Expression Prediction Tool), that can
accommodate highly non-linear contributions of TF bind-
ing sites to overall enhancer function (Figure 6). Our pri-
mary goal was to test if a convolutional neural network
(CNN) model, which does not explicitly incorporate known
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Figure 4. Evaluations of repression mechanisms. (A) Schematic representation of Q model that employs short-range quenching repression mechanism. A
bound repressor diminishes the activity of nearby bound activators. (B) Schematic representation of NR model that employs short-range neighborhood
remodeling repression mechanism. A bound repressor can be in either active or inactive state. An inactive bound repressor does not interfere with the
binding of activators to nearby regions or with the activity of the nearby bound activators, while an active bound repressor prevents activators from binding
to nearby regions. Any configuration with an active bound repressor and an activator bound nearby is considered invalid. (C) Schematic representation of
DIR model that employs direct repression mechanism. A bound activator directly diminishes the activity of recruited BTM but does not interfere with the
binding of activators. (D) Train and Test RMSE for the ensemble of 6000 models for each of Q, NR and DIR models. (E) RMSE and correlation scores
of best-fit NR, Q and DIR models in train and test data.

rules of cis-regulatory encoding, can learn such rules (reg-
ulatory mechanisms, including distance-dependent inter-
actions between sites) from the data. This tool first uses
pre-determined TF motifs (PWMs) to scan both strands
of an enhancer to identify putative binding sites and es-
timate their strengths (‘PWM scores’). It then integrates
these strengths with respective TF concentration values

to assess each TF’s presence at varying locations in the
enhancer, analogous but not identical to occupancy in
thermodynamics-based models (see Materials and Meth-
ods). Next, it assembles the presence scores of each TF pair
into a feature matrix, which is passed to a separate convo-
lutional filter to capture short-range interactions between
the TF pair. Outputs of these filters are aggregated and
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Figure 5. Evaluations of synergistic activation through cooperative binding. (A, B) Schematic representation of the difference between COOP (B) and
NO-COOP (A) models. Shown are four of the possible configurations where at least one activator is bound and the BTM is bound. In the COOP model,
the two configurations where both activators are bound have favorable interaction between them, resulting in higher probability of these configurations and
hence increased expression. (Both COOP and NO-COOP employ short-range neighborhood remodeling repression mechanism; not shown.) (C) RMSE
and correlation scores of best-fit COOP and NO-COOP models on training and test data. (D) Effect-error of best-fit COOP versus NO-COOP models
on the perturbed enhancers containing deletions of activators’ binding sites (similar to the enhancers shown in Figure 1D). Effect error is defined as the
absolute difference between the predicted and true effect of the perturbation; effect of a sequence perturbation (activator site deletion) is defined as decrease
in peak (bin 8) expression due to the perturbation. Highlighted region shows perturbed enhancers for which COOP has a small effect error (close to the
average training RMSE).

passed to the subsequent convolutional layers to capture
long-range interactions. Finally, the output of the last con-
volutional layer is combined linearly to predict the expres-
sion driven by the enhancer (see Materials and Methods for
details).

We used the training data comprising the WT rho en-
hancer and its 37 variants to train CoNSEPT models; eleven
of the 13 enhancers in the previously defined test data
were used for evaluating trained CoNSEPT models. (Two
enhancers were removed from the original test data due
to their significant length difference with the training en-
hancers; see Supplementary Note S2.) We used data on
three additional enhancers (variants of the rho enhancer,
regulated by the same TFs) available from Sayal et al. (14)
as a separate ‘validation set’ for tuning hyper-parameters
of CoNSEPT models. Previous applications of neural net-
works for regulatory sequence interpretation had the benefit
of large training data sets (37,39), and the challenge for us
was to train a CNN on a far smaller data set without ‘over-
fitting’.

An ensemble of CoNSEPT models with varying archi-
tectures and hyperparameters (see Supplementary Table S4
for different settings used) was trained on training data
and evaluated on validation data (Figure 7A). A subset of
the ensemble exhibits better training and validation accu-
racy than the best-trained GEMSTAT model (NR repres-
sion, COOP), and we selected among these the one with
the smallest validation error (circled) for further analysis
(see Supplementary Table S5 for the settings of this model).
Figure 7B compares the RMSE and correlation values for
the predictions of this model on train, validation and test
data sets with predictions of GLM and GEMSTAT mod-
els learned above as the best representatives of the linear
and thermodynamics-based models. CoNSEPT predictions
on the test set are at least as accurate as GLM and GEM-
STAT in terms of RMSE, and moderately better in terms of
correlation values (Examples of its improved prediction are
shown in Figure 7C, D, also see Supplementary Table S6
for p-values of Spearman’s correlation coefficients, which
reveal that prediction of both CoNSEPT and GLM signif-
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Figure 6. Architecture of CoNSEPT. First the input enhancers are scanned with user-defined PWMs and passed to a pooling layer to extract the strongest
matches. Next, TF profiles are integrated (multiplied) with the extracted scores and pair-wise features are built according to the user-defined TF–TF
interactions. Each pair-wise feature is passed to a separate kernel capturing short-range regulatory interactions between pair of TFs. (Note: a TF pair may
be homotypic.) The concatenated output of interaction convolutional kernels is passed to a sequence of activation functions (σ ) and optional additional
convolutional layers. The final activated output of the convolutional layers is passed to a dropout layer followed by a fully-connected layer and an activation
function to predict the expression.

icantly correlate with the true expressions for 10 out of 11
test enhancers.). Its high accuracy values on the training set
are not surprising given its higher number of free parame-
ters (1537, 11, and 4 for CoNSEPT, GEMSTAT and GLM
models respectively), but its competitive test accuracy sug-
gests that despite the vastly greater model complexity and
limited training data, CoNSEPT model fitting does not suf-
fer from overfitting any more than NR model does.

CoNSEPT learns distance-dependent interactions between
TF binding sites

We saw above that CoNSEPT learns to predict expres-
sion from sequence with almost no pre-determined notion
of cis-regulatory grammar such as activation, repression
or pair-wise interactions between sites. We next interro-
gated the trained model to determine if biophysically plau-
sible cis-regulatory rules underlie its highly parameterized
non-linear form. We were particularly interested in whether
it learns distance-dependent pairwise interactions between
TF binding sites. Recall that the linear models above do not
allow such interactions and our thermodynamics-based for-
mulations must be ‘hard-coded’ with a particular form of
distance-dependent interaction.

Prior to interrogating the CoNSEPT model, we refined
it based on an additional data set that specifically captures
synergistic interactions between DL and TWI binding sites.
Shirokawa et al. (41) tested a synthetic enhancer consisting
of five repeating blocks of a sequence with DL and TWI
binding sites six bp apart (Figure 7E); a reporter assay was
used to show that expression driven in the presence of both
DL and TWI (in 3:1 ratio) is greater than the sum of ex-
pression by these TFs separately, suggesting synergistic ac-
tivation by these two TFs (41). Our model refinement de-
manded that the CoNSEPT model with architecture and

hyper-parameter setting as determined above (circled model
in Figure 7A) additionally recapitulate the synergistic ac-
tivation encoded by the construct of Shirokawa et al. (We
also required expression driven by TWI alone to be at least
as high as that driven by DL, another observation made by
the authors.) This refinement step yielded three CoNSEPT
models (parameterizations), whose predictions on the syn-
thetic enhancer of Shirokawa et al. are shown in Figure 7F.
(See Materials and Methods for details of refinement steps.)

We next used the three models derived above to pre-
dict the expression driven by constructs harboring a single
pair of TF binding sites (DL–DL, DL–TWI, DL–SNA or
TWI–SNA) at varying inter-site distances (see Materials
and Methods). The results, shown in Figure 7G–I, reveal the
distance-dependent interactions between TF binding sites,
as learnt by CoNSEPT models. Firstly, all three models pre-
dict synergistic activation by a DL–TWI site pair (first col-
umn) over short distances < 40 bp with a maximum effect
at ∼20 bp inter-site spacing consistent with previous experi-
mental findings (11). The GEMSTAT model (NR, COOP),
shown in the bottom row for comparison, shows a similar
trend; indeed, GEMSTAT training required that coopera-
tive binding be of a fixed strength within 50 bp and absent
for greater inter-site spacing. On the other hand, the trend
was learnt by CoNSEPT models entirely from training data.
Notably, the DL–TWI spacing has been shown to be a key
element of functional organization of neuroectodermal en-
hancers (52).

We next examined learnt distance-dependencies for DL–
SNA interactions (Figure 7G–I, second column). All three
models correctly predict SNA as a repressor, with two pre-
dicting its effect to be exclusively short-range, decreasing
linearly as the distance from DL (activator) site increases
from 0 to 40 bp or 80 bp. The third model (CoNSEPT 1, Fig-
ure 7G) also shows the 80 bp short-range effect but predicts
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Figure 7. Evaluations of CoNSEPT’s predictions. (A) Train and validation RMSE for the ensemble of CoNSEPT models. Best-fit GEMSTAT (NR, COOP)
model was used as a baseline (dashed lines). Among the CoNSEPT models with a better performance than the baseline, we selected the one with the smallest
validation RMSE (circled). (B) RMSE and correlation scores of the selected CoNSEPT model on training, validation and test data. (C, D) Predictions of
the selected CoNSEPT model and the baseline GEMSTAT model on select train (C) and test (D) enhancers for which CoNSEPT improves predictions.
(E) In silico synthetic construct adopted from (41) consists of five repeating blocks each containing one DL and one TWI binding site with a length of 35
bp. The 5-block construct with a length of 175 bp is randomly padded by r (random variable) ‘dummy’ bases on the left and 460 - r dummy bases at the
right end to get a longer construct of length 635 bp consistent with the length of train enhancers. The top table shows the four trans contexts for which
this construct’s expression was predicted: ‘DL & TWI’ where both TFs are present with a 3:1 concentration ratio, ‘DL’ where TWI concentration is zeroed
out, ‘TWI’ where DL concentration is zeroed out, and ‘Basal’ where neither of the factors are present. (F) Predictions of the three selected CoNSEPT
models on the synthetic construct shown in (E). The white dashed lines on DL & TWI bars correspond to the sum of the expression driven by DL and
TWI individually. (G–J) Predictions of the three selected CoNSEPT models (G-I) and the baseline GEMSTAT model (J) on constructs containing only
one or two TF binding sites with different inter-site spacings (5–195 bp; x-axis). Each column corresponds to a pair of interacting TFs. The dark blue
curves show predicted expression on constructs containing two binding sites for the TF pair. The brown and light blue curves show predicted expression
on construct with one DL site or one TWI site respectively. Dashed lines show the expression obtained by summing the predicted expression driven by
individual factors (DL + TWI in first columns and DL + DL in fourth column).
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an additional long-range effect that extends to the max-
imum spacing interrogated. The GEMSTAT model (bot-
tom row) is consistent with a short-range effect, as ob-
served above (Figure 5), but its distance-dependence func-
tion (range of 100 bp) was hard-coded into the model. In-
terestingly, our GEMSTAT modeling had also indicated the
possibility of longer-range effects of SNA (‘DIR’, Figure
5), akin to that seen with the CoNSEPT 1 model. Similar
trends were seen with TWI-SNA interactions, with two of
the models predicting a short-range effect (range of 60 or
90 bp) (Figure 7G, H, third column) and one model (CoN-
SEPT 3) also indicating a longer-range effect. The consis-
tent observation of long-range (beyond 100 bp) repressive
effects of SNA sites, through CoNSEPT models (DL-SNA
as well as TWI-SNA interactions in Figure 7G–I) as well
as GEMSTAT models (Figure 5), suggest that mechanisms
other than the documented short-range repression by SNA
may be at play in neuroectodermal enhancer function.

Intriguingly, all three CoNSEPT models predict (Figure
7G–I, fourth column) that the activation by two DL sites
is less than twice the activation by a single site at shorter
inter-site spacing (< 50 bp). The GEMSTAT model’s pre-
dictions are similar (bottom row) – when asked to tune a
parameter representing DL–DL interaction (limited to sites
within 50 bp), the model learnt an antagonistic interaction.
The models mostly did not find evidence of synergistic in-
teraction between DL site pairs at any spacing. In fact, the
CoNSEPT models predict that two adjacently placed DL
sites drive no more activation than either site alone, while
the GEMSTAT model, forced to assume fixed interaction
strength within the distance threshold (50 bp), differs in
this prediction. We do not know of a plausible candidate
mechanism for the prediction of antagonistic DL–DL site
interactions at short distances (<50 bp), and the finding
needs more direct confirmation and dissection in the future.
We conducted additional analyses to provide an interpre-
tation of what CoNSEPT model learns about overlapping
binding sites and about the relationship between TF bind-
ing affinities and gene expression (Supplementary Figure S3
and Supplementary Note S1). These analyses suggest that
CoNSEPT learns a non-linear saturating relationship be-
tween TF binding site strength and gene expression.

DISCUSSION

Sequence-to-expression modeling can reveal mechanistic
details of an enhancer’s regulatory function as encoded
in its sequence. The significance of such modeling is well
argued in the literature (16) and, with rapidly advancing
technology for multiplexed assays of enhancer function
(53–55), a rigorous method for mechanistic inference and
cis-regulatory decoding is clearly needed. We were inter-
ested in a version of this problem where the model cap-
tures variation of function across different enhancers as
well as across cellular conditions; the latter requires that the
model utilize cellular TF concentrations in making predic-
tions. Fortunately, prior work offers several ways forward,
from linear models (35,45) to thermodynamics-based mod-
els (14,18,21,28,56,57). Each of these modeling approaches
has been shown to explain one or more expression data sets
and reveal useful insights into their underlying biology. Typ-

ically, each approach has its own mechanistic assumptions
baked into the implementation, with quantitative details of
assumed mechanisms being left as trainable parameters. To
our knowledge, no study has attempted to fit models of fun-
damentally different form, that is, with different mechanis-
tic assumptions (or lack thereof), to the same data set to
assess their relative potential to explain the data and pro-
vide mechanistic clues. This existing gap was the primary
motivation behind our work.

We tested linear and generalized linear models,
thermodynamics-based models with varying biophysical
assumptions, as well as a newly implemented convolutional
neural network on the same data set, evaluating their
ability to fit the data and generalize to unseen (but related)
enhancers. We found these different modeling approaches
to show similar predictive ability overall in terms of the
RMSE score, although the neural network model (CoN-
SEPT) yields higher correlation coefficient on average
(Figure 7B) compared to other models (See Supplementary
Table S7). We found that linear models, which are simple
to implement and use, provide good fits to data but are by
construction unable to discover non-linear combinatorial
contributions of multiple regulators. On the other hand,
equilibrium thermodynamics-based models allow incor-
porating various hypotheses regarding combined action
of multiple regulators in ways that depend on inter-site
distance.

In evaluating different thermodynamics-based frame-
works (14,28), we found that modeling the effects of ac-
tivators via two separate interactions (TF-DNA binding
and TF-BTM interactions) provides a substantial benefit in
terms of predictive power (Figure 3), compared to modeling
activator-DNA binding alone, at least within the context of
our evaluations. The choice of separating the DNA-binding
aspect of a TF’s function from its expression activation as-
pect is not arbitrary––these two aspects are typically en-
coded in different domains of the protein, and such separa-
tion is common when modeling repressor TFs (18,25). Acti-
vator potency is often attributed to interactions between TF
and the basal transcriptional machinery (potentially medi-
ated by co-factors), whose details are expected to differ from
one TF to another. Note that we used the implementation of
Sayal et al. for the AB model but set its TF–TF interaction
rules to a simpler form than those of the original study (14),
in order to match those in the AP model (implemented in
GEMSTAT). We expect that replicating the more complex
settings of interaction rules of Sayal et al. will yield better
fits to the data, but make direct comparison (of AP and AB)
challenging.

We tested several additional thermodynamics-based for-
malisms within a common framework (GEMSTAT), using
the same parameter training algorithms. We saw evidence
of cooperative DNA-binding at proximal sites by TF pairs
(Figure 5), as has been reported extensively in the litera-
ture (2), including through thermodynamics-based models
(28,58). Importantly, DL–TWI synergistic action has been
experimentally observed (11,41). When testing three differ-
ent modes of repression, we were surprised to note that a
‘direct repression’ mechanism, where a bound repressor’s
regulatory contribution does not depend on how far its
binding site is from an activator’s site, has the same predic-
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tive ability as the two ‘short-range repression’ mechanisms
tested. In light of literature evidence for short-range repres-
sion (59,60), this finding suggests that discerning true mech-
anisms from modeling of experimental results ex post facto
may not be adequately powered, and that active learning
approaches (61,62) that suggest the most informative future
experiments may be called for.

While thermodynamics-based models allow interactions
between TF binding sites to depend on their relative ar-
rangement in the sequence, the form of the dependence has
to be pre-determined. For example, commonly, cooperative
DNA binding and short-range repression are assumed to
have a fixed strength as long as inter-site distance is less than
a pre-set threshold (18,21,25) and absent otherwise. This as-
sumption reduces the complexity of the model, though it
may oversimplify the distance-dependence of TF interac-
tions. (Sayal et al. (14) considered a more flexible form for
this dependence by using separate tunable interaction pa-
rameters for different intervals of inter-site spacings.) More-
over, typical thermodynamics-based models allow interac-
tions only in configurations where the two TF bound to
proximal sites have no other bound TF in between; this is
necessitated by considerations of computational efficiency.
These constraints of thermodynamics-based models led us
to encode a more flexible model of distance-dependent TF-
TF interactions (cooperative as well as antagonistic) in
CoNSEPT, through layers of convolution kernels that pro-
cess all putative site pairs near each other. By examining the
trained model’s predictions on a simple synthetic enhancer
with varying inter-site distances, we were then able to ex-
tract the distance-dependence function learned by it (Fig-
ure 7G–J) in a data-driven manner. The learned function is
mostly in agreement with that used in the thermodynamics-
based models, for example, both approaches suggest coop-
erative effects of DL–TWI site pairs within 40 bp of each
other (11), as well as repressive effects of SNA sites located
within 80 bp of an activator site. Interestingly, one of the
three CoNSEPT models is consistent with ‘direct repres-
sion’ (not limited to short-range effects), an observation
made also when fitting thermodynamics-based models with
this form of repression.

A key contribution of this work is the design and imple-
mentation of CoNSEPT, which is a general-purpose tool
for sequence-to-expression modeling using convolutional
neural networks. Our work demonstrates the feasibility of
training such complex models (thousands of free parame-
ters) on limited data sets (hundreds rather than thousands
of samples), and we have tested that it can handle other
data sets of much larger size (tens of thousands of samples,
data not shown). It stands in contrast to other available im-
plementations of neural networks for regulatory genomics,
which are targeted to modeling epigenomic (39,63,64) and
genome-wide TF-DNA binding (36,38) data, or do not ex-
plicitly model the dependence of sequence function on cel-
lular descriptors such as TF levels (65). This feature allows
CoNSEPT to make predictions for varying cellular condi-
tions. Moreover, its reliance on pre-defined PWMs is differ-
ent from previous applications of neural networks in reg-
ulatory genomics where TF motifs were learned from the
data using convolutional kernels (38,39,64). We believe that
using known PWMs, which are often reliably characterized

experimentally (66), reduces the number of free parameters
and lowers the chance of overfitting.

The work most closely related to the CoNSEPT model is
the neural network model presented by Liu et al. (67) who
used it to model the expression driven by enhancers related
to the eve gene of Drosophila. Their model is a recasting
of the thermodynamics-based model of Kim et al. (58) and
includes all of the latter’s mechanistic aspects. At the same
time, the model of Liu et al. is specialized for the biolog-
ical system (eve enhancers) studied by them and encodes
distance-dependence of interactions with pre-determined
form and parameters motivated by that system. CoNSEPT,
on the other hand, departs from the thermodynamics-based
formalism and takes a more data-driven approach to cap-
turing cis-regulatory ‘grammar’ and distance-dependent in-
teractions.

In summary, our work shows that there are multiple for-
malisms capable of explaining the sequence-function map-
ping encoded in enhancers, with complementary strengths
and varying reliance on prior mechanistic knowledge. Al-
though the mechanisms that we find are specific to the reg-
ulation of rhomboid and other neuroectodermal enhancers,
and might not necessarily generalize to the regulation of
other genes, our work gives a recipe for understanding the
regulatory mechanisms in a data-driven or model-driven
manner. In addition to their explanatory role, the models
tested here can also be useful for predicting the expression
driven by unseen sequences and cellular contexts; this abil-
ity has several applications in down-stream analysis such as
predicting the effect of a particular TF’s knockout, site mu-
tagenesis, or effects of single nucleotide polymorphisms on
the expression (68,69). We also showed that convolutional
neural networks can be a reliable expression prediction tool
capable of learning non-linear regulatory mechanisms from
modest-sized training data.
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