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Abstract: Segmentation of skin lesions is a challenging task because of the wide range of skin lesion
shapes, sizes, colors, and texture types. In the past few years, deep learning networks such as
U-Net have been successfully applied to medical image segmentation and exhibited faster and more
accurate performance. In this paper, we propose an extended version of U-Net for the segmentation
of skin lesions using the concept of the triple attention mechanism. We first selected regions using
attention coefficients computed by the attention gate and contextual information. Second, a dual
attention decoding module consisting of spatial attention and channel attention was used to capture
the spatial correlation between features and improve segmentation performance. The combination of
the three attentional mechanisms helped the network to focus on a more relevant field of view of
the target. The proposed model was evaluated using three datasets, ISIC-2016, ISIC-2017, and PH2.
The experimental results demonstrated the effectiveness of our method with strong robustness to the
presence of irregular borders, lesion and skin smooth transitions, noise, and artifacts.

Keywords: skin lesion segmentation; U-Net; attention mechanism; deep convolutional neural networks

1. Introduction
1.1. General Background

Skin cancer is one of the most common and deadly cancers. In 2020, the American
Cancer Society reported that there will be approximately 100,350 new cases of melanoma
and about 6850 people will die from this cancer [1]. Non-melanoma cancers are also
responsible for a large number of deaths. The World Health Organization (WHO) reported
that 2–3 million non-melanoma skin cancers and 132,000 melanoma skin cancers occur
globally each year [2]. However, with early detection and diagnosis, melanoma can be
simply excised to ensure full recovery. Survival rates exceed 95% in cases of early diagnosis
and less than 20% in cases of late detection [3]. Therefore, accurate analysis of medical
images is important for early diagnosis and treatment of skin diseases.

In order to make melanoma detection more accurate and reliable, dermoscopy is
widely used for the non-invasive early diagnosis of this disease. However, this strategy
for the detection of melanoma may be inaccurate or subjective, based on the experience of
dermatologists alone [4]. In recent years, with the development of computer vision, medical
image segmentation has become an important part of computer-aided diagnosis, which
can support physicians in diagnosing dermoscopic images with speed and accuracy [5,6],
providing professional interpretation of medical images [5]. However, segmentation of
skin cancers is a challenging task because of the low image contrast and differences in color
and size of skin lesions as well as the presence of air bubbles, hair, and ebony frames [7].
Figure 1 shows a partial image of a skin lesion that is difficult to segment accurately when
similar to the background. As a result, deep learning algorithms need to achieve a high
level of accuracy in order to perform well in skin lesion segmentation tasks.
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(CNN) have been widely used in various fields [8], especially for medical image segmen-
tation. U-Net [9] is the most common network structure for medical image segmentation, 
consisting of encoding and decoding paths. Oktay et al. [10] proposed the addition of at-
tention gate (AG) to U-Net skipping connections to improve prediction accuracy and sen-
sitivity in a pancreas segmentation protocol. Guo et al. [11] introduced a spatial attention 
module in a convolutional neural network for medical image segmentation and detection. 
Chen et al. [12] focused on explicit relationships between channels and proposed adding 
spatial channel-wise convolution to the up-sampling and down-sampling modules to im-
prove the image segmentation performance of the network. Li et al. [7] proposed a dense 
deconvolutional network and U-Net combined for the automatic segmentation of skin le-
sion segmentation, where multiple dense blocks [13] are stacked together to improve the 
representativeness of the model. Wang et al. [14] combined the pyramid attention network 
and U-Net for skin lesion segmentation. Furthermore, attention-based networks have 
been widely used for different tasks in computer vision [15]. Sun et al. [16] presented the 
interpretability of SAUNet for spatial and channel attentional mechanisms and demon-
strated that attention mechanisms can effectively enhance the robustness of networks. Xu 
et al. [17] demonstrated that attention can improve the semantic segmentation results of 
the network. 

In conjunction with the latest advances in the attention mechanism, in this paper, we 
propose an automatic triple-attention dermoscopic image segmentation framework based 
on deep CNN, AG, spatial, and channel attention modules. The information extracted 
from the encoded paths is used for gating using AG attention in skip connections, disam-
biguating irrelevant and noisy responses. The spatial attention module improves the per-
formance of deep networks by capturing the spatial correlation between features. Channel 
attention improves the representation of the network by capturing explicit relationships 
between convolutional channels via contextual gating mechanisms [18]. We evaluated the 
proposed network on three datasets: ISIC-2016 [19], ISIC-2017 [20] and PH2 [21]. The ex-
perimental results showed that the new network exhibited good performance. 

The main contributions of this paper are as follows: 
(1) A new Attention Gate, Spatial and Channel Attention U-Net (ASCU-Net) model was 

proposed for the accurate segmentation of skin lesions in dermoscopic images. A 
convolutional multi-attentive module was used to extract the image features and 
generate resultant maps of skin lesion segmentation. 

(2) The multiple attention learning mechanism of the triple attention decoding block was 
ingeniously designed. The module embeds AG, spatial, and channel attention mod-
ules to further improve the feature representation capability, and the U-Net network 

Figure 1. Several examples of skin lesions that are difficult to isolate accurately.

In earlier times, the segmentation of skin lesions obtained using traditional methods
was unsatisfactory. In recent years, different types of deep convolutional neural networks
(CNN) have been widely used in various fields [8], especially for medical image segmenta-
tion. U-Net [9] is the most common network structure for medical image segmentation,
consisting of encoding and decoding paths. Oktay et al. [10] proposed the addition of
attention gate (AG) to U-Net skipping connections to improve prediction accuracy and
sensitivity in a pancreas segmentation protocol. Guo et al. [11] introduced a spatial at-
tention module in a convolutional neural network for medical image segmentation and
detection. Chen et al. [12] focused on explicit relationships between channels and proposed
adding spatial channel-wise convolution to the up-sampling and down-sampling modules
to improve the image segmentation performance of the network. Li et al. [7] proposed a
dense deconvolutional network and U-Net combined for the automatic segmentation of
skin lesion segmentation, where multiple dense blocks [13] are stacked together to improve
the representativeness of the model. Wang et al. [14] combined the pyramid attention
network and U-Net for skin lesion segmentation. Furthermore, attention-based networks
have been widely used for different tasks in computer vision [15]. Sun et al. [16] presented
the interpretability of SAUNet for spatial and channel attentional mechanisms and demon-
strated that attention mechanisms can effectively enhance the robustness of networks. Xu
et al. [17] demonstrated that attention can improve the semantic segmentation results of
the network.

In conjunction with the latest advances in the attention mechanism, in this paper, we
propose an automatic triple-attention dermoscopic image segmentation framework based
on deep CNN, AG, spatial, and channel attention modules. The information extracted from
the encoded paths is used for gating using AG attention in skip connections, disambiguat-
ing irrelevant and noisy responses. The spatial attention module improves the performance
of deep networks by capturing the spatial correlation between features. Channel attention
improves the representation of the network by capturing explicit relationships between
convolutional channels via contextual gating mechanisms [18]. We evaluated the proposed
network on three datasets: ISIC-2016 [19], ISIC-2017 [20] and PH2 [21]. The experimental
results showed that the new network exhibited good performance.

The main contributions of this paper are as follows:

(1) A new Attention Gate, Spatial and Channel Attention U-Net (ASCU-Net) model was
proposed for the accurate segmentation of skin lesions in dermoscopic images. A
convolutional multi-attentive module was used to extract the image features and
generate resultant maps of skin lesion segmentation.

(2) The multiple attention learning mechanism of the triple attention decoding block
was ingeniously designed. The module embeds AG, spatial, and channel attention
modules to further improve the feature representation capability, and the U-Net
network built on this module significantly improved the performance of skin lesion
segmentation. The effectiveness of the triple attention decoder block was verified by
an ablation study.
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(3) The performance of the ASCU-Net segmentation method was compared with other
algorithms on the ISIC-2016 [19] and ISIC-2017 datasets [20], with significant improve-
ments in six evaluation metrics including accuracy, sensitivity, specificity, precision,
dice coefficient, and Jaccard index. In addition, to verify the reliability and applicabil-
ity of the network, the network trained on the ISIC-2017 dataset was put to test on
another publicly available dataset named PH2 [21].

The remainder of this paper is organized as follows. The next subsection reviews the
related work. Section 2 describes our architecture. Section 3 describes the three datasets
used, along with our results. Section 4 provides a discussion of the proposed network, and
a final section presents our conclusions.

1.2. Related Works

In this section, we briefly review the CNN-based skin lesion segmentation architec-
tures and the existing methods relevant to this work.

1.2.1. Skin Lesion Segmentation

Skin lesion segmentation is a technique for detecting the location and boundaries of
clinical image lesions. Traditional algorithms for skin lesion segmentation mainly include
threshold-based [22], gradient vector flow methods [23], region growth [24], segmentation
methods, and morphology [25], and model [26] based segmentation methods. In recent
years, deep learning has shown excellent performance in the field of image processing, and
CNN [9]-based segmentation methods have been applied for the first time in the field of
image segmentation, with impressive results in skin lesion segmentation [27,28].

Yuan et al. [29] designed a new loss function to optimize the Jaccard distance-based
skin lesion segmentation task. Yu et al. [30] proposed a full convolutional residual network
(FcRN) for end-to-end training and achieved better segmentation results. Song et al. [31]
proposed a dense residual attention network focusing on the fixation receptive field and
alleviation of gradient vanish, and Sulaiman et al. [32] used dilation and dense block convo-
lution techniques to integrate multi-scale and global contextual information for improved
U-Net networks for skin lesion segmentation. Lei et al. [33] used generative adversarial
networks (GANs) to enhance the segmentation of skin lesions. Bi et al. [34] proposed a
multi-stage fully convolutional network (FCN), which combined low-level appearance
information with high-level semantic information hierarchies. The dsNet proposed by
Hasan et al. [35] learns distinguishing features in pixel space projected onto different stages
of the encoder and uses separable convolution in a depth-wise separable convolution
instead of standard convolution. The skin lesion network proposed by Adegun et al. [36]
integrates an encoder–decoder full convolutional network, dense block, and conditional
random field (CRF) modules, which are connected by cascading strategies and transition
layer merging to reduce model complexity while improving performance. Although exist-
ing deep learning methods have shown some performance in skin lesion segmentation,
boundary segmentation of high-precision medical images still faces challenges.

1.2.2. Overview of U-Net Architecture

Similar to FCN [37] and SegNet [38], Wang et al. proposed the U-Net [9] network for
medical image segmentation in 2015 (as shown in Figure 2). U-Net is a neural network
with symmetric encoders and decoders, a structure that has shown excellent performance
in the field of medical imaging. The U-Net consists of contracted paths for capturing
feature information and symmetric extended paths for enabling localization. The middle
of the U-Net uses skips connections from encoders to decoders of similar resolution to
pass high-resolution information throughout the network. Perhaps, the most ingenious
aspect of the design of the U-Net architecture is the skipping of connections. These
spatial features, which are lost due to pooling operations, can be retrieved by the network
skipping connection layer [39]. In addition, a number of improved models based on the
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U-Net structure have been proposed to further enhance the reliability of computer-aided
medical image diagnostic tasks.
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Based on U-Net, Wei et al. [40] proposed an Att-DenseUnet network combining
densenet and attention mechanisms with U-Net and achieved good results in skin lesion
segmentation. Ibtehaz et al. [41] analyzed the U-Net model in depth and proposed a
novel U-Net architecture, MultiResUNet, which has been used to good effect in biomedical
image segmentation. Inspired by the state-of-the-art improved U-Net networks that have
been proposed, we took into account the ability of the up-sampling process to extract
deep features of the image and the ability of hopping joints to deliver high-resolution
information, recovering spatial information that is lost due to pooling operations. Our
proposed ASCU-Net network builds on the original U-Net network by incorporating
different types of attentional mechanisms in the skipping connection layer and in the
up-sampling module, respectively, to perform well in the skin lesion segmentation task.

1.2.3. Attention Mechanism

Attention mechanisms play a crucial role in human perception [42–44]. Attention
mechanisms allow humans to selectively focus on key information while ignoring other
irrelevant information. Through the attention module, deep CNN can accelerate the learn-
ing process, extract more critical and discriminative features for the target task, enhance
the robustness of the network model, and be more adaptable to small training datasets.

The attention mechanism was first proposed by the Google Deep Mind team while
performing an image classification task, thus kicking off a wave of research on the attention
mechanism [45]. Kaul et al. [46] proposed a method for incorporating attention into a FCN,
FocusNet, which performs medical image segmentation from a feature map generated
by a separate convolutional autoencoder. Hu et al. [18] proposed that SENet adaptively
recalibrates channeled feature responses by explicitly modeling the interdependencies
between channels. Later, Woo et al. [47] further extended the squeeze-and-excitation
module in SE-Net. The convolutional block attention module (CBAM) module proposed
by the authors is a lightweight general-purpose module. It uses almost no computational
resources and is able to perform adaptive feature refinement based on a given intermediate
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feature map. Figure 3 illustrates the structure of several typical attention modules in a
network structure. However, all of the above approaches start from a single focus. As skin
lesions can have blurred boundaries, uneven color distribution, and irregular shapes, it is
difficult to perform well in skin lesion segmentation tasks by relying on a single attentional
mechanism or a two-dimensional integrated attentional mechanism alone.
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image input features, (b) the main focus is on integrating spatial and channel attention, and (c) the main focus is on spatial
relationships between image features.

In response to the above issues, we proposed the triple attention model ASCU-Net,
which was developed as an extension to U-Net and showed excellent performance. Our
work combined the recent advances in the trainable attention gate that extracts impor-
tant features from contextual information by Oktay et al. [10], the adaptive reanalysis of
channel feature responses through the interdependence of squeeze and excitation modules
proposed by Hu et al. [18,49], the spatial attention for highlighting regions of interest, and
suppressing background clutter proposed by Jetley et al. [50]. The effectiveness of the
network structure in the segmentation of skin lesions was verified by extensive ablation
and comparison experiments.

2. Materials and Methods

Inspired by U-Net [9], attention U-Net [10], spatial attention module (SAM) [48],
Squeeze-and-Excitation Networks (SENet) [18] and Shape Attentive U-Net (SAUNet) [16],
we proposed ASCU-Net (Figure 4). We describe all parts of the network in detail in the
following subsections.
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2.1. Proposed ASCU-Net Architecture

Figure 4 shows the proposed ASCU-Net with a network structure similar to that of a
U-shaped encoder–decoder. Each step of the encoder and decoder consists of a structured
convolution block and a triple attention decoder block, respectively. Each convolutional
block consists of a convolutional layer (ConvBlock), batch normalization (BN) layer, and
rectified linear unit (ReLU). In the encoder path, the network doubles the number of feature
channels with each down-sampling step. This corresponds to an up-sampling of the 2 × 2
transpose convolution and a halving of the number of feature channels in the decoder
path. The encoder and decoder are connected by skips between the feature maps of the
corresponding layers before a structured triple attention decoder block is performed. Skin
lesion output segmentation maps are generated at the last layer, after 1 × 1 convolution
and application of sigmoid activation functions.

2.2. Triple Attention Decoder Block

The up-sampling (decoding) process fuses the feature map information output from
the encoder module via skipping connections as well as capturing additional contextual
and spatial information of the feature map from the low-resolution decoder block. We
propose the triple attention decoder block (Figure 5), which is a dual attention decoder
block consisting of spatial attention and channel attention after AG processing on the
concatenated feature map and a standard normalized 3 × 3 convolution operation. The
three new components select regions based on contextual information and weights, capture
spatial correlations between features, and focus channel attention on channel relationships
to improve performance, as demonstrated by Hu et al. [18]
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Figure 5. Triple attention decoder block. The proposed attentional decoding module consists of three modules: the AG
module for skipping the connection layer to suppress irrelevant information, the spatial attention module, and the channel
attention module for fusing the input features together to improve the performance of the network.

2.2.1. Attention Gate

AG in the U-Net model was first proposed by Oktay et al. [10]. The AG attention
module adaptively adjusts and automatically learns to focus on the different shapes and
sizes of the target structures in medical images. The model strained with AG implicitly
learns to highlight salient features useful for a specific task while suppressing irrelevant
regions in an input image.
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A diagram of the proposed additive AG is shown in Figure 5. AG selects spatial
regions by analyzing the contextual information and activation provided by the gating
signal (g) collected from coarser scales. The input features (xl) are scaled according to
the attention coefficients (α) of the resampled grids, which are completed using trilinear
interpolation. The attention factor αi ∈ [0, 1] is used to identify significant image areas
and to determine the focal area. The output of AG is the multiplication of the elements of
the input feature mapping and the attention factor: x̂l

i,c
= xl

i,c
· αl

i
. In the default setting, a

single scalar focus value is calculated for each pixel vector xl
i
∈ RFl , where Fl corresponds

to the number of feature maps in layer l. A gating vector gi ∈ RFg is used for each pixel to
determine focus regions. Additive attention is formulated as follows:

ql
att = ψT(σ1(WT

x xl
i
+ WT

g gi + bg)) + bψ (1)

αl
i
= σ2(ql

att(xl
i
, gi; Θatt)) (2)

where σ2(xi,c) =
1

1+exp(−xi,c)
corresponds to the sigmoid activation function and σ1 to the

ReLU function. The linear transformation Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , ψ ∈ RFint×1, and
the bias term ψ ∈ RFint×1, bψ ∈ R form a set of Θatt parameters, which characterize the
AG. The linear transformation is calculated using a 1 × 1 × 1 convolution in the channel
direction of the input tensor. The concatenated features xl and g linearly mapped to a RFint

dimensional intermediate space is called vector-based connected attention.
In order to eliminate noisy and irrelevant responses from skipped connections, gating

is determined by the relevant information extracted from the coarse scale. In addition, AG
only performs operations to merge relevant activations before the connection operation,
filtering neuronal activations for forward transmission as well as for backward transmission.
After the extraction and fusion of complementary information from each sub-AG coding
and decoding path, the output of the skipped connections is obtained. Similar to non-local
blocks [51], AG are linearly transformed without any spatial support, and down-sampling
to the gated signal reduces the resolution of the input feature map, thus reducing the
parameter and computational resource consumption of the network model.

2.2.2. Spatial Attention Module

The spatial attention module (SAM) has been introduced into convolution neural
networks as part of the attention module and has shown good performance in classification
and detection tasks [47]. Spatial attention is focused on positional information between
images, which depicts the spatial relationship between the input features. Formally, the
input feature F ∈ RH×W×C, where H, W, and C denote the height, width, and number of
channels of the image of the entry spatial attention path, respectively. The normalized 1× 1
convolution and the 1 × 1 convolution make up the spatial attention module. The number
of channels is reduced to half after the first convolution, and subsequent convolution
reduces the number of channels to 1. F′s is obtained by mapping the pixel values in a single
channel to the range of [0, 1] via the sigmoid function. In order to perform an element-wise
multiplication of the dimension Fc from the channel-wise attention path output and the
dimension Fs from the spatial attention path output, F′s is then stacked channel-wise C times
to obtain Fs. In short, the output feature of the spatial attention module is calculated as:

Fs = σ( f 1×1(ReLU(BN( f 1×1(F))))) (3)

where f 1×1(·) represents a convolution operation with a filter size of 1× 1, BN(·) represents
batch normalization, and σ(·) represents the sigmoid function.

2.2.3. Channel Attention Module

The squeeze and excitation modules form the channel attention module (CAM), which
generates a scaling factor of [0, 1] for each channel (i.e., channel attention) of the skipping



Diagnostics 2021, 11, 501 8 of 18

connection. The Fc is the skipping connection profile from each channel scaled according
to the scaling factor generated by the respective CAM.

The CAM first performs a squeeze operation. The module generates channel descrip-
tors by using global average pooling (GAP) and aggregates the feature map input to the
CAM in the entire channel context. We used γ

up
d = [yup

1 , yup
2 , . . . , yup

F ], where yup
f ∈ RW×H ,

as the input data to the channel attention module. The global average pooling is performed
as follows:

s f = Fsq(y
up
f ) =

1
H ×W

H

∑
m

W

∑
n

yup
f (m, n) (4)

where Fsq is the spatial squeeze (GAP) function; yup
f is the spatial position of the f th

channel; and H × W correspond to the height and width dimensions, respectively, of
this channel. Briefly, s f is generated from each two-dimensional feature map by GAP
compression. The second step of the channel attention module is motivation. It captures
the dependencies between channels based on the global information embedded in the first
step. Non-exclusive relationships and non-linear interactions between channels can be
learned by this function [18]. The SE block shown in Figure 5 contains two full-connection
(FC) layers, where the input vectors are sequentially encoded in the shapes of 1× 1× F

r
and 1× 1× F. The output of the SE block is shown in Figure 5. The output of the final SE
block is represented as:

Cs = Fse(z; S) = σ(S2δ(S1z)) (5)

where S1 and S2 are the parameters for the first FC layer and the second FC layer, respec-
tively. δ is a rectified linear unit (ReLU), and σ refers to the sigmoid function. In addition, r
is the reduction ratio.

2.2.4. Channel and Spatial Attention

In the triple attention decoder block, we refer to the channel and spatial attention as
two independent modules. The feature map transmitted from the AG is processed by the
channel and spatial attention modules, respectively, after a 3 × 3 convolution operation,
and the channel and spatial attention are fused as the output of the triple attention decoder
block, as shown in Figure 5. Considering that spatial attention captures spatial relationships
between features and improves the segmentation performance of the network, channel
attention is able to learn non-linear interactions and non-repulsion relationships between
channels. Therefore, in the design of the network structure, the input features are first
subjected to a convolutional operation to increase the nonlinear representation of the
network and to reduce the parameters while reducing the computational cost. Spatial
attention and channel attention are used as two parallel routes to capture regions of interest
in both the spatial and channel dimensions simultaneously and to fuse the output as input
for the next decoding operation. Output F can be obtained as follows:

F = Fc ⊗ (Fs + 1) (6)

The operator ⊗ represents the Hadamard product. It includes +1, so the spatial
attention that is initially in the range [0, 1] can only amplify features, not zero out features
that may be valuable in subsequent convolutions.

2.3. Loss Function

The cross-entropy loss function is often used in image segmentation and classification
tasks as cross-entropy measures the difference in information between the ground truth
and prediction distributions. Typically, the average number of bits of the coding length
required to identify a sample by the ground truth distribution p is used as a measure of
the cross-entropy definition between the ground truth distribution p and the probability
distribution q.
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The cross-entropy loss in image segmentation tasks is usually calculated as the average
cross-entropy of all pixels. Let Ω denote the domain of all pixels of height h, width w,
and class K. x ∈ Mh×w×K({0, 1}) and x̂ ∈ Mh×w×K([0, 1]) are expressed as the ground
truth mono-heat matrix encoding the ground truth class of each pixel and the predicted
probability matrix of each individual pixel, respectively. The cross-entropy loss can be
deduced from the following formulae:

HCE(x̂, x) =
1
|Ω|

Ω

∑
j
−((1− xj) log(1− x̂j) + xj log(x̂j)) (7)

3. Experiments and Results

We performed the evaluation of the proposed method using three datasets: ISIC-2016,
ISIC-2017, and PH2. For the PH2 dataset, all results were obtained from deep learning
model testing trained on the ISIC-2017 segmentation training set. ISIC-2016 and ISIC-
2017 were trained and tested using their respective training and test sets, respectively. In
addition, all three datasets provided original images and paired skin lesion segmentation
maps annotated by specialist dermatologists.

3.1. Performance Evaluation Metrics

In this paper, we evaluated the segmentation performance of different networks using
common criteria for skin lesion segmentation in the ISBI 2016 and 2017 Lesion Segmentation
Challenge [23], and PH2 dataset [21] including accuracy (AC), sensitivity (SE), specificity
(SP), precision (PC), dice coefficient (F1), and Jaccard index (JS). Accuracy is an assessment
of the overall segmentation performance of the lesion image [52]. The number of correctly
segmented skin lesion pixels is reflected by the sensitivity [52,53]. Specificity is defined
as the proportion of non-lesion areas that are correctly segmented. Precision indicates the
number of true correct ones as a percentage of the overall result. The overlap between
the predicted results and the ground truth is defined as the dice coefficient, which is an
index of similarity for image segmentation, and the Jaccard index is an evaluation measure
of the intersection ratio between the resulting segmentation results and the ground truth
mask [54]. The metrics for evaluating segmentation results are defined as:

AC = TP+TN
TP+TN+FP+FN

SE = TP
TP+FN

SP = TN
TN+FP

PC = TP
TP+FP

F1 = 2 ∗ PC∗SE
PC+SE

JS = |GT∩SR|
|GT∪SR|

(8)

where TP, TN, FP, and FN are the numbers of true positive, true negative, false positive,
and false negative, respectively. TP is the number of pixels that are in fact positive samples
(areas of interest) and have been judged to be positive samples. TN is the number of pixels
that are in fact negative samples (skin areas) and have been judged to be negative samples.
FP is the number of negative sample pixels that have been misclassified as positive samples.
FN is the number of positive sample pixels that have been misclassified as negative samples.

3.2. Experimental Setups
3.2.1. Dataset

We used three dermoscopic image datasets to assess the proposed network and
compare it with other methods, the ISIC-2016 challenge dataset [19], ISIC-2017 challenge
dataset [20] and PH2 dataset [21]. The International Skin Imaging Collaborative (ISIC)
provides expertly annotated digital skin lesion image datasets from around the world
to facilitate computer-aided diagnosis (CAD) of melanoma and other skin diseases and
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to facilitate automated and efficient computer diagnosis [20]. The ISIC-2016 challenge
dataset contains 900 training images and 379 test images. The ISIC-2017 dataset is a dataset
published by ISIC and used for the Skin Lesion Segmentation Challenge. The challenge
dataset contains 8-bit RGB dermoscopic images with image sizes ranging from 540 × 722
to 4499 × 6748 pixels. It provides 2000 training images and individual sets of 150 and
600 images, respectively, for validation and testing. The PH2 dataset [21] is a database of
dermoscopic images proposed for segmentation and classification, which were organized
by a joint collection from the dermatology service of Hospital Pedro Hispano in Matosinhos,
Portugal, and the University of Porto. This dataset contains a total of 200 8-bit RGB color
skin images with a resolution of 768 × 560 pixels including 80 common nevi, 80 atypical
nevi, and 40 melanomas. We used this dataset as an additional test set for the deep learning
model trained on the ISIC-2017 split training set. Table 1 summarizes the sources and other
specific information about the three datasets. In addition, all three datasets provided raw
images and paired skin lesion segmentation maps annotated by a specialist dermatologist.
To enhance the generalizability and robustness of the model, the training dataset was
augmented with data augmentation using horizontally and vertically flipped randomly
generated samples.

Table 1. The specific information of the ISIC-2016 dataset, ISIC-2017 dataset, and PH2.

Datasets ISIC-2016 ISIC-2017 PH2

Obtained from ISIC ISIC Hospital Pedro Hispano,
Portugal.

Total number 1279 2750 200

Train/Test number 900/379 2150/600 0/200

Resolution (pixel) 576 × 768 to 2848 × 4288 540 × 722 to 4499 × 6748 560 × 768

Augmentation methods Horizontal-vertical flip Only for testing

3.2.2. Implementation Details

We implemented our network using Pytorch on a GPU server with Intel I9-10900X
CPU @3.70 GHz, 32 GB DDR4 RAM, and Nvidia GeForce TITAN RTX. All training and
tests were performed in the same hardware environment. The operating system used for
the experiments was Ubuntu 16.04, using Python 3.5 as the programming language and the
Pytorch 1.5.0 framework for the design of the neural network structure and the debugging
of the model. The network uses the AdamW optimizer for end-to-end training. We trained
200 epochs with the initial learning rate set to 0.0002, momentum parameters b1 = 0.9,
b2 = 0.999, and batch size set to 8. The layer-by-layer transfer of network training losses
and updating of parameters relies on back-propagation algorithms.

3.3. Comparative Experiment
3.3.1. Comparison on the ISIC-2016 Dataset

We trained and evaluated the proposed network on the ISIC-2016 dataset. Table 2
summarizes the quantitative results comparing our proposed method with other methods
on the ISIC-2016 dataset. As can be seen from the table, our proposed network achieved
satisfactory results. In particular, the assessment metrics of accuracy, sensitivity, dice
coefficient, and Jaccard index differed by an order of magnitude, which was sufficient to
show that the improvement in the performance of our network compared to other networks
was significant. This is despite the fact that the specification metrics that we used were
slightly inferior to those used in other methods, which means that for images with large
lesion areas, the model does not perform as well as for images with normal lesion areas.
However, the combined performance of the six metrics was still a strong indication that
our proposed network was sufficiently successful. Figure 6 shows a visualization of the
skin lesion segmentation of our proposed network. The effectiveness of the algorithm can
also be visualized in experimental renderings.
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Table 2. Performance comparison between the proposed network and other methods on the ISIC-
2016 dataset.

Methods
Performance Evaluation Metrics

AC SE SP PC F1 JS

U-Net [9] 0.943 0.907 0.962 0.895 0.887 0.812
Attention U-Net [10] 0.944 0.908 0.963 0.890 0.886 0.811

U-Net++ [55] 0.943 0.903 0.964 0.901 0.889 0.815
Recurrent U-Net [56] 0.937 0.896 0.965 0.884 0.874 0.793

Ours 0.954 0.927 0.961 0.915 0.908 0.845
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Figure 6. Segmentation results of ASCU-Net on the ISIC-2016 dataset. The first row is the original image. The second row 
is the skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the 
proposed network. 
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Attention U-Net [10] 0.913 0.765 0.976 0.889 0.783 0.692 
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Figure 6. Segmentation results of ASCU-Net on the ISIC-2016 dataset. The first row is the original image. The second row
is the skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the
proposed network.

3.3.2. Comparison on the ISIC-2017 Dataset

In this section, we further trained and tested the proposed network on the ISIC-2017
dataset. In Table 3, a quantitative comparison between the segmentation performance of
the proposed network and other methods is presented. Due to the presence of more images
that are difficult to segment accurately in this dataset, the metric scores of other networks
in this dataset are hardly satisfactory, but our proposed network still achieves satisfactory
evaluation metrics. In particular, the precision, dice coefficient, and Jaccard index, which
differed by an order of magnitude, indicated that our proposed method was sufficiently
successful to achieve satisfactory results in the segmentation of skin lesions. Figure 7 shows
the output of the visualization of the proposed network in this dataset of partial images of
skin lesion segmentation. The results also showed that the performance of our proposed
network was excellent.

Table 3. Performance comparison between the proposed network and other methods on the ISIC-
2017 dataset.

Methods
Performance Evaluation Metrics

AC SE SP PC F1 JS

U-Net [9] 0.913 0.762 0.976 0.887 0.781 0.687
Attention U-Net [10] 0.913 0.765 0.976 0.889 0.783 0.692

U-Net++ [55] 0.912 0.749 0.979 0.900 0.777 0.685
Recurrent U-Net [56] 0.905 0.816 0.953 0.782 0.754 0.643

Ours 0.926 0.825 0.965 0.897 0.830 0.742
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Figure 7. Segmentation results of ASCU-Net on the ISIC-2017 dataset. The first row is the original image. The second row 
is the skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the 
proposed network. 
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Figure 7. Segmentation results of ASCU-Net on the ISIC-2017 dataset. The first row is the original image. The second row
is the skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the
proposed network.

3.3.3. Comparison on the PH2 Dataset

In order to illustrate the generalizability and robustness of our proposed network,
we used the model trained on the ISIC-2017 dataset for the evaluation of the metrics in
the PH2 dataset. Table 4 presents a comparison between the proposed network and the
quantitative results obtained by the other methods in the PH2 dataset. The ASCU-Net
had better accuracy, sensitivity, precision, dice coefficient, and Jaccard index compared
to those obtained using other methods, which means that our proposed method had a
higher overall pixel-level segmentation performance. Excellent segmentation results could
be obtained in the segmentation of skin lesions. Figure 8 visually shows the segmentation
results for the parts of the proposed network that performed well in this dataset. Thus, by
combining the experimental segmentation results with the evaluation metrics, the results
showed that our proposed triple-attention idea was successful not only in improving the
performance of the network, but also in providing good generalizability.
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Figure 8. Segmentation results of ASCU-Net on the PH2 dataset. The first row is the original image. The second row is the 
skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the proposed 
network. 
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Figure 8. Segmentation results of ASCU-Net on the PH2 dataset. The first row is the original image. The second row
is the skin lesion segmentation ground truth (GT). The third row is the visual segmentation result of the test set of the
proposed network.
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Table 4. Performance comparison of the proposed network and other methods on the PH2 dataset.

Methods
Performance Evaluation Metrics

AC SE SP PC F1 JS

U-Net [9] 0.910 0.885 0.959 0.899 0.873 0.794
Attention U-Net [10] 0.916 0.899 0.958 0.895 0.880 0.802

U-Net++ [55] 0.909 0.883 0.960 0.900 0.873 0.794
Recurrent U-Net [56] 0.919 0.926 0.945 0.867 0.882 0.800

Ours 0.943 0.960 0.937 0.877 0.909 0.842

3.4. Ablation Experiment

To illustrate the effectiveness of our proposed triple attention U-Net network, we set
up ablation experiments. In the ablation experiments, all network training and tests were
performed in the same hardware environment using the ISIC-2017 dataset.

AG, spatial, and channel attention are the main components to improve segmentation
performance. The ablation experiments with different attention decoding modules were
designed to illustrate the role played by triple attention decoding blocks in networks. Using
an attention-free encoder-decoder network as a benchmark model, different attention
mechanisms were added to the attention decoder block and compared with our triple
attention decoder block.

In Table 5, we compared the performance of eight modalities of skin lesion segmenta-
tion: AG+spatial+channel (ours), No-attention, single-AG, single-spatial, single-channel,
AG+channel, AG+spatial, and spatial+channel, respectively. As can be seen from this table,
while single attention or a combination of the other two types of attention as an attention de-
coder block made the network perform better to some extent, our proposed triple attention
decoder block only slightly underperformed the other specificity and precision assessment.
This means that our proposed network structure had only a slightly poorer specificity and
precision compared to other approaches. However, the overall segmentation results of the
triple attention decoder block were much higher than those of the other attention decoding
modules when considering the combined six evaluation metrics and the final segmentation
of the skin lesions. Our proposed network achieved satisfactory results.

Table 5. Performance comparison of different attentional mechanisms on the ISIC-2017 dataset.

Methods
Attention Mechanism Performance Evaluation Metrics

AG Spatial Attention Channel Attention AC SE SP PC F1 JS

No-attention × × × 0.912 0.764 0.973 0.881 0.778 0.681
single-AG

√
× × 0.923 0.795 0.976 0.910 0.816 0.726

single-spatial ×
√

× 0.911 0.757 0.976 0.889 0.775 0.681
single-channel × ×

√
0.910 0.755 0.977 0.887 0.774 0.678

AG + channel
√

×
√

0.925 0.819 0.973 0.897 0.825 0.737
AG + spatial

√ √
× 0.910 0.753 0.978 0.892 0.776 0.682

Spatial + channel ×
√ √

0.924 0.798 0.977 0.914 0.822 0.734

Ours
√ √ √

0.926 0.825 0.965 0.897 0.830 0.742

The AG attention module is able to analyze contextual information and help the
network focus more on local areas by scaling the attention coefficients. This increases the
sensitivity of the model to foreground pixels without the need for a complex heuristic
algorithm. Spatial attention modules reflect the spatial relationships between features,
focus on regions of spatial interest, and make full use of global contextual information. The
channel attention module is a SE block that contains two operations: squeeze and excitation.
Global features at the channel level are first acquired via a squeeze operation on the global
average pool. The excitation operation then captures the inter-channel dependencies of the
global information embedded in the first step. Finally, the number of weights is kept the
same for the output and the input features.
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The combination of AG, spatial, and channel attention modules is a good solution
to the low grayscale variation and relatively blurred boundaries of skin lesion images.
Our proposed triple attention decoder block improves its ability to recognize representa-
tions by stepwise pooling using AG, spatial, and channel attentional learning mechanisms.
The attention learning mechanism generates low-level attentional maps using high-level
learned features, which greatly improves the segmentation performance of skin lesions,
while reducing the complexity of the network model and the consumption of computa-
tional resources.

Figure 9 shows a graphical visualization of the results of the ablation experiment,
showing five examples of dermoscopic images and the segmentation masks corresponding
to the different attention decoding modules. It is clear from the segmentation results
shown in Figure 9 that our proposed method had a clearer segmentation of the boundary
information than either a single or a combination of any two attentional approaches,
resulting in a more focused network on the skin lesion region. It is clear that the triple-
attention decoder block had better feature representation than other decoding modules.
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4. Discussion

Our proposed networks made several modifications to the initial U-Net. Through
ablation experiments, we evaluated each modified part of each network and analyzed its
impact on the results.

In this work, we started by analyzing of the U-Net architecture, focusing on the
impact of the attention mechanism on the network structure, with the hope of finding
potential rooms for improvement and enhancing the network performance for skin lesion
segmentation of medical images. To enhance the ability of the U-Net network to capture key
information about images, we proposed the concept of a triple attention mechanism. We
took inspiration from the AG, SENet, and SAM blocks and formulated a compact analogous
structure that was lightweight. Combining the fusion of these attention mechanisms, we
developed a novel architecture, ASCU-Net. In the decoder path, the triple attention
module was selected to implement the decoding process of the network. As can be seen
from Tables 2–5, ASCU-Net with triple attention had better performance. The core idea
of the attention mechanism is to focus on the area of interest according to the weights of
the attention factors, filtering out the unimportant from the large amount of information,
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and fusing the small amount of important information together. Therefore, adding gating
(AG layer) to the skip connection layer can help the network acquire more important
information, which can help the network to increase the performance of deeper models.
The module of dual attention during up-sampling is able to acquire feature maps with rich
local and semantic information. Spatial attention captures the spatial correlation between
features, and channel attention captures the explicit relationship between channels in
the convolutional layer through a contextual gating mechanism, assigning a weight (i.e.,
channel attention) to each channel in the feature map to encode the feature map. The
visualized skin lesion segmentation results included in Figures 6–9 show that ASCU-Net
enables a finer output of skin lesion segmentation, not only by focusing on information
about edge features in the image, but also by capturing key information about the input
image features using multiple attention mechanisms.

Compared to the original U-Net, not only did the segmentations generated by ASCU-
Net attain higher scores in the evaluation metrics, but they were also visually more similar
to the ground truth. Furthermore, on very challenging images, U-Net tended to over-
segment, make false predictions, and even miss the objects completely. In contrast, in the
experiments, ASCU-Net showed much higher reliability and robustness. ASCU-Net was
able to detect finer details and was highly adaptable to image segmentation with a lot
of perturbations. Although our proposed method did not deliver the best segmentation
performance compared to the state-of-the-art methods, the algorithm still achieved accept-
able segmentation results without pre- and post-processing. ASCU-Net fuses multiscale
information captured by the three attentional mechanisms to effectively improve the seg-
mentation performance of the network. The aim of this paper was the effectiveness of the
three attention mechanisms for skin lesion segmentation, and our experimental results
provide strong evidence for the hypothesis presented in the paper.

Therefore, we believe that our proposed ASCU-Net architecture can be the potentially
successful architecture. There are several branches of future research directions. First,
we will further integrate information on multi-scale attentional features by fine-tuning
the hyper-parameters of the network in the hope of further improving the performance
of the network through experiments. Second, additional pre-processing techniques can
be incorporated such as removing hair follicles and color normalization can improve the
performance of these algorithms. Finally, conducting research related to simple post-
processing methods (e.g., selecting the largest segmented object in a segmentation mask)
would also help to improve the performance of the network. Furthermore, while this study
focused only on the overall approach to the segmentation task for skin lesion datasets, our
work is equally applicable to other medical imaging applications such as lung segmentation,
CT image segmentation, or retina blood vessel segmentation. We believe that applying
our model to other medical imaging applications and combining it with appropriate pre-
and post-processing stages will enrich the applicability and feasibility of the network in
the medical domain and allow us to develop better segmentation methods for different
medical image applications.

5. Conclusions

We proposed a triple-attention-based image segmentation algorithm for skin lesions.
The results showed that our network was able to capture more distinguishing information
by adding AG modules in the skip connections and channel attention and spatial attention
modules in the decoding paths. The experimental results on three public benchmark
datasets showed that the network had higher gains in semantic segmentation and achieved
more accurate segmentation results than the original U-Net network and other improved
U-Net networks.
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