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Purpose: Advances in artificial intelligence have produced a few predictive models in glaucoma, including a
logistic regression model predicting glaucoma progression to surgery. However, uncertainty exists regarding how
to integrate the wealth of information in free-text clinical notes. The purpose of this study was to predict glaucoma
progression requiring surgery using deep learning (DL) approaches on data from electronic health records (EHRs),
including features from structured clinical data and from natural language processing of clinical free-text notes.

Design: Development of DL predictive model in an observational cohort.
Participants: Adult patients with glaucoma at a single center treated from 2008 through 2020.
Methods: Ophthalmology clinical notes of patients with glaucoma were identified from EHRs. Available

structured data included patient demographic information, diagnosis codes, prior surgeries, and clinical infor-
mation including intraocular pressure, visual acuity, and central corneal thickness. In addition, words from pa-
tients’ first 120 days of notes were mapped to ophthalmology domain-specific neural word embeddings trained
on PubMed ophthalmology abstracts. Word embeddings and structured clinical data were used as inputs to DL
models to predict subsequent glaucoma surgery.

Main Outcome Measures: Evaluation metrics included area under the receiver operating characteristic
curve (AUC) and F1 score, the harmonic mean of positive predictive value, and sensitivity on a held-out test set.

Results: Seven hundred forty-eight of 4512 patients with glaucoma underwent surgery. The model that
incorporated both structured clinical features as well as input features from clinical notes achieved an AUC of
73% and F1 of 40%, compared with only structured clinical features, (AUC, 66%; F1, 34%) and only clinical free-
text features (AUC, 70%; F1, 42%). All models outperformed predictions from a glaucoma specialist’s review of
clinical notes (F1, 29.5%).

Conclusions: We can successfully predict which patients with glaucoma will need surgery using DL models
on EHRs unstructured text. Models incorporating free-text data outperformed those using only structured inputs.
Future predictive models using EHRs should make use of information from within clinical free-text notes to
improve predictive performance. Additional research is needed to investigate optimal methods of incorporating
imaging data into future predictive models as well. Ophthalmology Science 2022;2:100127 ª 2022 by the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org
Glaucoma is the leading cause of irreversible blindness
worldwide.1 The clinical trajectories of patients with
glaucoma can be highly variable, with some patients
remaining stable with medical treatment, whereas others
progress to require invasive surgery.2 Although
intraocular pressure (IOP) is the primary modifiable risk
factor for glaucoma progression, many aspects of the
wide range of glaucomatous disease phenotypes can
contribute to variation in glaucoma disease course,
including other examination findings, treatment patterns
and medication adherence, and potential underlying
secondary causes,3e5 which makes it difficult to precisely
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
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predict whether a particular patient will have a stable or
progressive clinical course.

Advances in artificial intelligence have enabled the devel-
opment of predictive models in many medical fields6,7 and
have begun to enable predictive models in glaucoma, with
many studies focused on predicting disease trajectory based
on imaging and testing findings.8e11 A wealth of data now
resides within electronic health records (EHRs), and a previ-
ously published logistic regression model predicted glaucoma
progression to surgery with an area under the receiver oper-
ating characteristic curve (AUC) of 0.67.12 However,
uncertainty remains regarding how to integrate the wealth of
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clinical information residing in free-text clinical notes, which
represent an entirely different method of data that has not yet
been integrated into ophthalmology predictive models.

Free-text clinical progress notes in EHRs are difficult to
access and compute over, requiring specialized natural
language processing techniques, such as the use of neural
word embeddings.13e15 With word embeddings, individual
words are mapped onto numeric vectors, such that word
“meaning” is encoded within the geometry of vector space
and words with similar meanings are clustered in vector
space. Mapping words to neural word embeddings can
provide an approach to integrating text into predictive
models, because this effectively transforms the meaning of
words into numeric values that can be computed over. In the
field of medicine, word embedding approaches have been
used over EHR text to predict unplanned readmission after
hospital discharges,16,17 to automate medical coding,18 to
identify intracranial hemorrhages from radiology reports,19

and to identify patients with particular clinical phenotypes
such as metastatic cancer, substance abuse, or obesity,20

among other applications. We also previously developed
specialized, ophthalmology domain-specific word embed-
dings that we have used to develop predictive models for
low-vision prognosis.21

The purpose of this study was to predict glaucoma progres-
sion requiring surgery using ophthalmology domain-specific
neural word embeddings to represent clinical notes. As a sec-
ondary outcome, we compared the performance of models that
integrate free-text notes with those that used only structured
input data from theEHRs. The results from this study can inform
the development of future clinical decision support tools.

Methods

Data Source and Study Cohort

From the Stanford Clinical Data Warehouse,22 we identified 4512
unique adult patients treated from 2009 through 2018 who
underwent incisional glaucoma surgery (Current Procedural
Terminology codes 66150, 66155, 66160, 66165, 66170, 66172,
66174, 66175, 66179, 66180, 66183, 66184, 66185, 67250,
67255, 0191T, 0376T, 0474T, 0253T, 0449T, 0450T, 0192T,
65820, 65850, 66700, 66710, 66711, 66720, 66740, 66625, and
66540) or who had � 2 instances of a glaucoma diagnosis, but
did not undergo glaucoma surgery (International Classification of
Disease, Ninth Revision, codes H40- [excepting H40.0-], H42-,
Q150- and their International Classification of Disease, Ninth
Revision, equivalents). Surgical patients must have had at least 120
days of baseline follow-up before surgery. Nonsurgical patients
must have had at least 120 days of follow-up. In all, 748 surgical
patients and 3764 nonsurgical patients were identified.

This study adhered to the tenets of the Declaration of Helsinki
and was approved by the Stanford University Institutional Review
Board. A waiver of informed consent was granted by the insti-
tutional review board because of the minimal risk posed to par-
ticipants by review of observational health records and the large
number of participants, which would have rendered the study
infeasible if individual informed consent were required.

Data Preprocessing and Feature Engineering

Free-Text Clinical Progress Note Inputs. We identified and
included up to the first 3 clinical progress notes from within the
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first 120 days of follow-up. All notes were lower-cased and toke-
nized (split into separate words), and punctuation and stop words
were removed (“a,” “all,” “also,” “an,” “and,” “are,” “as,” “at,”
“be,” “been,” “by,” “for,” “from,” “had,” “has,” “have,” “in,” “is,”
“it,” “may,” “of,” “on,” “or,” “our,” “than,” “that,” “the,” “there,”
“these,” “this,” “to,” “was,” “we,” “were,” “which,” “who,”
“with”). Words were mapped to 300-dimensional neural word
embeddings customized for ophthalmology, pretrained on PubMed
ophthalmology abstracts.21

Structured Inputs. Structured features available from the
research warehouse were processed either as Boolean (0 or 1)
variables or as continuous numeric variables (standardized to mean
of 0 and variance of 1). Features input as Booleans included
gender, race, ethnicity, billing codes indicating prior diagnoses
(n ¼ 101 features), and current medication use (n ¼ 241 features).
Medications included any medications (both systemic and
ophthalmic) recorded in the EHR medication list during the base-
line period, standardized as they are coded in the EHR database,
which is based on RxNorm. Features with < 1% variance were
removed. Numeric variables included age, best documented visual
acuity for both eyes (measured in logarithm of the minimum angle
of resolution units), and maximum documented IOP for both eyes.
Missing clinical measurements were imputed using column mean
imputation, and indicator variables were created to indicate
whether an individual clinical measurement was missing. In total,
361 structured input features were included.

Modeling Approach

Overview. Three models were constructed for comparison on
predicting whether a patient with glaucoma would progress to
require glaucoma surgery (once or more), including a structured
model that relied on only structured input features, a text model
relying on only free-text clinical notes as input features, and a
combination model that used both sets of features. All models were
trained with hyperparameters and classification probability
threshold tuned through grid search on a validation set (n ¼ 400) to
achieve optimal AUC and F1 score, respectively. Threshold tuning
prevents all predictions from defaulting to “no surgery” because of
the imbalanced nature of the dataset. Final performance was
evaluated on a held-out independent test set of 500 patients. Deep
learning (DL) models were trained in Python using the tensor-
flow23 framework.

Structured Model. The structured model consisted of a densely
connected neural network with a final sigmoid output to predict the
probability that a patient would progress to require surgery. The
model had the following architecture: 361 input features / 1024
dimension (rectified linear unit activation function, type L2 regu-
larization) / dropout (0.5) / 64-dimension layer (rectified linear
unit activation function, type L2 regularization) / sigmoid acti-
vation. Supplementary classical machine learning models were also
trained in scikit-learn,24 including L1 penalized regression, L2
penalized regression, elastic net penalized regression, and
gradient boosted trees, with hyperparameters tuned over the
validation set using grid search and final parameters shown in
Supplemental Table 1.

Text Model. The text model was based on a convolutional
neural network architecture25 that had been previously shown to
perform well in other ophthalmology-related21 natural language
tasks. The model architecture is depicted in Figure 1. The most
recent 1000 words of clinical documentation were mapped first
to previously developed ophthalmology domain-specific word
embeddings that were pretrained on abstracts from PubMed
relating to ophthalmology.21 These were passed through a fully
connected layer and then through multiple 1-dimensional convo-
lutions before concatenation, max pooling, flattening, and passing



Figure 1. Deep learning model architecture relying on only free-text clinical notes as inputs to predict glaucoma progression to surgery. Architecture for
free-text notes based on multiple 1-dimensional convolutions with different filter widths. L2 indicates the type of regularization used. EHR ¼ electronic
health record; FC ¼ fully connected layer; ReLU ¼ rectified linear unit activation function.
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through another fully connected neural network head with final
sigmoid output.

Combination Model. The model architecture that combined
both methods of data, the structured input with the clinical progress
notes, is shown in Figure 2. The combination of these 2 methods of
data followed a late-fusion approach whereby each input was
passed through its own model architecture before concatenating the
outputs near the end and passing through a sigmoid output layer.
The text was mapped to the aforementioned ophthalmology
domain-specific word embeddings and then passed through a
transformer block with 10-headed self-attention.26 The structured
features were passed through a fully connected layer of size 256.
Both model streams were concatenated, with dropout set to 0.5
Figure 2. Deep learning model architecture using both free-text clinical notes
glaucoma progression to surgery. Architecture that combines free-text notes an
rization used. FC ¼ fully connected layer; ReLU ¼ rectified linear unit activat
and passed through an additional fully connected layer of size 64
with type L2 regularization and through the final sigmoid output
neuron.

Evaluation

We used as evaluation metrics sensitivity (recall), specificity,
positive predictive value (precision), negative predictive value, F1
score (the harmonic mean of recall and precision), and the AUC, all
evaluated on the independent held-out test set of patients. In
addition, to provide a baseline human-level for prediction perfor-
mance, a glaucoma specialist (S.Y.W.) reviewed the charts of a
sample of 300 patients with glaucoma from the test set to perform
and structured electronic health records (EHRs) data as inputs to predict
d structured data into 1 predictive model. L2 indicates the type of regula-
ion function.
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clinical predictions on whether they would progress to require
surgery using the same data available to the models above. We also
performed explainability studies for the structured models using
the locally interpretable model-agnostic explanations27 framework
and the Python lime package.28 Locally interpretable model-
agnostic explanation coefficients for structured features were
averaged across the entire test set, indicating the magnitude and
direction of influence that individual structured features had on the
output prediction.

Code Availability

Code for the above-described analyses has been released into a
publicly available repository.29

Results

Population characteristics are summarized in Table 1. The
patients’ mean age was 65 years, and the mean IOP for
both eyes was near 18 mmHg. Mean logarithm of the
minimum angle of resolution visual acuity for both eyes
was near 0.4 (Snellen equivalent, approximately 20/50).
The population was predominantly White and Asian.
Seventeen percent of patients (n ¼ 748) went on to
require glaucoma surgery in this cohort.

Receiver operating characteristic and precision recall
curves on the held-out test set for the structured, text, and
combination models are depicted in Figure 3. The
combination model showed the best AUC (0.731)
Table 1. Population

Characteristic Total (n [ 4512)

Age (yrs)* 65.0 � 17.9
IOP (mmHg)
Right eye 18.3 � 12.3
Left eye 18.8 � 19.1

VA (logMAR)
Right eye 0.39 � 0.74
Left eye 0.43 � 0.78

Female sexy 2270 (50.3)
Race
White 1892 (41.9)
Asian/Pacific Islander 1225 (27.1)
Other/Native American 991 (22.0)
Black 216 (4.8)
Unknown 188 (4.2)

Ethnicity
Non-Hispanic 3791 (84.0)
Hispanic/Latino 566 (12.5)
Unknown 155 (3.4)

Common glaucoma medication use
Latanoprost 1570 (34.8)
Bimatoprost 413 (9.2)
Timolol 1709 (37.9)
Dorzolamide 928 (20.6)
Brimonidine 1212 (26.9)
Acetazolamide 253 (5.6)

IOP ¼ intraocular pressure; logMAR ¼ logarithm of the minimum angle of res
Data are presented as mean�standard deviation or no. (%).
*Numeric variables were standardized to a mean of 0 and variance of 1 before in
yCategorical variables were separated into a series of Boolean dummy variables
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followed by the text model (0.697) and the structured
model (0.658). For the area under the precision recall
curve, the text model was the best (0.431) followed by the
combination model (0.392) and the structured model
(0.284).

Performance metrics of F1, sensitivity (recall), speci-
ficity, positive predictive value (precision), negative pre-
dictive value, and overall accuracy for each of the models
and the ophthalmologist’s clinical predictions are shown in
Table 2. The probability threshold given for optimal F1
score on the validation set was selected. Additionally, the
overall proportion of positive predictions (i.e., proportion
of patients predicted to progress to surgery) made by each
model and the clinical prediction is shown. Of note, the
clinical prediction was the most conservative of all the
models, predicting only 13% of patients to progress to
surgery, compared with the DL models, which ranged
from 28% to 51% predictions of progression. A trivial
prediction model that predicts that no patient would
progress to surgery would have an 83% accuracy, 100%
specificity, but 0% sensitivity, because 17% of patients in
our cohort progressed to surgery. Within this context, the
overall accuracy was best for the clinical prediction (F1 ¼
0.79) as well as the specificity (F1 ¼ 0.90) and precision
(F1 ¼ 0.34), but the F1 was the worst for the clinical
prediction (F1 ¼ 0.29). The text model had the highest F1
at 0.42, whereas the combined model had the best
sensitivity (F1 ¼ 0.77) and negative predictive value
Characteristics

No Surgery (n [ 3764) Progressed to Surgery (n [ 748)

65.0 � 18.1 64.8 � 17.0

18.0 � 6.2 20.1 � 27.7
18.3 � 6.5 21.8 � 45.8

0.39 � 0.74 0.43 � 0.76
0.43 � 0.79 0.43 � 0.76
1920 (51.0) 350 (46.8)

1616 (42.9) 276 (36.9)
992 (26.4) 233 (31.1)
812 (21.6) 179 (23.9)
168 (4.5) 48 (6.4)
176 (4.7) 12 (1.6)

3159 (83.9) 632 (84.5)
460 (12.2) 106 (14.2)
145 (3.9) 10 (1.3)

1279 (34.0) 291 (38.9)
311 (8.3) 102 (13.6)
1318 (35.0) 391 (52.3)
678 (18.0) 250 (33.4)
891 (23.7) 321 (42.9)
178 (4.7) 75 (10.0)

olution; VA ¼ visual acuity.

put into model, but reported here conventionally for ease of interpretation.
before input into model.



Figure 3. Graphs showing (A) receiver operating characteristic curves and (B) precision recall curves for the 3 different types of models developed to predict
glaucoma progression to surgery based on electronic health records data: models that used structured data only, text data only, or a combination of both. The
performance of an ophthalmologist reviewing the health records of these patients and making a clinical prediction is also shown.
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(F1 ¼ 0.93). Supplementary classical machine learning
models were also trained on the structured inputs to
provide general benchmarks for prediction performance on
structured input data, with performance metrics presented
in the Supplemental Table 1 and receiver operating
characteristic and precision recall curves presented in the
Supplemental Figure 1.

To gain an understanding of which features were being
used by the structured models to make predictions, we used
the locally interpretable model-agnostic explanations
framework, which calculates the importance of individual
features to make predictions on individual example inputs
using local linear regressions to approximate the model
decision boundary. Figure 4 shows the top 25 most
important structured features for predicting surgery or no
surgery across the test set. Important structured features
include the use or nonuse of various glaucoma
medications according to the medication list, presence or
absence of important diagnosis codes, and IOP, which are
similar to factors that a clinician may take into account
when predicting the prognosis of a patient with glaucoma.
Discussion

In this large cohort study, we were able to predict whether
patients with glaucoma would need glaucoma surgery in the
future based on multiple methods of data from the EHRs at
Table 2. Performance Metrics for M

Variable
Proportion Predicted to
Progress to Surgery F1 Sensitivity (Recall)

Clinical predictions 0.13 0.29 0.25
Structured model 0.51 0.34 0.69
Text-only model 0.28 0.42 0.56
Combined model 0.49 0.40 0.77

e ¼ not applicable.
Boldface indicates best value across all models.
presentation using DL models. Models incorporating text
performed better than models using only structured
(nonefree-text) data. The most important features included
the use of various glaucoma medications, cataract or pseu-
dophakia, and IOP. Development of predictive models for
patients with glaucoma can be helpful for future clinical
decision support tools or for automatically identifying low-
or high-risk patients to stratify treatment strategies. In our
study, the clinical prediction made by an ophthalmologist
showed the best specificity, positive predictive value, and
accuracy, but was also the most conservative and had the
worst sensitivity, predicting only 13% of patients pro-
gressing to surgery. Thus, on the more balanced measure of
performance (F1), all models outperformed the clinical
prediction.

Previous models to predict glaucoma progression to
surgery have focused on using structured data from elec-
tronic health records or on using imaging and testing data.
Baxter et al investigated several different types of models,
including DL and tree-based models, but ultimately found
that a logistic regression model achieved the best perfor-
mance at an AUC of 0.67,8,23,24 similar to our performance
using structured data only. We showed that incorporation of
text from EHRs likely improves performance. Text data
contains richer and more complete documentation of
presenting symptoms, examination findings, and medical
history compared with use of billing codes, which is
likely to be incomplete, especially for new patients
odels and Clinical Predictions

Specificity

Positive
Predictive

Value (Precision)

Negative
Predictive
Value Accuracy

Probability
Threshold

0.90 0.34 0.85 0.79 d
0.53 0.23 0.89 0.56 0.15
0.77 0.33 0.90 0.74 0.20
0.57 0.27 0.93 0.60 0.15
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Figure 4. Graph showing the 25 most important features for the structured model predictions. The mean local interpretable model-agnostic explanation
(LIME) coefficients of individual structured input features were averaged to produce an overall importance across the entire test set for each feature. Bars in
red show features important for predicting that the patient would undergo surgery, whereas bars in green show features important for predicting that the
patient would not undergo surgery. ICD ¼ International Classification of Diseases; IOP ¼ intraocular pressure.
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without a long prior history in the medical system. Other
predictive models for glaucoma progression have focused
on using visual field data with or without limited clinical
information (e.g., IOP),8,30,31 retinal nerve fiber layer on
OCT,32 or fundus photographs18 to predict glaucoma
progression. In our models, imaging and testing
information was not incorporated directly as input
features; rather, their clinical interpretations were
incorporated in the form of free text in the notes. Imaging
information is yet another completely different method of
data that requires future separate study to determine how
best to fuse it with structured and textual EHR data into
multimodality predictive models.

To provide a baseline performance comparison for our
models, a glaucoma specialist (S.Y.W.) provided clinical
predictions based on chart review. Only by having a base-
line comparison can the models’ performances be judged in
context. Compared with the clinical predictions, all models
showed better F1 score (a balanced measure of positive
predictive value and sensitivity), mainly owing to better
sensitivity. Thus, a potential role of this type of model in
clinical decision support may be in identifying patients at
high risk of glaucoma progression with higher sensitivity,
although the optimal tradeoff between sensitivity and posi-
tive predictive value in the clinical context has yet to be
6

determined. Of note, because the models provide probabil-
ities of surgery as their outputs, the optimal cutoff threshold
can be easily tuned in a way that a clinician’s judgment
cannot. In this case, the model thresholds were chosen to
achieve optimal balanced F1, but thresholds could be opti-
mized for other metrics as well, depending on the clinical
context of model deployment and the costs of misclassifi-
cation in each scenario. Furthermore, significant variation
exists among glaucoma specialists regarding practice pat-
terns, and variations in clinical judgment are likely to exist;
thus, future work may benefit from gathering and comparing
multiple clinicians’ clinical predictions.

This study is among the first to investigate the usage of
free-text clinical notes in predictive models for ophthal-
mology and to compare performance to models using only
the structured, easy-to-access data in EHRs. We have used
an innovative natural language processing pipeline tailored
specifically for use on ophthalmology-domain language,
through the use of specialized word embeddings21 (which
were previously made available to the public). This
application of word embeddings to represent and
incorporate text into predictive models involves minimal
preprocessing of the text of the clinical progress notes and
minimal computational power, thus increasing its appeal.
This approach has significant advantages over manual
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chart review or specific keyword searches of the text for
particular terms of interest because manual review is
inherently less scalable and keyword searching requires
the items of interest to be determined a priori.

Another unique aspect of this study is the investigation of
which features the DL models seemed to rely on most for
their predictions, using the locally interpretable model-
agnostic explanations28 framework. For the structured
model, we were able to generate a list of the most
important features contributing to the predictions across
the entire test set, which notably included many
reasonable candidate features, such as the use of glaucoma
medications and IOP. As expected, higher IOP was
important for a surgery prediction. Use of many glaucoma
medications was also important for surgery predictions,
whereas absence of certain glaucoma medications from the
medical record contributed to predictions for no surgery,
which makes sense because patients who are taking more
medications have fewer nonsurgical options for escalating
therapy should they require it. Only a few of the top
medication-related features were systemic medications;
intriguingly, not using simvastatin contributed to a no-
surgery prediction. Use of statins has been suggested to
have a protective effect against incidence of glaucoma,
although their effect on glaucoma progression or IOP is
uncertain.33 Thus, investigation of feature importance in
predictive models may be helpful not only to examine the
trustworthiness of the model, but also for hypothesis
generation to guide further research.

This study has several limitations. Although we used
word embeddings as an appealing approach to incorporating
free text, other methods in natural language processing may
exist that could further improve performance, such as
transfer learning using transformer-based DL models pre-
trained on massive text corpora.34,35 However, computation
becomes unwieldy as clinical documentation becomes
longer, so input note length for free-text models must be
limited regardless of how free-text is incorporated.
Explainability studies relating individual portions of text to
the final model prediction are also difficult to summarize
across multiple examples and may represent an area for
future research. Another important challenge of this work is
the inherent imbalance in the cohort, representing the fact
that only a relatively small percentage of patients with
glaucoma progressed to require surgery, which poses diffi-
culties for the training of predictive models in that opti-
mizing for overall accuracy often results in a very low
percentage of positive predictions. To combat this, the
optimal prediction thresholds had to be tuned to achieve an
optimal F1 score. Our models also did not use a fixed pre-
diction window for progression to surgery, for example,
progression within a 6- or 12-month window, which would
further exacerbate the challenges of training on an imbal-
anced dataset. Future work could better incorporate the
temporality of both the input data and the output prediction,
taking into account potentially variable amounts of input
data over time and outputting predictions over a fixed
period. Finally, our study was limited to a single center
consisting of a large academic hospital. Patients could
pursue some portion of their care, such as surgery, at other
institutions, either temporarily or permanently. Developing
and validating natural language processing algorithms to
identify whether glaucoma surgery was performed based
solely on the free-text documentation is a direction for
future work. Performing similar studies using multicenter
data to capture patients who move between centers also
would help to capture more complete clinical data on these
mobile patients, as well as improve generalizability. The
complex and sensitive nature of data sharing across in-
stitutions and to registries for clinical free text containing
protected health information remains a challenge to be
overcome. However, it must be noted that for truly
personalized medical predictions, it actually may be pref-
erable to tune predictive models to the specific setting in
which they would be deployed, rather than striving for a
one-size-fits all generalizable model for all patients.

In conclusion, we developed and investigated approaches
to incorporating clinical free text into multimodality pre-
dictive models for glaucoma progression requiring surgery.
Compared with models relying only on structured data from
EHRs as inputs, the use of free-text data inputs may improve
model performance. Future work can continue to explore
other methods of incorporating text data into models and
incorporating imaging and testing data into models to
further improve prediction performance and build a pathway
toward clinical deployment.
Footnotes and Disclosures
Originally received: December 7, 2021.
Final revision: January 19, 2022.
Accepted: February 7, 2022.
Available online: February 12, 2022. Manuscript no. D-21-00238.
1 Byers Eye Institute, Department of Ophthalmology, Stanford University,
Palo Alto, California.
2 Center for Biomedical Informatics Research, Stanford University, Palo
Alto, California.

Disclosure(s):

All authors have completed and submitted the ICMJE disclosures form.

The author(s) have no proprietary or commercial interest in any materials
discussed in this article.
Supported by the National Eye Institute, National Institutes of Health,
Bethesda, Maryland (grant nos.: 1K23EY03263501 [S.Y.W.] and P30-
EY026877 [S.Y.W., B.T.]); and Research to Prevent Blindness, Inc.,
New York, New York (Career Development Award [S.Y.W.] and unre-
stricted departmental grant [S.Y.W., B.T.]).

Presented in part at: American Glaucoma Society Annual Meeting, March
2021, Virtual.

HUMAN SUBJECTS: Human subjects were included in this study. This
study adheres to the tenets of the Declaration of Helsinki and was approved
by the Stanford Institutional Review Board. A waiver of informed consent
was granted by the Institutional Review Board due to the minimal risk
posed to subjects by review of observational health records and due to the
large number of subjects, which would have rendered the study infeasible if
individual informed consent were required.
7



Ophthalmology Science Volume 2, Number 2, June 2022
No animal subjects were included in this study.

Author Contributions:

Conception and design: Wang, Tseng, Hernandez-Boussard

Analysis and interpretation: Wang, Tseng, Hernandez-Boussard

Data collection: Wang, Tseng, Hernandez-Boussard

Obtained funding: Wang, Tseng

Overall responsibility: Wang, Tseng, Hernandez-Boussard
8

Abbreviations and Acronyms:
AUC ¼ area under the receiver operating characteristic curve; DL ¼ deep
learning; EHR ¼ electronic health record; IOP ¼ intraocular pressure.

Key Words:
Glaucoma, Artificial Intelligence, Deep Learning, Informatics.

Correspondence:
Sophia Y. Wang, MD, MS, Byers Eye Institute, Department of
Ophthalmology, Stanford University, 2370 Watson Court, Palo Alto, CA
94303. E-mail: sywang@stanford.edu.
References
1. Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on
visual impairment in the year 2002. Bull World Health Organ.
2004;82:844e851.

2. Chauhan BC, Malik R, Shuba LM, et al. Rates of glaucoma-
tous visual field change in a large clinical population. Invest
Ophthalmol Vis Sci. 2014;55:4135e4143.

3. Rivera JL, Bell NP, Feldman RM. Risk factors for primary
open angle glaucoma progression: what we know and what
we need to know. Curr Opin Ophthalmol. 2008;19:
102e106.

4. Friedman DS, Wilson MR, Liebmann JM, et al. An evidence-
based assessment of risk factors for the progression of ocular
hypertension and glaucoma. Am J Ophthalmol. 2004;138:
S19eS31.

5. Newman-Casey PA, Niziol LM, Gillespie BW, et al. The as-
sociation between medication adherence and visual field pro-
gression in the Collaborative Initial Glaucoma Treatment
Study. Ophthalmology. 2020;127:477e483.

6. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep
learning with electronic health records. NPJ Digit Med.
2018;1:18.

7. Gensheimer MF, Henry AS, Wood DJ, et al. Automated sur-
vival prediction in metastatic cancer patients using high-
dimensional electronic medical record data. Ann Oncol.
2018;29:viii548.

8. Garcia G-GP, Nitta K, Lavieri MS, et al. Using Kalman
filtering to forecast disease trajectory for patients with normal
tension glaucoma. Am J Ophthalmol. 2019;199:111e119.

9. Park K, Kim J, Lee J. Visual field prediction using recurrent
neural network. Sci Rep. 2019;9:8385.

10. Lee T, Jammal AA, Mariottoni EB, Medeiros FA. Predicting
glaucoma development with longitudinal deep learning pre-
dictions from fundus photographs. Am J Ophthalmol.
2021;225:86e94.

11. Medeiros FA, Jammal AA, Mariottoni EB. Detection of pro-
gressive glaucomatous optic nerve damage on fundus photo-
graphs with deep learning. Ophthalmology. 2021;128:
383e392.

12. Baxter SL, Marks C, Kuo T-T, et al. Machine learning-based
predictive modeling of surgical intervention in glaucoma us-
ing systemic data from electronic health records. Am J Oph-
thalmol. 2019;208:30e40.

13. Mikolov T, Sutskever I, Chen K, et al. Distributed represen-
tations of words and phrases and their compositionality. In:
Burges CJC, Bottou L, Welling M, et al., eds. Advances in
Neural Information Processing Systems 26. Red Hook, New
York: Curran Associates, Inc.; 2013:3111e3119.

14. Pennington J, Socher R, Manning CD. GloVe: global vectors
for word representation. Available at: https://nlp.stanford.edu/
projects/glove/; 2014. Accessed 16.06.20.
15. Khattak FK, Jeblee S, Pou-Prom C, et al. A survey of word
embeddings for clinical text. J Biomed Inform. 2019;4:100057.

16. Craig E, Arias C, Gillman D. Predicting readmission risk from
doctors’ notes. arXiv [statML]. Available at: http://arxiv.org/
abs/1711.10663; 2017. Accessed January 5, 2022.

17. Nguyen P, Tran T, Wickramasinghe N, Venkatesh S. Deepr: a
convolutional net for medical records. IEEE J Biomed Health
Inform. 2017;21:22e30.

18. Patel K, Patel D, Golakiya M, et al. Adapting pre-trained word
embeddings for use in medical coding. In: Biomedical Natural
Language Processing Workshop (BioNLP). 2017. Vancouver:
Association for Computational Linguistics; 2017:302e306.

19. Banerjee I, Madhavan S, Goldman RE, Rubin DL. Intelligent
word embeddings of free-text radiology reports. AMIA Annu
Symp Proc. 2017;2017:411e420.

20. Gehrmann S, Dernoncourt F, Li Y, et al. Comparing deep
learning and concept extraction based methods for patient
phenotyping from clinical narratives. PLoS One. 2018;13:
e0192360.

21. Wang S, Tseng B, Hernandez-Boussard T. Development and
evaluation of novel ophthalmology domain-specific neural
word embeddings to predict visual prognosis. Int J Med
Inform. 2021;150:104464.

22. Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDEd
an integrated standards-based translational research infor-
matics platform. AMIA Annu Symp Proc. 2009;2009:
391e395.

23. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale
machine learning on heterogeneous systems. Available at:
https://www.tensorflow.org/; 2015. Accessed January 17,
2022.

24. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in Python. J Mach Learn Res. 2011;12:
2825e2830.

25. Kim Y. Convolutional neural networks for sentence classifi-
cation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. Stroudsburg, PA:
Association for Computational Linguistics; 2014:1746e1751.

26. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need. arXiv [csCL]. Available at: http://arxiv.org/abs/1706.
03762; 2017. Accessed March 1, 2021.

27. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”:
explaining the predictions of any classifier. arXiv [csLG].
Available at: http://arxiv.org/abs/1602.04938; 2016. Accessed
July 15, 2021.

28. Ribeiro MTC. lime. Available at: https://github.com/marcotcr/
lime. Accessed 27.05.21.

29. Wang SY, Tseng B. eyelovedata/predictglaucomasurgery-ehr:
v1.0.0. Available at: https://zenodo.org/record/5867032; 2022.
Accessed January 17, 2022.

mailto:sywang@stanford.edu
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref1
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref1
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref1
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref1
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref2
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref2
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref2
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref2
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref3
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref3
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref3
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref3
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref3
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref4
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref4
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref4
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref4
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref4
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref5
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref5
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref5
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref5
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref5
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref6
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref6
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref6
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref7
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref7
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref7
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref7
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref8
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref8
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref8
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref8
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref9
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref9
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref10
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref10
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref10
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref10
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref10
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref11
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref11
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref11
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref11
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref11
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref12
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref12
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref12
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref12
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref12
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref13
https://nlp.stanford.edu/projects/glove/;%202014
https://nlp.stanford.edu/projects/glove/;%202014
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref15
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref15
http://arxiv.org/abs/1711.10663;%202017
http://arxiv.org/abs/1711.10663;%202017
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref17
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref17
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref17
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref17
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref18
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref18
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref18
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref18
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref18
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref19
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref19
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref19
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref19
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref20
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref20
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref20
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref20
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref21
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref21
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref21
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref21
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref22
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref22
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref22
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref22
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref22
https://www.tensorflow.org/;%202015
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref24
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref24
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref24
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref24
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref25
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref25
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref25
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref25
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref25
http://arxiv.org/abs/1706.03762;%202017
http://arxiv.org/abs/1706.03762;%202017
http://arxiv.org/abs/1602.04938;%202016
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://zenodo.org/record/5867032;%202022


Wang et al � DL to Predict Glaucoma Progression
30. Wen JC, Lee CS, Keane PA, et al. Forecasting future Hum-
phrey visual fields using deep learning. PLoS One. 2019;14:
e0214875.

31. Berchuck SI, Mukherjee S, Medeiros FA. Estimating rates of
progression and predicting future visual fields in glaucoma
using a deep variational autoencoder. Sci Rep. 2019;9:18113.

32. Christopher M, Belghith A, Weinreb RN, et al. Retinal nerve
fiber layer features identified by unsupervised machine
learning on optical coherence tomography scans predict
glaucoma progression. Invest Ophthalmol Vis Sci. 2018;59:
2748e2756.
33. McCann P, Hogg RE, Fallis R, Azuara-Blanco A. The effect of
statins on intraocular pressure and on the incidence and pro-
gression of glaucoma: a systematic review and meta-analysis.
Invest Ophthalmol Vis Sci. 2016;57:2729e2748.

34. Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained
biomedical language representation model for biomedical
text mining. Bioinformatics. 2020;36:1234e1240.

35. Alsentzer E, Murphy JR, Boag W, et al. Publicly available
clinical BERT embeddings. arXiv [csCL]. Available at:
http://arxiv.org/abs/1904.03323; 2019. Accessed March 16,
2021.
9

http://refhub.elsevier.com/S2666-9145(22)00016-1/sref30
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref30
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref30
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref31
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref31
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref31
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref32
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref33
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref33
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref33
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref33
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref33
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref34
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref34
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref34
http://refhub.elsevier.com/S2666-9145(22)00016-1/sref34
http://arxiv.org/abs/1904.03323;%202019

	Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing
	Methods
	Data Source and Study Cohort
	Data Preprocessing and Feature Engineering
	Free-Text Clinical Progress Note Inputs
	Structured Inputs

	Modeling Approach
	Overview
	Structured Model
	Text Model
	Combination Model

	Evaluation
	Code Availability

	Results
	Discussion
	References


