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Abstract. Obesity results in a variety of metabolic alterations 
that may contribute to abnormalities in cardiac structure and 
function. Although metformin (Met) has been previously 
reported to exhibit beneficial effects against cardiomyopathy 
associated obesity, the mechanism underlying this observation 
remains unclear. The aim of the present study was to investi-
gate the status of the nuclear factor (erythroid-derived 2)-like 2 
(Nrf2)/kelch-like ECH-associated protein 1 (Keap1) system 
underlying the protective effects of Met against cardiac 
remodeling. High-fat diet-induced obesity mouse models 
were first generated, which were subsequently treated with 
Met. Metabolic parameters, heart weight index and degree of 
cardiac fibrosis were examined. The expression levels of genes 
and proteins associated with the Nrf2/Keap1 signaling pathway 
were assessed using reverse transcription‑quantitative PCR 
and western blotting. In obese mice, Met treatment signifi-
cantly ameliorated the obesity phenotype, improved metabolic 
disorders, reduced the heart weight index and attenuated 
cardiac fibrosis. The cardioprotective effects of Met may be 
mediated through the promotion of Keap1 degradation whilst 
increasing the expression of Nrf2 and associated downstream 
antioxidant factors.

Introduction

Obesity, originating from a combination of genetic and envi-
ronmental factors, including lifestyle, culture, physiology 
and behavior, has reached pandemic proportions in the 
21st century (1,2). It presents substantial health challenges 
and economic burden worldwide (1,2). Obesity is capable 
of producing a variety of alterations in the body that may 
predispose individuals to changes in cardiac morphology 
and ventricular function (3,4), in a process known as cardiac 
remodeling. Cardiac remodeling refers to the structural and 
functional dysfunction caused by molecular and genetic 
changes in cardiomyocytes under the influence of neurohu-
moral factors (5). A number of potential mechanisms have 
been hypothesized to underlie obesity-associated cardiomy-
opathy, including inflammation, neurohumoral and metabolic 
abnormalities (3). In addition, oxidative stress has also been 
reported to serve a significant role in myocardial abnormalities 
associated with obesity (6).

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a 
major regulator of redox signaling. Under physiological condi-
tions, kelch-like ECH-associated protein 1 (Keap1) binds to 
and target Nrf2 for proteasomal degradation. However, during 
oxidative stress, Keap1 becomes inactivated by oxidation of 
its several cysteine residues or autophagic elimination in a 
sequestosome‑1‑dependent manner (7). Nrf2 is then released 
from this complex, where it enters the nucleus to promote the 
expression of genes associated with antioxidant activities. In 
the nucleus, Nrf2 can upregulate the expression of a wide range 
of antioxidant genes, including glutathione-S-transferase, 
heme oxygenase (HO‑1), NADPH and quinone 1, by binding 
with the antioxidant response element (8). Although the 
Nrf2/Keap1 pathway is physiologically important for the anti-
oxidant defense against a variety of cardiovascular diseases, 
its role in obesity-associated cardiac remodeling remains to 
be elucidated.

Metformin (Met) is one of the most commonly prescribed 
drugs for the treatment of type 2 diabetes (9) that has been 
previously demonstrated to exhibit protective effects against 
cardiovascular disease. Met has been reported to protect 
the myocardium against isoproterenol-induced infarc-
tion (10,11), attenuate cardiac remodeling in monosodium 
glutamate-induced obesity in mouse models and inhibit 
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isoproterenol- and pressure overload-induced remodeling, in a 
manner that was either dependent or independent of adenosine 
5'-monophosphate (AMP)-activated protein kinase (AMPK) 
activation (12-14). The aim of the present study was to investi-
gate the status of the Nrf2/Keap1 signaling pathway underlying 
the protective effects of Met against cardiac remodeling in 
mouse models of obesity.

Materials and methods

Experimental animals and groups. C57BL/6J male mice 
(age, 4‑5 weeks, 15‑17g, n=24) were purchased from the 
Medical Experimental Animal Center of Henan University of 
Science and Technology (Luoyang, China; License number: 
SCXK 2018‑0007). After adaptive feeding for 1 week, the 
animals were randomly divided into the following three 
groups (n=8 per group): i) Control; ii) high‑fat diet (HFD); and 
iii) HFD+Met (300 mg/kg). All mice except for mice in the 
control group were fed on a HFD for 24 weeks consecutively. 
The composition of HFD was 60% fat, 20% carbohydrate and 
20% protein, while the normal chow diet consisted of 4.5% fat. 
In addition, mice in the HFD+Met group were administered 
Met in drinking water daily from week 8 onwards following 
the commencement of feeding on HFD. All mice were housed 
in a temperature and humidity regulated room (temperature, 
22±2˚C; humidity, 50±5%) with controlled lighting (12‑h 
light/dark cycle). Water and food was freely available to 
the mice.

The study was approved by the Animal Care and Ethics 
Committee of Henan University of Science and Technology 
(Luoyang, China) and was performed in accordance with the 
National Institutes of Health Guidelines for the Care and Use 
of Laboratory Animals (15).

Metabolic measurements. On week 22 of the experiment, an 
oral glucose tolerance test (OGTT; 0.2 g/kg) was performed. 
Blood samples (a drop of blood) were collected through the 
tail artery at 5, 15, 30, 60 and 120 min after the administration 
of glucose by oral gavage, following which plasma glucose 
concentrations were measured using a blood glucose monitor 
(Roche Diagnostics). AUC was calculated according to the 
approximate trapezoidal area formula (16), which could better 
reflect the changes in the trend and time accumulation effect 
of blood glucose levels. After OGTT, animals in each group 
continued to live in their corresponding conditions as afore-
mentioned until week 24. Body weight, body length, waistline 
and food/water consumption were monitored weekly, whilst 
Lee index (17) was calculated [(body weight)1/3/body length] at 
the end of the experiment.

Serum analysis and heart weight index calculation. After 
feeding on HFD for 24 weeks, all mice were anaesthetized 
by an intraperitoneal injection of sodium pentobarbital 
(45 mg/kg), following which blood (~0.5 ml) was collected 
from the orbital venous sinus. Fasting serum glucose 
(cat. no. 133011, Zhongsheng North Control Biotechnology 
Co., Ltd.) and insulin levels (cat. no. XY-E20353, Shanghai 
Biological Technology Co., Ltd.) were then measured in the 
blood samples collect in each group using corresponding 
commercial kits. Homeostasis model assessment of insulin 

resistance (HOMA-IR) was calculated for mice in each group 
according to protocols described previously (18). Following 
retroorbital exsanguination, all mice were immediately eutha-
nized by cervical dislocation. The mouse hearts were then 
removed rapidly, washed in ice-cold 0.9% saline and weighed. 
Heart weight/tibial length (HW/TL) and the left ventricular 
weight/tibial length (LHW/TL) were calculated. ~1/3 of the 
left ventricular samples were fixed in 4% paraformaldehyde 
at room temperature (RT) for 24 h and then embedded in 
paraffin for subsequent morphological analysis. The remaining 
left ventricle samples were flash‑frozen in liquid nitrogen and 
stored at ‑80˚C until further use.

Histological examination. Interstitial fibrosis of the 
left ventricle was determined using Masson's trichrome 
staining (19). The sections were deparaffinized using 
xylene and washed with various levels of ethanol, dried and 
stained for 10 min at RT with Masson composite solution. A 
total of 2 samples from each group were taken for preliminary 
morphology and molecular biological experiments, with the 
remaining 6 samples in each group for subsequent experi-
ments. There were 6 heart tissues in each group, 3 sections of 
each tissue and 10 randomized visual fields in light microscope 
(Olympus; magnification, x200) were selected for statistics. To 
assess the degree of fibrosis, the images were quantitatively 
analyzed by morphometry using the Image-Pro Plus software 
(version 1.61; Media Cybernetics, Inc.).

Reverse transcription quantitative‑PCR (RT‑qPCR). Total 
RNA was extracted from the left ventricular tissue (20) using 
the TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) 
on ice and reverse-transcribed using a high-capacity comple-
mentary DNA reverse transcription kit (cat. no. 4368814; 
Applied Biosystems) according to the manufacturer's protocol. 
The temperature protocol was as follows: Denaturation at 
70˚C for 10 min, then extension at 37˚C for 60 min and a final 
inactivation at 94˚C for 10 min. qPCR was performed using 
SYBR™ Green PCR Master Mix kit (cat. no. CW2623; CWBio) 
according to manufacturer's protocol. mRNA levels of cardiac 
fibrosis markers, including transforming growth factor-β1 
(TGF-β1), collagen I (Col I) and collagen III (Col III), in addi-
tion those of genes associated with oxidative stress, including 
keap1, Nrf2 and HO‑1, were quantified. Primer sequences are 
shown in Table SI. qPCR was performed in a Step One Plus 
Real‑Time PCR system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.) for 40 cycles, specifically, pre‑denaturation at 
94˚C for 20 sec, and then entering the cycle of 94˚C for 15 sec, 
and 60˚C for 1 min. The 2-ΔΔCq method was used to quantify the 
genes (20), and GAPDH gene was used as the internal control.

Western blot analysis. Total proteins were extracted from the 
left ventricle using ice-cold RIPA buffer (cat. no. CW2333; 
CWBio). Denatured protein samples were quantified using 
the BCA method, and 30 µg protein was subjected to 10% 
SDS-PAGE analysis. After electrophoresis, proteins were 
transferred to PVDF membranes (EMD Millipore), which were 
then blocked at RT for 1 h with 5% non‑fat dry milk in TBS 
supplemented with 0.1% Tween‑20 (TBST) and subsequently 
incubated with the respective primary antibodies diluted 
in 5% non‑fat dry milk at 4˚C overnight. Dilutions used for 
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each primary antibody was 1:500 for Nrf2, 1:500 for Keap-1, 
1:500 for HO-1 and 1:8,000 for GAPDH. Rabbit and mouse 
polyclonal antibodies specific for Nrf2 (cat. no. 16396‑1‑AP), 
Keap1 (cat. no. 10503‑2‑AP), HO‑1 (cat. no. 10701‑1‑AP) were 
purchased from Proteintech; and GAPDH (cat. no. BM3896) 
were purchased from Boster Biological Technology. After 
washing with TBST three times, membranes were incu-
bated with anti‑rabbit (cat. no. BA1054; Boster Biological 
Technology) or anti‑mouse (cat. no. BA1050; Boster Biological 
Technology) horseradish peroxidase conjugated secondary 
antibodies (1:5,000) for 1 h at RT. Protein bands were visualized 
using chemiluminescence using the ECL chemiluminescent 
substrate (cat. no. BL523A; Biosharp). GAPDH was used as 
the loading control for total protein. Quantification of bands 
was performed using the ImageJ Software 1.50 (National 
Institutes of Health).

Determination of nuclear Nrf2 using the immunofluorescence 
staining method. Paraffin‑embedded samples were cut into 
5‑µm thick sections, which were deparaffinized with xylene 
followed by rehydration using a descending alcohol series, 
subjected to antigen retrieval in EDTA buffer (pH 8.0) using a 
microwave (at medium strength for 10-15 min) and then placed 
in 3% BSA (cat. no. 9048‑46‑8; Sigma‑Aldrich; Merck KGaA) 

to block non‑specific staining for 30 min at room temperature. 
Sections were then incubated with anti-Nrf2 antibodies (1:100; 
cat. no. 16396‑1‑AP; Proteintech) at 4˚C overnight, followed 
by incubation with the fluorescent‑labeled secondary antibody 
(1:300; cat. no. BA1032; Boster Biological Technology) in 
darkness and room temperature for 50 min. After counter-
staining with 1 µg/ml DAPI for 5 min at RT, the sections 
were dehydrated and viewed under a fluorescence microscope 
(x400; Nikon Corporation).

Statistical analysis. In all experiments, values were expressed 
as the mean ± SEM (n=8). Differences between groups were 
evaluated using the Student-Newman-Keuls test after One-Way 
ANOVA (GraphPad Prism 5.0; GraphPad Software, Inc.). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Met treatment alleviates obesity and glucose metabolic 
disorder in mice. The effects of Met on the metabolic 
parameters of obese mice were first examined. Met treatment 
significantly reduced the body weight, waist circumference 
(Fig. 1A and B) and Lee index (Fig. 1C) in obese mice, whilst 

Figure 1. Met ameliorates obesity and metabolic disorders in HFD‑induced obese mice after 24 weeks. (A) Met decreased the body weight, (B) waist circum-
ference and (C) the Lee index in mice from the HFD+Met group compared with those in the HFD group. (D) Between the two HFD groups of mice, 
hyperglycemia, (E) hyperinsulinaemia and (F) HOMA‑IR were significantly improved after Met treatment compared with those in untreated mice. (G) The 
effect of Met on impaired glucose tolerance, as measured by the oral glucose tolerance test. Right: AUC. Data are expressed as mean ± SEM, n=8 per group. 
***P<0.001 vs. control; ∆∆∆P<0.001 vs. HFD. AUC, area under the curve; HFD, high fat diet; HOMA-IR, homeostasis model assessment of insulin resistance; 
OGTT, oral glucose tolerance test; Met, metformin.
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significantly reducing the fasting blood glucose (Fig. 1D) 
and serum insulin levels (Fig. 1E) in addition to ameliorating 
insulin resistance (Fig. 1F) when compared with untreated 
mice in the HFD group. Met also significantly improved oral 
glucose tolerance compared with that in the HFD only group 
(Fig. 1G). These results suggest that Met treatment allevi-
ated metabolic disorder and obesity syndrome in mice with 
HFD-induced obesity.

Met prevents cardiac remodeling in HFD‑induced obese mice. 
To investigate the effects of Met on cardiac remodeling associ-
ated with obesity, heart weight index and degree of cardiac 
fibrosis were evaluated in obese mice. HW (Fig. 2A and B) 
and LHW indices (Fig. 2C and D) were both found to be 

significantly increased in the HFD group compared with 
those in the control group. Masson's staining revealed that the 
degree of cardiac fibrosis was significantly increased in the 
HFD group compared with that in the control group (Fig. 2E), 
which was also indicated by the RT‑qPCR results (Fig. 2F), 
suggesting the development of cardiac remodeling in obese 
mice. Met treatment significantly reversed this cardiac remod-
eling, as indicated by significant reductions in the HW index 
and levels of cardiac fibrosis compared with those in the HFD 
group (Fig. 2).

Met enhances the endogenous antioxidant system in the heart. 
To elucidate the mechanism underlying the protective effects 
of Met against cardiac remodeling, the expression of genes and 

Figure 2. Met reduces the heart weight index and ameliorates myocardial fibrosis in mice fed on HFD after 24 weeks. (A) Heart weight, (B) heart weight index, 
(C) left ventricular weight and (D) left ventricular weight index were calculated. (E) Representative figures of myocardial interstitial fibrosis using Masson's 
trichrome staining (magnification, x200) and the quantified results of Masson's staining. (F) Reverse transcription‑quantitative PCR analysis of TGFB1, 
COL1A1 and COL3A1 expression. Data are expressed as mean ± SEM, n=6 per group. *P<0.05, **P<0.01 and ***P<0.001 vs. Control; ∆P<0.05, ∆∆P<0.01 and 
∆∆∆P<0.001 vs. HFD. COL, collagen gene; HFD, high fat diet; HW, heart weight; LHW, left ventricular weight; Met, metformin; TGFB1, transforming growth 
factor β1 gene.
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proteins associated with Nrf2/Keap1 signaling were analyzed 
using RT‑qPCR and western blotting. Gene and protein 
expression levels of Nrf2 exhibited slight increases in the heart 
tissues of mice in the HFD group compared with those in the 
control group (Fig. 3A, D and E), whilst an opposite trend was 
observed in Keap1 expression (Fig. 3B, D and F). Expression 
of HO-1 mRNA, a downstream target gene of Nrf2, was found 
to be slightly reduced in the heart tissue of mice in the HFD 
group compared with that in the control group (Fig. 3C). 
Significant reductions were observed in the protein levels of 
HO-1 in the heart tissues of mice in the HFD group compared 
with mice in the control group (Fig. 3D and G). It was found 
that whilst Met treatment significantly reduced Keap1 protein 
expression (Fig. 3D and F), no effect was observed on KEAP1 
gene expression between the HFD and HFD+Met groups 
(Fig. 3B). At the same time, Met treatment significantly upreg-
ulated Nrf2 and HO-1 expression on both mRNA and protein 
levels in heart tissues compared with those in untreated mice 
in the HFD group (Fig. 3A, C, E and G).

Met promotes Nrf2 translocation into the nucleus in the 
heart tissue. Fig. 4 shows representative immunofluo-
rescence staining images of Nrf2 expression in the heart 

tissues isolated from mice from the three experimental 
groups. Nrf2 staining showed slight increases in the heart 
tissue of mice from the HFD group compared with that in 
control mice. By contrast, Met induced a marked increase 
in nuclear Nrf2 staining, suggesting that Met treatment may 
activate Nrf2 signaling by inducing the nuclear transloca-
tion of Nrf2.

Discussion

The results of the present study indicated that long-term Met 
treatment provided protection against obesity-associated 
cardiac remodeling in HFD-induced obese mice. This may 
be mediated though the reduction of metabolic disorder and 
enhancement of the Nrf2/Keap1 signaling pathway of the 
endogenous antioxidant system. These findings suggest the 
potential of Met as a therapeutic agent for patients of obesity 
at risk of cardiac remodeling.

It is estimated that there are 671 million individuals with 
obesity in the world, with 62% occurring in developing coun-
tries (21). Morbid obesity has been associated with insulin 
resistance, diabetes mellitus and organ damage, including 
atherosclerosis and left ventricular hypertrophy (LVH). LVH 

Figure 3. Effect of Met on the expression level of genes and proteins associated with the Nrf2/Keap1 signaling pathway in the cardiac tissue of the three experi-
mental groups. (A) mRNA levels of NFE2L2, (B) KEAP1 and (C) HMOX‑1. (D) Representative western blot images of proteins associated with the Nrf2/Keap1 
signaling pathway. (E) Densitometry analysis of Nrf2, (F) Keap1 and (G) HO-1 expression. The relative densitometry is expressed as the ratio of Nrf2, Keap1 
or HO‑1 to GAPDH. Data are presented as mean ± SEM; n=6 per group. **P<0.01 vs. Control; ∆P<0.05 vs. HFD. HFD, high fat diet; HO-1, heme oxygenase 1; 
Keap1, kelch-like ECH-associated protein 1; HMOX‑1, HO-1 gene; Met, metformin; Nrf2, nuclear factor (erythroid-derived 2)-like 2; NFE2L2, Nrf2 gene.
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is known has been previously found to be independently 
associated with adiposity (22). HFD is associated with the 
manifestation of obesity, metabolic disturbances, cardiac 
hypertrophy and interstitial fibrosis (23). Results of the 
present study indicated that mice fed on HFD for 24 weeks 
exhibited apparent metabolic syndrome, with symptoms 
including increases in body weight, waist circumference, Lee 
index, fasting blood glucose, serum insulin levels and in the 
HOMA-IR index. All of the aforementioned pathological 
changes could be mitigated by long-term Met treatment, 
which also improved glucose tolerance. In addition to the 
reported beneficial effects of Met on the metabolism, interest 
has also been garnered in the effects of Met on cardiovascular 
diseases (13,24,25), cancer (26) and aging (27). However, the 
underlying mechanism of Met action remain elusive. Although 
Met-induced activation of the energy-sensor AMPK has been 
well documented (28), AMPK-independent mechanisms have 
also been reported, including suppression of TGF-β1 expres-
sion (29), inhibition of reactive oxygen species generation by 
blocking the NADPH oxidase pathway (30) and the activation 
of endothelial nitric oxide synthase (31). Pre-treatment with 
Met has been previously demonstrated to activate the Nrf2 
antioxidant signaling pathways in the hippocampus of rats 
with global cerebral ischemia (32). In the present study, the 
HW and the LHW indices were found to be significantly 
increased in mice from the HFD group compared with the 
control group. Masson's staining of the myocardial tissue 
confirmed the existence of myocardial fibrosis in mice from 
the HFD group. In addition, gene expression levels of TGF-β1, 
Col I and Col III in the myocardial tissue, markers of cardiac 
remodeling, were revealed to be markedly elevated in mice 
from the HFD group. All of these aforementioned observations 

support the notion that cardiac remodeling occurred in mice 
from the HFD group in the present study. Long-term treat-
ment with Met significantly ameliorated cardiac remodeling, 
which was demonstrated by reduced HW index, LHW index 
and myocardial fibrosis. Amelioration of cardiac remodeling 
was also indicated by the observed reductions in TGF-β1, 
Col I and Col III gene expression in myocardial tissues in 
HFD mice treated with Met.

The Nrf2/Keap1 pathway is physiologically important 
for defense against oxidative stress (33). The present study 
suggested that Nrf2 in the heart may serve as a compensa-
tory mechanism in response to oxidative stress in mice fed 
with HFD. Met reduced Keap1 protein levels, resulting in 
the activation of Nrf2 and subsequent translocation into the 
nucleus, leading to the upregulation of downstream antioxida-
tive enzymes such as HO-1. Together, these data suggested that 
Met has protective effects against obesity-associated cardiac 
remodeling, which may potentially be due to its effect on 
alleviating metabolic disorders and enhancing endogenous 
antioxidant function. However, further studies are required 
to elucidate the direct targets of Met in the regulation of 
Nrf2/Keap1 signaling.

In summary, metabolic disorders and adverse cardiac 
remodeling were found to be evident in mice with 
HFD-induced obesity in the present study. Met exerted potent 
protective effects against the development of metabolic disor-
ders and cardiac remodeling, which were associated with its 
effect on enhancing endogenous antioxidant activities by acti-
vating the Nrf2/Keap1 signaling pathway. The present study 
suggested that Met serve as an effective treatment option for 
obesity-associated cardiac remodeling, where the Nrf2/Keap1 
pathway may be another potential therapeutic target.

Figure 4. Met promotes Nrf2 nuclear translocation in the myocardial tissues. Representative images of immunofluorescent staining of Nrf2 in myocardial 
tissues isolated from mice from the three experimental groups. Magnification, x400. HFD, high fat diet; Met, metformin; Nrf2, nuclear factor (erythroid‑derived 
2)-like 2.
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