

OPEN

The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility

A meta-analysis

Yajie Yu, MD^a, Xiao Li, MD^{a,c}, Chao Liang, MD^a, Jingyuan Tang, MD^a, Zhiqiang Qin, MD^a, Chengming Wang, MD^a, Weizhang Xu, MD^b, Yibo Hua, MD^a, Pengfei Shao, PhD^{a,} , Ting Xu, MD^{c,*}

Abstract

Background: Previous studies have investigated the relationship between GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and bladder cancer (BCa) susceptibility, respectively, but the results remain inconsistent. So, we conducted this meta-analysis including 79 case–control studies to explore such relationships.

Methods: We searched PubMed, EMBASE, Cochrane library, Web of Science, and CNKI for relevant available studies. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were implemented to evaluate the intensity of associations. Publication bias was estimated using Begg funnel plots and Egger regression test. To assess the stability of the results, we used sensitivity analysis with the method of calculating the results again by omitting 1 single study each time. Between-study heterogeneity was tested using the *l*² statistic.

Results: No significant association between GSTA1 polymorphism and BCa susceptibility (OR=1.05, 95% Cl 0.83–1.33) was noted. Besides, meaningful association between individuals who carried the GSTM1 null genotype and increased BCa risk was detected (OR=1.39, 95% Cl 1.28–1.51). When stratified by ethnicity, significant difference was found in both Caucasian (OR=1.39, 95% Cl 1.23–1.58) and Asian populations (OR=1.45, 95% Cl 1.31–1.61). Moreover, in the subgroup analysis by source of controls (SOC), the results were significant in both hospital-based control groups (OR=1.49, 95% Cl 1.35–1.64) and population-based control groups (OR=1.21, 95% Cl=1.07–1.37). Additionally, the analysis revealed no significant association between GSTP1 polymorphism and BCa risk (OR=1.07, 95% Cl 0.96–1.20). What is more, significant associations between GSTT1 polymorphism and BCa susceptibility were discovered (OR=1.11, 95% Cl 1.00–1.22). In the subgroup analysis by ethnicity, significant associations between GSTT1 null genotype and BCa risk were observed only in Caucasians (OR=1.25, 95% Cl 1.09–1.44). Furthermore, when stratified by SOC, no obvious relationship was found between the GSTT1 null genotype polymorphism with hospital-based population (OR=1.11, 95% Cl 0.97–1.28) or population-based population (OR=1.10, 95% Cl 0.96–1.27).

Conclusion: This study suggested that GSTM1 null genotype and GSTT1 null genotype might be related to higher BCa risk, respectively. However, no associations were observed between GSTA1 or GSTP1 polymorphisms and BCa susceptibility.

Abbreviations: BCa = bladder cancer, Cl = confidence interval, GST = glutathione S-transferase, HB = hospital-based, OR = odds ratio, PB = population-based, SOC = source of controls.

Keywords: bladder cancer, glutathione S-transferases, meta-analysis, single gene polymorphism, susceptibility

Editor: Shihan He.

YY, XL, and CL contributed equally to this work.

The authors have no funding and conflicts of interest to disclose.

^a Department of Urology, The First Affiliated Hospital of Nanjing Medical University, ^b Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, ^c Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China.

^{*} Correspondence: Pengfei Shao, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China (e-mail: spf_urology@sina.com); Ting Xu, Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China (e-mail: xuting_urology@sina.com).

Copyright @ 2016 the Author(s). Published by Wolters Kluwer Health, Inc. All rights reserved.

This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Medicine (2016) 95:37(e4900)

Received: 28 April 2016 / Received in final form: 3 August 2016 / Accepted: 25 August 2016

http://dx.doi.org/10.1097/MD.000000000004900

1. Introduction

Bladder cancer (BCa), with an increasing incidence and mortality nowadays, has become the 9th most common cancer and the 14th leading cause of death due to cancer worldwide.^[1] An estimated 429,800 new cases of BCa and 165,100 deaths took place in 2012 worldwide.^[2] As a complicated and multifactorial procedure, the initiation and development of BCa are still not completely understood.^[3] However, the risk factors could be mainly classified into 3 subgroups: long-term inflammation stimulation, specific chemical exposure, and genetic factors.^[4] Interestingly, some people never get BCa even though exposed to specific chemicals. In contrast, many BCa patients do not have those known risk factors, suggesting that genetic factors might play a significant role in bladder carcinogenesis.^[5,6]

Glutathione S-transferases (GSTs), existing in almost all living organisms, are members of a polygene family of isoenzymes.^[7] GSTs are a family of multifunctional phase II enzymes that catalyze the combination of many exogenous and endogenous electrophilic compounds with glutathione, which are characterized with assisting the detoxification of various therapeutic drugs,

carcinogens, products of oxidative stress, toxins, and chemical mutants.^[8,9] In humans, GSTs were encoded by 8 different gene families. Among them, 4 are mainly expressed in tissues: GSTA, GSTM, GSTP, and GSTT. Accordingly, the GSTA1, GSTM1, GSTP1, and GSTT1 genes are located at chromosome 6p12.1, 1p13.3, 11q13, and 22q11.23, respectively.

Over the last 2 decades, plentiful studies have been carried out to investigate the association between GSTs and the risk of BCa, but these studies have reported conflicting results. A single study might fail to demonstrate the complicated genetic relationship due to small sample size, but meta-analysis could increase the statistical power through detecting overall effects. Previously, meta-analysis has been performed to find out the relationship between GSTM1, GSTP1, GSTT1, and BCa, respectively.^[10–14] Although the results remain inconclusive or even contradictory. In addition, the relationship between GSTA1 and BCa susceptibility has not been qualitatively studied before. Some related case–control studies have been released after the previous meta-analyses, which may generate influence on the conclusions. Therefore, we conducted such meta-analysis to assess these relationships by including all eligible articles.

2. Materials and methods

2.1. Search strategy

We did a systematic search of PubMed, EMBASE, Cochrane library, Web of Science, and CNKI up to December 2015 by using the combination of the following key words: "glutathione S-transferase A1" or "GSTA1," "glutathione Stransferase M1" or "GSTM1," "glutathione S-transferase P1" or "GSTP1," "glutathione S-transferase T1" or "GSTT1," "bladder" or "urothelial," "cancer" or "carcinoma" or "neoplasm," and "polymorphism" or "polymorphisms" without any restriction on language. The reference lists of the selected papers were searched by hand for potentially eligible articles. We only included the study with the most recent and/or the largest sample size when several studies had partially overlapped or similar data.

2.2. Selection criteria

For this meta-analysis, the inclusion criteria were as follows: case-control studies with the original date for the evaluated associations between GSTA1, GSTM1, GSTP1 and/or GSTT1 polymorphisms, and BCa risk; the diagnosis of the patients with BCa was confirmed pathologically, and the controls were confirmed free of any cancer; and sufficient published data about the size of the sample, odds ratio (OR), and their 95% confidence interval (CI). The exclusion criteria were duplicates of previous publication; no control subjects; and patients without confirmation of BCa or mixed with other diseases.

If study populations were the same or duplicate data were published, only the study with the largest number of sample size was included. We did not need to obtain ethical approval or informed consent because our data were extracted from previous studies. Nevertheless, the included studies in our review did get patient consent, and each study was approved by an ethics committee.

2.3. Data extraction

Data were independently extracted from all eligible publications by 5 investigators (YJY, XL, CL, JYT, and ZQQ), and quality assessment was conducted by 3 authors (YJY, XL, and CL). When meeting conflicting opinions about inclusion, disagreements were resolved by discussion among team members. Relevant data were extracted from each eligible study and carefully recorded, including involved genes, 1st author name, year of publication, the ethnicity of the study population, subject source, total number of cases and controls, and different number of genotypes in cases and controls. If important unpublished information were needed, we also e-mailed the original authors. According to source of controls (SOC), studies were classified into hospital-based (HB) and population-based (PB) groups. Ethnic groups were principally defined as Caucasian, Asian, African, or Mixed.

2.4. Statistical analysis

ORs with 95% CIs were implemented. The heterogeneity was estimated using the χ^2 -based Q statistic, and heterogeneity was considered statistically significant when *P* heterogeneity ≤ 0.1 or $I^2 > 50\%$.^[15] If the presence of heterogeneity was found, the random-effects model would be utilized. Otherwise, fixed-effects model would be performed. Then, subgroup analysis was further carried out by ethnicity and SOC properly.

To assess the stability of the results, we used sensitivity analysis with the method of calculating the results again by omitting 1 single study each time.^[16] To check the publication bias between the studies, Egger linear regression test and Begg funnel plots were executed.^[17] Hardy–Weinberg equilibrium was assessed by the goodness-of-fit Chi-square test, and P < 0.05 was considered as an obviously selective bias.^[18] All statistical analyses tests were performed with Stata software (version 12.0; Stata Corp LP, College Station, TX). All *P* values below 0.05 were considered statistically significant.

3. Results

3.1. Literature search and studies characteristics

Figure 1 shows the flowchart of literature search and selection process. Finally, a total of 79 case–control studies were included according to the inclusion criteria.^[19–97] Characteristics of individual study qualified for the current meta-analysis (GSTA1, GSTM1, GSTP1, and GSTT1, respectively) are presented in Tables 1–4 individually. This meta-analysis results of association between GSTs polymorphism and BCa risk are shown in Table 5.

3.2. GSTA1

Four studies consisting of 585 cases and 702 controls were adopted in order to evaluate the relationship between GSTA1 polymorphism and BCa risk. As shown in Fig. 2, the results indicated no significant association between GSTA1 polymorphism and BCa susceptibility (OR = 1.05, 95% CI 0.83-1.33). Subgroup analysis was not performed owing to the limited studies.

3.3. GSTM1

As shown in Table 5, 48 studies including 11,473 cases and 13,795 controls were analyzed. Overall, significant associations between individuals who carried GSTM1 null genotype and increased BCa risk were observed (OR = 1.39,95% CI 1.28-1.51) (Fig. 3). When stratified by ethnicity, significant difference was detected in Caucasian (OR = 1.39,95% CI 1.23-1.58) and Asian populations (OR = 1.45,95% CI 1.31-1.61) instead of African (OR = 1.23,95% CI 0.95-1.59) or Mixed populations (OR =

1.16, 95% CI 0.93–1.45). In addition, in the subgroup analysis by SOC, the results were significant both in HB populations (OR = 1.49, 95% CI 1.35–1.64) and PB populations (OR = 1.21, 95% CI 1.07–1.37).

3.4. GSTP1

Twenty-three studies involving 5080 cases and 6187 controls were included in this study. Because a few studies provided precise data of genotypes, only dominant model could be carried out with all studies. Generally, the analysis revealed no significant association between GSTP1 Ile105Val polymorphism and BCa risk (OR=1.07, 95% CI 0.96–1.20) (Fig. 4). No significant relationship was observed between GSTP1 polymorphism and BCa risk in patients when stratified by ethnicity. Meanwhile, there seems no relationship between GSTP1 polymorphism and the susceptibility of BCa when stratified by SOC (Table 5).

3.5. GSTT1

Fifty seven studies including 12,369 cases and 15,333 controls were analyzed. The results indicated significant association

between GSTT1 polymorphism and BCa susceptibility (OR = 1.11, 95% CI 1.00–1.22) (Fig. 5). In the subgroup analysis by ethnicity, significant associations between GSTT1 null genotype and BCa risk were noted only in Caucasians (OR = 1.25, 95% CI 1.09–1.44). Additionally, when stratified by SOC, no obvious relationship was detected between the GSTT1 null genotype polymorphism with HB (OR = 1.11, 95% CI 0.97–1.28) or PB (OR = 1.10, 95% CI 0.96–1.27), respectively (Table 5).

3.6. Sensitivity analysis

Sensitivity analysis was utilized to identify the influence of each study on the pooled OR by consecutively omitting 1 study each time for all subjects and subgroups. The sensitivity analysis for GSTA1, GSTM1, GSTP1, and GSTT1 polymorphism showed that no individual study affected the pooled OR significantly, which indicated that our results were reliable.

3.7. Publication bias

The publication bias of studies GSTA1, GSTM1, GSTP1, and GSTT1 were assessed, respectively, using Begg and Egger funnel

Table 1

Characteristics of individual studies included in the meta-analysis.

•														
GSTA1	rs3957357							C	ase (n)			Cor	ntrol (n)	
Year	Surname	Ethnicity	SOC	Genotyping	Case	Control	AA	AB	BB	AB + BB	AA	AB	BB	AB + BB
2014	Reszka	Caucasian	PB	RT-PCR	243	365	92	118	33	151	137	165	63	228
2013	Matic	Caucasian	HB	PCR-RFLP	201	122	67	112	22	134	49	57	16	73
2013	Savic-Radojevic	Caucasian	HB	PCR-RFLP	80	60	27	-	-	53	26	-	-	34
2005	Broberg	Caucasian	PB	TaqMan	61	155	24	28	9	37	45	75	35	110

HB = hospital-based (controls), PB = population-based (controls), PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.

Table 2

Characteristics of individual studies included in the meta-analysis.

Year Surname Ethnicity SOC Genotyping Case Control Present Null Present 2015 Caylan Caucasian HB PCR-RFLP 65 7.0 43 22 39 2014 Meszka Caucasian PB RT-PCR 244 385 95 149 200 2013 Matic Caucasian HB Multiplex PCR 1050 1404 351 699 570 2013 Berber Caucasian HB Multiplex PCR 110 220 45 65 117 2013 Safarinejad Asian HB Multiplex PCR 110 220 45 65 239 2013 Safarinejad Asian HB Multiplex PCR 196 332 116 50 239 2011 Ovalamikov Caucasian PB PRR 176 97 78 98 46 2011 Roeritian PB <th>(n)</th>	(n)
Coylan Caucasian HB PCR-RFLP 65 70 43 22 39 2014 Reszka Caucasian PB R1-PCR 244 355 95 149 200 2013 Metic Caucasian HB PCR 201 122 90 111 61 2013 Berber Caucasian HB Multiplex PCR 110 220 45 65 117 2013 Savic-Radojevic Caucasian HB Multiplex PCR 100 220 45 65 117 2013 Saviannikov Caucasian HB Multiplex PCR 196 235 94 102 112 2011 Oxiannikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 Rouissi African PB TaqMan 618 621 274 344 289 2009 Alato Caucasian HB <td< th=""><th>Null</th></td<>	Null
2014 Resola Caucasian PB RT-PCR 244 365 95 149 200 2014 Wang Asian HB Multiplex PCR 1050 1404 351 699 570 2013 Metic Caucasian HB Multiplex PCR 110 122 90 1111 61 2013 Sadirnejad Asian HB Multiplex PCR 110 220 45 65 117 2013 Sadirnejad Asian HB Multiplex PCR 106 322 16 00 239 2012 Ovisannikov Caucasian HB Dylex-PCR 196 235 94 102 112 2011 Ocisannikov Caucasian HB Dylex-PCR 135 125 62 63 69 2011 Goerlitz African PB Multiplex PCR 135 125 62 63 69 2009 Grando Mikod	31
2014 Wang Asian HB Multiplex PCR 1050 1404 351 699 570 2013 Matic Caucasian HB PCR 201 141 114 60 54 65 117 2013 Skang Asian HB Multiplex PCR 110 220 45 65 117 2013 Svare-Radiopice Caucasian HB Multiplex PCR 80 60 332 116 50 239 2012 Ovisiannikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 OztTURK Caucasian HB Multiplex PCR 125 125 62 63 69 2011 Goernitz African PB Multiplex PCR 125 125 62 63 69 2009 Alayi Caucasian HB Multiplex PCR 100 100 60 40 68 498	165
2013 Matic Caucasian HB PCR 201 122 90 111 61 2013 Karg Asian HB Multiplex PCR 114 114 60 54 65 117 2013 Savic-Fadojevic Caucasian HB Multiplex PCR 80 60 35 45 282 2013 Satarinejad Asian HB PCR 166 332 116 50 239 2012 Ovsiannikov Caucasian HB PDR 176 27 78 98 466 2011 Goerfitz African PB TagMan 618 621 274 344 289 2009 Grando Miled PB Multiplex PCR 125 125 62 63 69 2009 Grando Miled PB Multiplex PCR 100 100 60 40 67 2009 Song Asian HB	834
2013 Berber Caucasian HB Multiplex PCR 114 114 114 60 54 63 2013 Sauic-Radojevic Caucasian HB Multiplex PCR 80 60 35 45 28 2013 Statrinejad Asian HB PCR 166 332 116 50 239 2012 Ovisianrikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 OzTURK Caucasian HB Duplex-PCR 125 125 62 63 69 2011 Goeritiz African PB TagMan 618 621 274 344 289 2009 Altayli Caucasian HB Multiplex PCR 125 125 62 63 69 2009 Asian HB Multiplex PCR 135 128 77 58 633 2009 Song Asian HB<	61
2013 Kang Asian HB Multiplex PCR 110 220 45 65 117 2013 Savic-Radolpvic Caucasian HB Multiplex PCR 80 60 35 45 28 2013 Saviannikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 Oxisiannikov Caucasian PB PCR 176 97 78 98 46 2011 Rouissi African PB Multiplex PCR 125 125 62 63 69 2011 Goerliz African PB Multiplex PCR 100 100 60 40 67 2009 Grando Miked PB Multiplex PCR 125 125 62 63 69 2009 Song Asian HB Multiplex PCR 123 121 10 13 53 2008 Covolo Caucasian H	51
2013 Savic-Radojevic Caucasian HB Multiplex PCR 80 60 35 45 28 2013 Safarniejad Asian HB PCR 166 332 116 50 239 2012 Ovsiannikov Caucasian PB PCR 176 97 78 98 466 2011 Goerlitz African PB Multiplex PCR 125 125 62 63 69 2009 Grando Mixed PB Multiplex PCR 135 128 77 58 63 2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2009 Zupa Caucasian HB Multiplex PCR 208 212 77 131 111 2008 Abdo Caucasian HB	103
2013 Safarnejad Asian HB PCR 166 332 116 50 239 2012 Ovsiannikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 OctTGMK Caucasian PB PCR 176 97 78 98 46 2011 Goeritz African PB Multiplex PCR 125 125 62 63 69 2009 African PB Multiplex PCR 100 100 60 40 67 2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Song Asian HB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian HB PCR-RLP 197 211 69 128 1000 2008 Covolo Caucasian HB PCR-RLP 197 116 109 184 88 2007 More Caucasian<	32
2012 Ovstannikov Caucasian HB Duplex-PCR 196 235 94 102 112 2011 OZTÜRK Caucasian PB PCR 176 97 78 98 46 2011 Rouissi African PB TaqMan 618 621 274 344 289 2009 Altayli Caucasian HB Multiplex PCR 135 128 77 58 63 2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Gong Asian HB Multiplex PCR 203 121 10 13 53 2008 Song Asian HB PCR-RLP 197 211 69 128 100 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Golka Caucasian HB PCR	93
Display Display PB PCR 176 97 78 98 46 2011 Rouissi African PB Multiplex PCR 125 125 62 63 69 2009 Altayli Caucasian PB TagMan 618 621 274 344 289 2009 Grando Mixed PB Multiplex PCR 135 128 77 58 63 2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Song Asian PB Multiplex PCR 208 212 77 131 104 2008 Abd Caucasian HB PCR 203 176 109 184 88 2008 Golka Caucasian HB PCR 107 1022 394 683 498 2007 Cangla Asian HB Multiplex PCR 51	123
2011 Rouissi African PB Multiplex PCR 125 125 62 63 69 2011 Goerlitz African PB TaqMan 618 621 274 344 289 2009 Attayii Caucasian HB Multiplex PCR 135 128 77 58 63 69 2009 Grando Mixed PB Multiplex PCR 125 125 62 63 69 2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2009 Song Asian HB PCR 20 20 9 11 11 2008 Covolo Caucasian HB PCR 293 176 109 184 88 2008 Golka Caucasian HB PCR 1077 1022 394 683 498 2007 Cengiz Caucasian HB TaqMan 679 735 251 428 368 2007 Z	51
2011 Geerlitz African PB TaqMan 618 621 274 344 289 2009 Altayli Caucasian HB Multiplex PCR 135 128 77 58 63 2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Rouissi African PB Multiplex PCR 125 125 62 63 69 2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2008 Abd Caucasian HB PCR-RELP 197 211 69 128 100 2008 Golka Caucasian HB PCR 202 207 117 85 191 2007 Corolo Caucasian HB PCR 107 1022 394 683 498 2007 Cengiz Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao <td>56</td>	56
2009 Altayli Caucasian HB Multiplex PCR 135 128 77 58 63 2009 Grando Miked PB Multiplex PCR 100 100 60 40 67 2009 Rouissi African PB Multiplex PCR 125 125 62 63 69 2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2009 Zupa Caucasian HB PCR 20 20 9 11 11 2008 Abd Caucasian HB PCR 20 20 9 128 100 2008 Golka Caucasian HB PCR 203 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Cengiz Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Zhao Ca	332
2009 Grando Mixed PB Multiplex PCR 100 100 60 40 67 2009 Rouissi African PB Multiplex PCR 125 125 62 63 69 2009 Song Asian PB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian PB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian HB PCR 20 20 9 11 11 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 84 191 2007 Moore Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Zhao Caucasian HB TaqMan	65
2009 Rouissi African PB Multiplex PCR 125 125 62 63 69 2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2009 Zupa Caucasian HB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian HB PCR 20 20 9 111 11 2008 Golka Caucasian HB PCR 203 176 109 184 88 2008 Shao Asian HB PCR 207 272 117 85 191 2007 Moore Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Cengiz Caucasian HB TaqMan 679 735 251 428 368 2005 Saad Caucasian HB TaqMan 1	33
2009 Song Asian HB Multiplex PCR 208 212 77 131 104 2009 Zupa Caucasian PB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian HB PCR 20 20 9 11 11 2008 Covolo Caucasian HB PCR-RFLP 197 211 69 128 100 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Moore Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR <td< td=""><td>56</td></td<>	56
2009 Zupa Caucasian PB Multiplex PCR 23 121 10 13 53 2008 Abd Caucasian HB PCR 20 20 9 11 11 2008 Covolo Caucasian HB PCR-RFLP 197 211 69 128 100 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Moore Caucasian HB Multiplex PCR 202 272 117 34 31 2007 Moore Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 672 633 298 324 316 2005 García-Closas Caucasian PB PCR	108
2008 Abd Caucasian HB PCR 20 20 9 11 11 2008 Covolo Caucasian HB PCR-RFLP 197 211 69 128 100 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB PCR 202 272 117 85 191 2007 Moore Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Cengiz Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kim Asian PB	68
2008 Covolo Caucasian HB PCR-RFLP 197 211 69 128 100 2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Moore Caucasian HB PCR 1077 1022 394 683 498 2007 Cengiz Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian HB TaqMan 1138 1132 422 716 561 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kim Asian HB Multiplex PCR	9
2008 Golka Caucasian HB PCR 293 176 109 184 88 2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Moore Caucasian HB PCR 1077 1022 394 683 498 2007 Cengiz Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Murta-Nascimento Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 679 735 251 428 368 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian PB PCR 354 542 144 210 233 2005 Karagas Mixed PB PCR 153 153 61 92 80 2005 Srivastava	111
2008 Shao Asian HB Multiplex PCR 202 272 117 85 191 2007 Moore Caucasian HB PCR 1077 1022 394 683 498 2007 Cengiz Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Murta-Nascimento Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 679 735 251 428 368 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian PB PCR 354 542 144 210 233 2005 Karagas Mixed PB PCR 353 153 61 92 80 2005 Kim Asian HB Multiplex PCR 100 76 63 37 52 2005 Srivastava	88
2007 Moore Caucasian HB PCR 1077 1022 394 683 498 2007 Cengiz Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Murta-Nascimento Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian PB PCR 354 542 144 210 233 2005 Karagas Mixed PB PCR 579 1063 267 312 466 2005 Kim Asian PB Multiplex PCR 153 153 61 92 80 2005 Srivastava Asian PB Multiple	81
2007 Cengiz Caucasian HB Multiplex PCR 51 53 17 34 31 2007 Murta-Nascimento Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian PB PCR 354 542 144 210 233 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian PB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung	524
2007 Murta-Nascimento Caucasian HB TaqMan 679 735 251 428 368 2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian HB TaqMan 1138 1132 422 716 561 2005 García-Closas Caucasian HB TaqMan 1138 1132 422 716 561 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2004 Hung Caucasian HB PC	22
2007 Zhao Caucasian HB TaqMan 622 633 298 324 316 2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian HB TaqMan 1138 1132 422 716 561 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian PB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR	367
2005 Saad Caucasian PB PCR 72 81 27 45 41 2005 García-Closas Caucasian HB TaqMan 1138 1132 422 716 561 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian HB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 1	317
2005 García-Closas Caucasian HB TaqMan 1138 1132 422 716 561 2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian HB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB PCR <	40
2005 Karagas Mixed PB PCR 354 542 144 210 233 2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian HB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 89 <td>571</td>	571
2005 Kellen Caucasian PB PCR 579 1063 267 312 466 2005 Kim Asian HB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR <	309
2005 Kim Asian HB Multiplex PCR 153 153 61 92 80 2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR <td< td=""><td>597</td></td<>	597
2005 Sobti Asian PB Multiplex PCR 100 76 63 37 52 2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	73
2005 Srivastava Asian PB Multiplex PCR 106 370 63 43 230 2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	24
2004 Hung Caucasian HB PCR 201 214 69 132 102 2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	140
2004 Moore Mixed PB PCR 106 109 52 54 60 2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	112
2004 Srivastava Asian HB Multiplex PCR 106 182 64 42 128 2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	49
2003 Jeong Asian HB PCR 126 204 51 75 105 2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	54
2002 Giannakopoulos Caucasian HB PCR 89 147 33 56 91 2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	99
2002 Lee Asian HB Multiplex PCR 232 165 83 149 79	56
	86
2001 Aktas Caucasian HB ELISA 103 202 47 56 132	70
2001 Törüner Caucasian PB PCR 121 121 46 75 66	55
2000 Kim Asian HB Multiplex PCR 112 220 34 78 97	123
2000 Schnakenberg Caucasian PB Multiplex PCR 157 223 64 93 94	129
2000 Steinhoff Caucasian HB Triplex PCR 135 127 55 80 70	57
1999 Salagovic Caucasian PB PCR 76 248 36 40 125	123
1998 Abdel-Rahman African PB Multiplex PCR 37 34 11 26 19	15
1996 Brockmöller Caucasian HB PCR 374 363 156 218 171	192
1996 Anwar Caucasian HB PCR-RFLP 22 21 3 19 11	10
1993 Zhong Caucasian PB PCR 97 225 58 39 131	94

HB=hospital-based (controls), PB=population-based (controls), PCR-RFLP=polymerase chain reaction-restriction fragment length polymorphism, RT-PCR=reverse transcription-polymerase chain reaction, SOC=source of controls.

plot. The overall outcomes revealed that our results were statistically dependable.

4. Discussion

BCa is one of the most common cancers of the urinary tract. However, the exact mechanisms of bladder carcinogenesis remain unclear. There is a growing realization that the development of BCa is caused by a complex interaction of both genetic and environmental factors.^[98] Although genetic factors are considered to be a crucial part of the pathogenic process of BCa, especially the polymorphisms in metabolic pathways.^[99] As one of the most important parts of phase II super family of metabolism enzymes, GSTs are composed of 7 classes (α , μ , ω , π , σ , θ , ξ).^[100] Among them, GSTA1, GSTM1, GSTP1, and GSTT1 are considered to be the most important. Almost all members of the GST family show genetic polymorphism, which leads to a complete absence or lowering of enzyme activity.

GSTA1 has 3 single nucleotide polymorphisms (SNPs): -567TOG, -69COT, and -52GOA.^[101] Differential expression with lower transcriptional activation of variant GSTA1*B (-567G, -69T, and -52A) than common GSTA1*A allele

Table 3

Characteristics of individual studies included in the meta-analysis.

GSTP1	rs1695						Case (n)					Control (n)				
Year	Surname	Ethnicity	SOC	Genotyping	Case	Control	AA	AG	GG	AG+GG	AA	AG	GG	AG + GG		
2014	Reszka	Caucasian	PB	RT-PCR	244	365	116	109	19	128	160	166	39	205		
2013	Matic	Caucasian	HB	PCR-RFLP	201	122	84	95	22	117	49	52	21	73		
2013	Safarinejad	Asian	HB	PCR-RFLP	166	332	54	88	24	112	172	152	8	160		
2013	Pandith	Asian	HB	PCR-RFLP	180	210	129	45	6	51	159	48	3	51		
2012	Lesseur	Caucasian	PB	SNP Panel	658	928	294	289	75	364	411	414	103	517		
2011	Zhang	Asian	HB	PCR-RFLP	200	200	83	72	45	117	92	81	27	108		
2009^{*}	Grando	Caucasian	PB	PCR-RFLP	100	100	73	_	_	27	67	_	_	33		
2009	Fontana	Caucasian	HB	TaqMan	51	45	20	27	4	31	28	13	4	17		
2009	Altayli	Caucasian	HB	PCR-RFLP	135	128	75	46	14	60	62	58	8	66		
2008	Yuan	Caucasian	PB	PCR-RFLP	657	684	301	274	82	356	284	327	73	400		
2008	Kopps	Caucasian	HB	PCR-RFLP	143	196	66	56	21	77	82	82	32	114		
2006	Xing	Asian	HB	PCR-RFLP	108	112	59	42	7	49	69	39	4	43		
2005	Srivastava	Caucasian	PB	PCR-RFLP	106	370	33	58	15	73	191	166	13	179		
2005	Saad	Caucasian	PB	PCR-RFLP	72	82	40	19	13	32	44	32	6	38		
2005	García-Closas	Caucasian	HB	TaqMan	1141	1138	486	525	130	655	488	531	119	650		
2005	Cao	Caucasian	HB	PCR-RFLP	145	170	77	66	2	68	93	66	11	77		
2005	Broberg	Caucasian	PB	TaqMan	61	155	24	27	10	37	71	69	15	84		
2004	Hung	Caucasian	HB	PCR-RFLP	201	214	103	77	21	98	112	78	24	102		
2002	Ма	Asian	PB	PCR-RFLP	61	179	33	27	1	28	110	59	10	69		
2001	Törüner	Caucasian	HB	PCR-RFLP	121	121	67	42	12	54	83	33	5	38		
2000	Steinhoff	Caucasian	HB	PCR-RFLP	135	127	67	59	9	68	70	46	11	57		
2000 [†]	Peluso	Caucasian	HB	PCR-RFLP	123	54	50	-	-	73	32	-	-	22		
1997	Harries	Caucasian	PB	PCR-RFLP	71	155	25	32	14	46	79	66	10	76		

HB=hospital-based (controls), PB=population-based (controls), PCR-RFLP=polymerase chain reaction-restriction fragment length polymorphism, RT-PCR=reverse transcription-polymerase chain reaction, SOC=source of controls.

* AG+GG genotypes: 27 cases and 33 controls.

⁺AG+GG genotypes: 73 cases and 22 controls.

(-567T, -69C, and -52G) are resulted from these replacements.^[102] GSTM1 plays an important role in preventing the development of cancers. The inherited homozygous absence of the GSTM1 gene results in the deficiency of the enzyme activity.^[103] GSTP1 is an important part of GST families, and the most commonly studied GSTP1 variant is exon 5 Ile105Val, encoding an Ile/Val exchange at codon 105 (Ile105Val; A105G) (rs947894), which has been shown to be linked to lower expression of metabolic activity.^[104] People with the GSTT1 null genotype was reported to have decreased enzyme activity and decreased ability to detoxify the environmental and dietary agents, especially 1,3-butadiene and ethylene oxide, which could induce chromosomal damage and make people more susceptible to cancer.^[105] By catalyzing the detoxification of electrophilic compounds through conjugation with glutathione, these enzymes can prevent cells from damage.^[106] Besides, GSTs are able to regulate the induction of other proteins and enzymes which is important for cellular functions. The polymorphisms affect the enzyme activity, leading to increased genotoxic damage and affect the transportation of steroid hormones, causing the development of cancer eventually.^[107,108] GSTs are essential for maintaining genomic integrity because electrophilic com-pounds could damage the DNA.^[109] Therefore, GSTA1, GSTM1, GSTP1, and GSTT1 may play an important role in the development of BCa.

Recently, there were increasing case–control studies concerned with the associations between GSTs polymorphisms and BCa susceptibility.^[19–97] Nevertheless, the inconsistent results of them might owe to limited sample size, various methodologies, and race and dissimilar source of controls. Although several metaanalyses have explored the relationship between GSTM1, GSTP1, and GSTT1 polymorphisms and BCa susceptibility, respectively,^[10–14] the results remain unclear. Besides, because of relatively small number of studies, no meta-analysis on GSTA1 has been performed before. What is more, additional studies have been published since the last meta-analysis. So, all these might have generated great influence to the previous conclusions. Thus, we did this meta-analysis.

For the first time, we performed meta-analysis on the relationship between GSTA1 polymorphism and BCa susceptibility. We included 4 case–control studies in this meta-analysis, and the results suggested that there was no association. According to the published papers, the conclusion on the relationship between GSTA1 polymorphism and BCa susceptibility is inconsistent. The exact mechanism of the influence of GSTA1 polymorphism on BCa is still unclear. However, in association with smoking, low activity GSTA1 seems to increase individual susceptibility to BCa.^[20] The limited amount of involved studies may become a major factor which could influence the evaluation of the real association between GSTA1 polymorphism and BCa risk.

The analysis of the present studies indicated that the null genotype of GSTM1 polymorphism significantly increases BCa susceptibility. Jiang et al^[10] performed a meta-analysis indicating the similar results with ours in 2011, which included 33 studies. Nevertheless, 48 studies were involved in our meta-analysis, which could provide more comprehensive and reliable results.

Meanwhile, similar to the outcome of the meta-analysis conducted by Gong et al in 2012,^[14] significant associations between GSTT1 polymorphism and BCa susceptibility were discovered. However, we included 7 more studies, which could be more credible.

Table 4

Characteristics of individual studies included in the meta-analysis.

GSTT1							Case	(n)	Contro	l (n)
Year	Surname	Ethnicity	SOC	Genotyping	Case	Control	Present	Null	Present	Null
2015	Ceylan	Caucasian	HB	PCR-RFLP	65	70	46	19	61	9
2014	Reszka	Caucasian	PB	RT-PCR	244	365	212	30	288	77
2013	Matic	Caucasian	HB	PCR	201	122	145	56	88	34
2013	Berber	Caucasian	HB	Multiplex PCB	114	114	83	31	98	16
2013	Kang	Δsian	HR	Multiplex PCB	110	220	46	6/	92	128
2013	Safarinaiad	Acian			166	220	121	25	262	60
2013	Janan	Asian		FON	660	002	131	100	203	142
2012	Lesseur	Caucasian	HB	- Develop DOD	100	923	000	106	780	143
2012	Uvsiannikov	Caucasian	HB		196	235	163	33	188	47
2011	Goerlitz	Caucasian	PB	LaqMan	617	620	470	14/	464	156
2011	Henríquez-Hernández	Caucasian	HB	Multiplex PCR	90	81	30	60	41	40
2011	Moore	Caucasian	PB	Melt curve/copy number assays	1004	1179	794	210	942	237
2011	Salinas-Sánchez	Caucasian	HB	Multiplex PCR	190	163	148	42	138	25
2011	Rouissi	African	PB	Multiplex PCR	125	125	95	30	87	38
2010	Cantor	Caucasian	HB	TagMan	678	710	542	136	550	160
2009	Altayli	Caucasian	HB	Multiplex PCR	135	128	104	31	119	9
2009	Song	Asian	HB	Multiplex PCB	208	212	98	110	107	105
2008	Yuan	Caucasian	PR	Multiplex PCB	658	680	518	140	556	124
2000	Covolo	Caucasian	PR		107	211	155	190	178	33
2000	COVOID	Acian			100	110	100	71	F 4	50
2000	SUILY	Asian		Multiplex PCR	100	100	37	/ 1	04	00
2008	Grando	IVIIxed	PB	Multiplex PCR	100	100	49	51	63	37
2007	Cengiz	Caucasian	HB	Multiplex PCR	51	53	33	18	42	11
2007	Zhao	Mixed	PB	laqMan	623	634	520	103	519	115
2006	Kogevinas	Caucasian	HB		99	91	75	24	74	17
2006	Shao	Asian	PB	Multiplex PCR	405	389	201	204	194	195
2006	Ouerhani	African	PB	Multiplex PCR	62	79	36	26	44	35
2006	McGrath	Mixed	PB	PCR	191	924	156	35	776	148
2005	Sobti	Caucasian	PB	Multiplex PCR	100	76	70	30	65	11
2005	Srivastava	Caucasian	PB	Multiplex PCR	106	370	78	28	291	79
2005	Saad	Caucasian	PB	PCR	72	81	46	26	67	14
2005	Broberg	Caucasian	PB	PCB	61	154	54	7	132	22
2005	García-Closas	Caucasian	HR	TagMan	11/6	1137	916	230	889	2/18
2005	Golka	Caucasian	HB	PCB	136	163	106	200	125	240
2005	Kim	Acion		Multipley DCP	150	152	00	71	64	00
2005	Killi	Asian	ם ו מח		100	1JJ E 41	201	/ I E 0	450	09
2005	Nalayas	IVIIXEU	FD		304	100	301	33	400	00
2004	ivioore	Caucasian	PB	PCK	100	109	89	17	97	12
2004	Sanyai	Caucasian	PB	DUPIEX PCR	270	122	204	66	110	12
2004	Srivastava	Caucasian	HB	Multiplex PCR	106	182	78	28	153	29
2004	Hung	Caucasian	HB	PCR	201	214	158	43	181	33
2004	Chen	Asian	PB	Multiplex PCR	62	81	30	32	30	51
2003	Jong Jeong	Asian	HB	PCR	126	204	58	68	91	113
2003	Gago-Dominguez	Mixed	PB	Multiplex PCR	196	176	146	50	142	34
2002	Lee	Caucasian	HB	Multiplex PCR	232	165	97	135	80	85
2002	Giannakopoulos	Caucasian	HB	PCR	89	147	84	5	131	16
2002	Ma	Asian	PB	PCR	61	182	32	29	94	88
2002	Kim	Asian	PB	Multinlex PCB	216	449	125	91	221	228
2001	Törüner	Caucasian	HB	PCB	121	121	97	24	100	21
2001	Schnakenherg	Caucasian	PR	Multiplex PCR	157	223	120	28	175	/8
2000	Stoinhoff	Caucasian			125	107	115	20	110	40
2000	Deluee	Caucasian			100	1 <i>21</i>	100	20	10	6
2000	Peluso	Caucasian		PUR-RFLP	122	000	106	14	40	101
2000	KIII	Asian	HB	MUNIPLEX POR	112	220	60	47	119	101
1999	Salagovic	Caucasian	PB	PCR	76	248	55	21	206	42
1999	Lee	Asian	HB	Multiplex PCR	158	131	65	93	65	66
1998	Abdel-Rahman	Caucasian	PB	Multiplex PCR	37	34	20	17	29	5
1998	Salagovic	Caucasian	PB	PCR	67	248	47	20	206	42
1998	Katoh	Asian	PB	Multiplex PCR	112	112	66	46	59	53
1998	Kim	Asian	HB	_	67	67	49	18	38	29
1996	Kempkes	Caucasian	PB	PCR	113	170	93	20	139	31

HB=hospital-based (controls), PB=population-based (controls), PCR-RFLP=polymerase chain reaction-restriction fragment length polymorphism, RT-PCR=reverse transcription-polymerase chain reaction, SOC=source of controls.

			GSTA1			-	GSTM1				GSTP1				GSTT1	
	*z	Sample size	0R (95%CI) [†]	₽	*2	Sample size	0r (95%CI)*	₿ B	*2	Sample size	0r (95%CI)*	ä	*2	Sample size	OR (95%CI)†	بە
al nicity	4	1278	1.05 (0.83–1.33)	0.184	48	25268	1.39 (1.28–1.51)	0	23	11267	1.07 (0.96–1.20)	0.062	57	27702	1.11 (1.00–1.22)	0
Caucasian	I	I	I	I	29	15666	1.39 (1.23–1.58)	0	18	9519	1.05 (0.92-1.19)	0.038	36	18544	1.25 (1.09–1.44)	0
Asian	I	I	I	I	12	6481	1.45 (1.31–1.61)	0.818	ß	1748	1.26 (0.99–1.60)	0.983	14	4928	0.89 (0.78–1.03)	0.226
African	I	I	I	I	4	1810	1.23 (0.95–1.59)	0.257	I	I	1	I	2	391	0.79 (0.52–1.22)	0.610
Mixed	I	I	I	I	က	1311	1.16 (0.93–1.45)	1.765	I	I	I	I	ß	3839	1.13 (0.90–1.42)	0.179
C																
BB	I	I	I	I	18	7862	1.21 (1.07–1.37)	0.092	6	5048	0.99 (0.84–1.17)	0.171	28	15074	1.10 (0.96–1.27)	0.000
EB HB	I	I	I	I	30	17406	1.49 (1.35–1.64)	0.002	14	6219	1.14 (0.98–1.31)	0.129	29	12628	1.11 (0.97–1.28)	0.001
Mixed	I	Ι	I	I	I	I	I	I	I	I	I	I	I	I	I	I
F	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
n = confidence int	erval, G	– ST = glutathione S-tr	- ansferase, HB=hospital-	- based (cont	rols). OR	=	- onulation-based (controls)	PCR-RFLP	= nolvm	erase chain re	and tion-	– aaction-restriction fragment lenot	- sartion-restriction fracment langth nolumond	aortion-restriction framment length nolymorchism RT.		– – – – – – – – – – – – – – – – – – –

Yu et al. Medicine (2016) 95:37

In the aspect of GSTP1, contrary to the previous meta-analysis (Wang et al^[13] and Kellen et al^[111]), this analysis revealed no significant relationship between GSTP1 polymorphism and BCa risk. Wang et al internalized 25 studies, but there were 2 duplicates of previous publication, so we excluded them. Although the result changes, we think it is more believable. And Kellen et al included 16 studies (4273 cases and 5081 controls), whereas we selected 23 studies involving 5080 cases and 6187 controls. Additional studies have been published since the last meta-analysis, which would might change the previous results. So, we think the result of our study is more reliable. More studies are required to validate our results.

Alternatively, subgroup analysis was performed according to ethnicity in GSTM1, GSTP1, or GSTT1 genetic variants. For GSTM1, when stratified by ethnicity, significant difference was detected in both Caucasian and Asian populations instead of African populations and Mixed populations. No significant relationship was observed between GSTP1 polymorphism and BCa risk in patients when stratified by ethnicity. For GSTT1, significant associations were observed only in Caucasians. As a complicated multigenetic disease, cancer has diversity among different ethnic populations, and the existence of the discrepancy might owing to different genetic background.^[110] As a result of ethnic differences, the incidence of gene polymorphisms may vary notably among different phyletic populations. Although the possible reasons of the conflicting results were unknown, there might be several explanations for it. First, among different ethnic groups, various environmental factors and genetic backgrounds might not be exposed sheerly, which might also be affected by unidentified genes. Second, the selection bias and limitation of sample size should also be taken into consideration.

In the present meta-analysis, the cases and controls were from dissimilar sources. The results suggest that there is association between GSTM1 null genotype and BCa susceptibility both in the subgroup analysis of studies with HB and PB controls. Our metaanalysis also revealed there is no relationship between other GSTs polymorphisms and BCa risk in their respective SOC groups. Subgroup analysis was not performed owing to the limited studies for GSTA1. However, more prospective studies should be performed to evaluate if there has indeed an association between the other GSTs polymorphisms and BCa risk exists in the subgroup analysis of SOC.

Despite the certain conclusions generated in this study, there still exist several limitations. First, the sample sizes of GSTM1, GSTP1, and GSTT1 were large enough, nevertheless which caused possible false positive conclusions. Second, the number of some subgroups was relatively small, and it is hard to search for the reliable association with limited statistical power. Third, when it comes to GSTA1 polymorphism, the sample size was too small. Additional studies with higher quality and larger sample size should be included in the future to verify our result. Fourth, BCa results from complex interactions between a variety of genetic and environmental factors, thereby suggesting that BCa susceptibility would not be influenced by any single gene. BCa is a multifactorial disease, so the complex interactions like geneenvironment factors could not be ignored. Last, the total outcomes were based on unadjusted effect estimates without enough data for the adjustment by other covariates, such as smoking status, age, gender, and so on. The influence of confounding factors should be payed more attention. Hence, a more precise meta-analysis could be conducted if detailed data of some individual studies can be accessed.

Random-effects model was used when P value for heterogeneity test <0.1; otherwise, fixed-effects model was used

P value of Q test for heterogeneity

Number of studies.

Figure 2. Forest plots of the association between GSTA1 polymorphism and bladder cancer susceptibility. CI=confidence interval, OR=odds ratio.

	OR (95% CI)	Weig
Ceylan (2015)	0.64 (0.32, 1.29)	1.10
Reszka (2014)	1.90 (1.37, 2.64)	2.74
Wang (2014)	1.36 (1.15, 1.61)	4.02
Matic (2013)	1.23 (0.79, 1.94)	2.00
Berber (2013)	1.11 (0.66, 1.87)	1.67
Kang (2013)	1.64 (1.03, 2.61)	1.94
Savic-Radojevic (2013)	1.13 (0.57, 2.20)	1.17
Safarinejad (2013)	1.11 (0.74, 1.67)	2.23
Ovsiannikov (2012)	0.99 (0.68, 1.44)	2.41
OZTURK (2011)	1.13 (0.69, 1.86)	1.78
Rouissi (2011)	1.25 (0.76, 2.06)	1.78
Goerlitz (2011)	1.09 (0.87, 1.37)	3.56
Altavli (2009)	0.73 (0.45, 1.19)	1.83
Grando (2009)	1.35 (0.76, 2.41)	1.46
Rouissi (2009)	1.25 (0.76, 2.06)	1.78
Song (2009)	1.64 (1.11, 2.42)	2.35
Zupa (2009)	1.01 (0.41, 2.49)	0.73
Abd (2008)	1 49 (0 43 5 19)	0.41
Covolo (2008)	1.67 (1.12, 2.49)	2 29
Golka (2008)	1.69 (1.16, 2.47)	2 41
Shap (2008)	1 71 (1 17 2 51)	2.40
Moore (2007)	1.65 (1.38, 1.96)	3.96
Cengiz (2007)	2.82 (1.27, 6.26)	0.80
Murta Nascimento (2007)	1 71 (1 39 2 11)	3.65
Zhao (2007)	1 08 (0 87 1 35)	3 58
Soud (2005)	1 71 (0 00 3 26)	1.24
	1.77 (0.50, 5.20)	1.24
Garcia-Ciosas (2005)	1 10 (0 84 1 44)	2.10
Kalagas (2005)	0.01 (0.74, 1.44)	3.10
Kim (2005)	1.65 (1.05, 2.60)	1.00
Riff (2005)	1.00 (1.00, 2.00)	1.00
Stivactava (2005)	1.27 (0.00, 2.39)	2.05
Hung (2004)	1.12 (0.12, 1.14)	2.00
Moore (2004)	1.74 (1.17, 2.59)	1.61
Srivetava (2004)	1.56 (0.04, 2.57)	1.01
loopa (2004)	1.56 (1.00, 2.44)	2.04
Gianakongulas (2002)	2 76 (1 60 4 75)	1.69
	2.70 (1.00, 4.75)	1.08
Aktas (2004)	2.25 (1.29, 2.45)	1.24
Topinor (2001)	2.20 (1.30, 3.05)	1.84
Kim (2000)	1.90 (1.17, 3.27)	1./1
Riff (2000)	1.81 (1.12, 2.93)	1.84
Schrakenberg (2000)	1.06 (0.70, 1.60)	2.20
Steinnott (2000)	1.79 (1.09, 2.92)	1.81
Salagovic (1999)	1.13 (0.68, 1.89)	1.70
Abdel-Kanman (1998)	2.99 (1.13, 7.96)	0.63
Brockmoller (1996)	1.24 (0.93, 1.67)	3.03
Anwar (1996)	6.97 (1.57, 30.87)	0.30
Zhong (1993)	0.94 (0.58, 1.52)	1.83
Overall (I-squared = 53.0%, p = 0.000)	1.39 (1.28, 1.51)	100.0
NOTE: Weights are from random effects analysis		

Figure 3. Forest plots of the association between GSTM1 polymorphism and bladder cancer susceptibility. CI=confidence interval, OR=odds ratio.

Study		%
ID	OR (95% CI)	Weight
Reszka (2014)	0.86 (0.62, 1.19)	6.72
Matic (2013)	0.93 (0.59, 1.48)	4.27
Pandith (2013)	1.23 (0.78, 1.94)	4.34
Lesseur (2012)	0.98 (0.81, 1.20)	10.54
Zhang (2011)	- 1.20 (0.81, 1.78)	5.25
Grando (2009)	0.75 (0.41, 1.38)	2.74
Fontana (2009)	• 2.55 (1.12, 5.82)	1.61
Altayli (2009)	0.75 (0.46, 1.22)	3.91
Yuan (2008)	0.84 (0.68, 1.04)	9.99
Kopps (2008)	0.84 (0.54, 1.30)	4.61
Xing (2006)	1.33 (0.78, 2.28)	3.34
Saad (2005)	- 0.93 (0.49, 1.75)	2.53
Garcia-Closas (2005)	1.01 (0.86, 1.19)	11.87
Cao (2005)	1.07 (0.68, 1.66)	4.45
Broberg (2005)	1.30 (0.71, 2.38)	2.77
Hung (2004)	1.04 (0.71, 1.54)	5.44
Ma (2002)	1.35 (0.75, 2.43)	2.90
Toruner (2001)	• 1.76 (1.04, 2.98)	3.46
Steinhoff (2000)	1.25 (0.77, 2.03)	3.90
Peluso (2000)	2.12 (1.11, 4.07)	2.43
Harries (1997)	1.91 (1.07, 3.42)	2.95
Overall (I-squared = 34.4%, p = 0.062)	1.07 (0.96, 1.20)	100.00
NOTE: Weights are from random effects analysis		
.172 1	5.82	

Figure 4. Forest plots of the association between GSTP1 polymorphism and bladder cancer susceptibility. CI=confidence interval, OR=odds ratio.

Figure 5. Forest plots of the association between GSTT1 polymorphism and bladder cancer susceptibility. CI=confidence interval, OR=odds ratio.

The results indicated that the GSTM1 null genotype might elevate BCa susceptibility, and the GSTT1 polymorphism might enhance BCa risk. No significant associations were observed between GSTA1 or GSTP1 polymorphism and BCa risk. For the 1st time, we performed this meta-analysis to evaluate the association between GSTA1 polymorphism and BCa risk. However, taking the restriction of sample size into consideration, analysis with larger and more well-designed studies is required to validate our results. In the future, the analysis of different combinations of polymorphisms of the 4 isoforms could be performed if the data is available.

References

- Mahdavifar N, Ghoncheh M, Pakzad R, et al. Epidemiology, incidence and mortality of bladder cancer and their relationship with the development index in the world. Asian Pac J Cancer Prev 2015;17: 381–6.
- [2] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.
- [3] Sanchez-Carbayo M. Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 2012;33: 347–61.
- [4] Kaufman DS, Shipley WU, Feldman AS, et al. Bladder cancer. Lancet 2009;374:239–49.
- [5] Pandith AA, Siddiqi MA. Burden of cancers in the valley of Kashmir: 5 year epidemiological study reveals a different scenario. Tumour Biol 2012;33:1629–37.
- [6] Wu X, Hildebrandt MA, Chang DW. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev 2009;28:269–80.
- [7] Simic T, Savic-Radojevic A, Pljesa-Ercegovac M, et al. Glutathione S-transferases in kidney and urinary bladder tumors. Nat Rev Urol 2009;6:281–9.
- [8] Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997;6:733–43.
- [9] Tang JJ, Wang MW, Jia EZ, et al. The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Mol Biol Rep 2010;37:405–10.
- [10] Jiang Z, Li C, Wang X, et al. Glutathione S-transferase M1 polymorphism and bladder cancer risk: a meta-analysis involving 33 studies. Exp Biol Med 2011;236:723–8.
- [11] Zhang RG, Xu GY, Chen WJ, et al. Genetic polymorphisms of glutathione S-transferase M1 and bladder cancer risk: a meta-analysis of 26 studies. Mol Biol Rep 2011;38:2491–7.
- [12] Wu K, Wang X, Xie Z, et al. Glutathione S-transferase P1 gene polymorphism and bladder cancer susceptibility: an updated analysis. Mol Biol Rep 2013;40:687–95.
- [13] Wang Z, Xue L, Chong T, et al. Quantitative assessment of the association between glutathione S-transferase P1 Ile105Val polymorphism and bladder cancer risk. Tumor Biol 2013;34: 1651–7.
- [14] Gong M, Dong W, An R, et al. Glutathione S-transferase T1 polymorphism contributes to bladder cancer risk: a meta-analysis involving 50 studies. DNA Cell Biol 2012;31:1187–97.
- [15] Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med 2002;21:1539–58.
- [16] Xu Q, Guo W, Shi X, et al. Association between alcohol consumption and the risk of Barrett's esophagus: a meta-analysis of observational studies. Medicine (Baltimore) 2015;94:e1244.
- [17] Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- [18] Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992;48: 361–72.
- [19] Reszka E, Jablonowski Z, Wieczorek E, et al. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol 2014;140:1723–31.
- [20] Matic M, Pekmezovic T, Djukic T, et al. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smokingrelated bladder cancer: a case-control study. Urol Oncol 2013;31: 1184–92.

- [21] Savic-Radojevic A, Djukic T, Simic T, et al. GSTM1-null and GSTA1low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep 2013;18:1–7.
- [22] Broberg K, Björk J, Paulsson K, et al. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis 2005;26:1263–71.
- [23] Ceylan GG, Ceylan C, Tasdemir S, et al. The effect of glutathione-Stransferases in the susceptibility to bladder cancer. Ir J Med Sci 2015;184:851–4.
- [24] Wang M, Chu H, Lv Q, et al. Cumulative effect of genome- wide association study-identified genetic variants for bladder cancer. Int J Cancer 2014;135:2653–60.
- [25] Berber U, Yilmaz I, Yilmaz O, et al. CYP1A1 (Ile 462 Val), CYP1B1 (Ala 119 Ser and Val 432 Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a turkish population. Asian Pac J Cancer Prev 2013;14:3925–9.
- [26] won Kang H, Song PH, Ha YS, et al. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility and outcomes in muscle invasive bladder cancer patients. Eur J Cancer 2013;49:3010–9.
- [27] Safarinejad MR, Safarinejad S, Shafiei N, et al. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol 2013;31:1193–203.
- [28] Ovsiannikov D, Selinski S, Lehmann ML, et al. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health Part A 2012;75:557–65.
- [29] Öztürk T, Kahraman ÖT, Toptas B, et al. The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. In Vivo 2011;25:663–8.
- [30] Rouissi K, Ouerhani S, Hamrita B, et al. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res 2011;17:879–86.
- [31] Goerlitz D, El Daly M, Abdel-Hamid M, et al. GSTM1, GSTT1 null variants, and GPX1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomarkers Prev 2011;20:1552–4.
- [32] Altayli E, Gunes S, Yilmaz AF, et al. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol 2009;41:259–66.
- [33] Grando JPS, Kuasne H, Losi-Guembarovski R, et al. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med 2009;9:21–8.
- [34] Rouissi K, Ouerhani S, Marrakchi R, et al. Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population. Cancer Genet Cytogenet 2009;190:101–7.
- [35] Song DK, Xing DL, Zhang LR, et al. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detect Prev 2009;32:416–23.
- [36] Zupa A, Sgambato A, Bianchino G, et al. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res 2009;29:1709–14.
- [37] Abd El Hameed AH, Negm OE, El-Gamal OM, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 in Egyptian patients with bilharzial bladder cancer. Urol Oncol 2008;10091015.
- [38] Covolo L, Placidi D, Gelatti U, et al. Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: a case–control study. Eur J Epidemiol 2008;23:355–62.
- [39] Golka K, Schmidt T, Seidel T, et al. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J Toxicol Environ Health 2008;71:881–6.
- [40] Shao J, Gu M, Zhang Z, et al. Genetic variants of the cytochrome P450 and glutathione S-transferase associated with risk of bladder cancer in a south-eastern Chinese population. Int J Urol 2008;15:216–21.
- [41] Moore LE, Malats N, Rothman N, et al. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer 2007;120:2452–8.
- [42] Cengiz M, Ozaydin A, Ozkilic AC, et al. The investigation of GSTT1, GSTM1 and SOD polymorphism in bladder cancer patients. Int Urol Nephrol 2007;39:1043–8.
- [43] Murta-Nascimento C, Silverman DT, Kogevinas M, et al. Risk of bladder cancer associated with family history of cancer: do lowpenetrance polymorphisms account for the increase in risk. Cancer Epidemiol Biomarkers Prev 2007;16:1595–600.

- [44] Zhao H, Lin J, Grossman HB, et al. Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer 2007;120:2208–13.
- [45] Saad AA, O'Connor PJ, Mostafa MH, et al. Glutathione S-transferase M1, T1 and P1 polymorphisms and bladder cancer risk in Egyptians. Int J Biol Markers 2004;20:69–72.
- [46] García-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005;366:649–59.
- [47] Karagas MR, Park S, Warren A, et al. Gender, smoking, glutathione-Stransferase variants and bladder cancer incidence: a population-based study. Cancer Lett 2005;219:63–9.
- [48] Kellen E, Zeegers M, Paulussen A, et al. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer?; The Belgian case control study on bladder cancer risk. Cancer Lett 2007;245:51–60.
- [49] Kim EJ, Jeong P, Quan C, et al. Genotypes of TNF-α, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology 2005;65:70–5.
- [50] Sobti RC, Al-Badran AI, Sharma S, et al. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet 2005;156:68–73.
- [51] Srivastava DSL, Mishra DK, Mandhani A, et al. Association of genetic polymorphism of glutathione S-transferase M1, T1, P1 and susceptibility to bladder cancer. Eur Urol 2005;48:339–44.
- [52] Hung RJ, Boffetta P, Brennan P, et al. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 2004;110:598–604.
- [53] Moore LE, Wiencke JK, Bates MN, et al. Investigation of genetic polymorphisms and smoking in a bladder cancer case–control study in Argentina. Cancer Lett 2004;211:199–207.
- [54] Srivastava DSL, Kumar A, Mittal B, et al. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol 2004;78:430–4.
- [55] Jeong HJ, Kim HJ, Seo IY, et al. Association between glutathione Stransferase M1 and T1 polymorphisms and increased risk for bladder cancer in Korean smokers. Cancer Lett 2003;202:193–9.
- [56] Giannakopoulos X, Charalabopoulos K, Baltogiannis D, et al. The role of N-acetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Res 2001;22: 3801–4.
- [57] Lee SJ, Cho SH, Park SK, et al. Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 2002;177:173–9.
- [58] Aktas D, Ozen H, Atsu N, et al. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer. Cancer Genet Cytogenet 2001;125:1–4.
- [59] Törüner GA, Akyerli C, Uçar A, et al. Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol 2001;75: 459–64.
- [60] KIM WUNJAE, LEE HLAE, LEE SC, et al. Polymorphisms of Nacetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol 2000;164:209–13.
- [61] Schnakenberg E, Lustig M, Breuer R, et al. Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet 2000;57:270–7.
- [62] Steinhoff C, Franke KH, Golka K, et al. Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol 2000;74:521–6.
- [63] Salagovic J, Kalina H, Hrivnak M. The role of human glutathione Stransferases M1 and T1 in individual susceptibility to bladder cancer. Physiol Res 1999;48:465–71.
- [64] Abdel-Rahman SZ, Anwar WA, Abdel-Aal WE, et al. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 1997;22:129–38.
- [65] Brockmöller J, Cascorbi I, Kerb R, et al. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 1996;56:3915–25.
- [66] Anwar WA, Abdel-Rahman SZ, El-Zein RA, et al. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis 1996;17:1923–9.

- [67] Zhong S, Wyllie AH, Barnes D, et al. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993;14:1821–4.
- [68] Pandith AA, Lateef A, Shahnawaz S, et al. GSTP1 gene Ile105Val polymorphism causes an elevated risk for bladder carcinogenesis in smokers. Asian Pac J Cancer Prev 2013;14:6375–8.
- [69] Lesseur C, Gilbert-Diamond D, Andrew AS, et al. A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett 2012;210:100–6.
- [70] Zhang RG, Xu GY, Chen WJ, et al. Genetic polymorphisms of glutathione S-transferase P1 and bladder cancer susceptibility in a Chinese population. Genet Test Mol Biomarkers 2011;15:85–8.
- [71] Fontana L, Delort L, Joumard L, et al. Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Res 2009;29:1631–5.
- [72] Yuan JM, Chan KK, Coetzee GA, et al. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis 2008;29:1386–93.
- [73] Kopps S, Angeli-Greaves M, Blaszkewicz M, et al. Glutathione Stransferase P1 ILE105Val polymorphism in occupationally exposed bladder cancer cases. J Toxicol Environ Health 2008;71:898–901.
- [74] Xing DL, et al. Association study of polymorphisms in the human drug metabolism enzyme gene and bladder cancer risk. Zhengzhou Daxue 2006;12:1–61.
- [75] Cao W, Cai L, Rao JY, et al. Tobacco smoking, GSTP1 polymorphism, and bladder carcinoma. Cancer 2005;104:2400–8.
- [76] Qing-wen MA, Guo-fang LIN, JI-GANG C, et al. Polymorphism of glutathione S-transferase T1, M1 and P1 genes in a Shanghai population: patients with occupational or non-occupational bladder cancer. Biomed Environ Sci 2002;15:253–60.
- [77] Peluso M, Airoldi L, Magagnotti C, et al. White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis 2000;21:183–7.
- [78] Harries LW, Stubbins MJ, Forman D, et al. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997;18:641–4.
- [79] Henríquez-Hernández LA, Navarro P, Luzardo OP, et al. Polymorphisms of glutathione S-transferase μ and θ, MDR1 and VEGF genes as risk factors of bladder cancer: a case-control study. Urol Oncol 2012;30:660–5.
- [80] Moore LE, Baris DR, Figueroa JD, et al. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 metaanalysis. Carcinogenesis 2011;32:182–9.
- [81] Salinas-Sánchez ÁS, Sánchez-Sánchez F, Donate-Moreno MJ, et al. Polymorphic deletions of the GSTT1 and GSTM1 genes and susceptibility to bladder cancer. BJU Int 2011;107:1825–32.
- [82] Cantor KP, Villanueva CM, Silverman DT, et al. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect 2010;118:1545.
- [83] Song DK, Xing DL, Zhang LR, et al. Relationship between polymorphism of glutathione stransferase and genetic susceptibility to bladder cancer. Chin J Urol 2008;29:80–3.
- [84] Kogevinas M, Fernandez F, Garcia-Closas M, et al. Hair dye use is not associated with risk for bladder cancer: evidence from a case-control study in Spain. Eur J Cancer 2006;42:1448–54.
- [85] Shao CX, Xiang YB, Zhang W, et al. Polymorphisms of GSTM1 and GSTT1 with smoking and bladder cancer risk: a population-based case control study. Tumor 2006;26:346–51.
- [86] Ouerhani S, Tebourski F, Slama MRB, et al. The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol 2006;33:529–35.
- [87] McGrath M, Michaud D, Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer 2006;6:1.
- [88] Golka K, Seidel T, Dietrich H, et al. [Occupational and nonoccupational risk factors in bladder cancer patients in an industrialized area located in former East-Germany]. Aktuelle Urologie 2005;36: 417–22.
- [89] Sanyal S, Festa F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 2004;25:729–34.
- [90] Chen Y, Xu L, Guo YL, et al. Polymorphisms in GSTT1 and p53 and urinary transitional cell carcinoma in south-western Taiwan: a preliminary study. Biomarkers 2004;9:386–94.

- [91] Gago-Dominguez M, Bell DA, Watson MA, et al. Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and Nacetyltransferases 1 and 2. Carcinogenesis 2003;24:483–9.
- [92] Kim WJ, Kim H, Kim CH, et al. GSTT1-null genotype is a protective factor against bladder cancer. Urology 2002;60:913–8.
- [93] Lee SJ, Kang D, Cho SH, et al. Association of genetic polymorphism of glutathione s-transferase M1 and T1 and bladder cancer. J Korean Cancer Assoc 1999;31:548–55.
- [94] Salagovic J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 1997;45:312–7.
- [95] Katoh T, Inatomi H, Kim H, et al. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 1998;132:147–52.
- [96] Kim H, Kim WJ, Lee HL, et al. A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione Stransferase mu and theta on the risk of bladder cancer. Korean J Prevent Med 1998;31:275–84.
- [97] Kempkes M, Golka K, Reich S, et al. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 1996;71:123–6.
- [98] Malats N, Real FX. Epidemiology of bladder cancer. Hematol Oncol Clin North Am 2015;29:177–89.
- [99] Rodrigues IS, Kuasne H, Losi-Guembarovski R, et al. Evaluation of the influence of polymorphic variants CYP1A1 2B, CYP1B1 2, CYP3A4 1B, GSTM1 0, and GSTT1 0 in PCa. Urol Oncol 2011;29:654–63.
- [100] McIlwain CC, Townsend DM, Tew KD, et al. Glutathione Stransferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25:1639–48.
- [101] Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61:154–66.

- [102] Coles BF, Morel F, Rauch C, et al. Effect of polymorphism in the human glutathione S-transferase A1 (hGSTA1) promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 2001;11:663–9.
- [103] Coles FB, Kadlubar FF. Human class glutathione S-transferases: genetic polymorphism, expression, and susceptibility to disease. Methods Enzymol 2005;401:9–42.
- [104] Zhong S, Wyllie AH, Barnes D, et al. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993;14:1821–4.
- [105] Harris MJ, Coggan M, Langton L, et al. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics 1998;8:27–31.
- [106] Wiencke JK, Pemble S, Ketterer B, et al. Gene deletion of glutathione Stransferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol Biomarkers Prev 1995;4:253–9.
- [107] McIlwain CC, Townsend DM, Tew KD, et al. Glutathione Stransferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25:1639–48.
- [108] Listowsky I, Abramovitz M, Homma H, et al. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metab Rev 1988;19:305–18.
- [109] Huang W, Shi H, Hou Q, et al. GSTM1 and GSTT1 polymorphisms contribute to renal cell carcinoma risk: evidence from an updated metaanalysis. Sci Rep 2015;5:17971.
- [110] Hirschhorn JN, Lohmueller K, Byrne E, et al. A comprehensive review of genetic association studies. Genet Med 2002;4:45–61.
- [111] Kellen E, Hemelt M, Broberg K, et al. Pooled analysis and metaanalysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol 2007;165: 1221–30.