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Abstract

In protein tertiary structure prediction, model quality assessment programs (MQAPs) are

often used to select the final structural models from a pool of candidate models generated

by multiple templates and prediction methods. The 3-dimensional convolutional neural net-

work (3DCNN) is an expansion of the 2DCNN and has been applied in several fields, includ-

ing object recognition. The 3DCNN is also used for MQA tasks, but the performance is low

due to several technical limitations related to protein tertiary structures, such as orientation

alignment. We proposed a novel single-model MQA method based on local structure quality

evaluation using a deep neural network containing 3DCNN layers. The proposed method

first assesses the quality of local structures for each residue and then evaluates the quality

of whole structures by integrating estimated local qualities. We analyzed the model using

the CASP11, CASP12, and 3D-Robot datasets and compared the performance of the

model with that of the previous 3DCNN method based on whole protein structures. The pro-

posed method showed a significant improvement compared to the previous 3DCNN method

for multiple evaluation measures. We also compared the proposed method to other state-of-

the-art methods. Our method showed better performance than the previous 3DCNN-based

method and comparable accuracy as the current best single-model methods; particularly, in

CASP11 stage2, our method showed a Pearson coefficient of 0.486, which was better than

those of the best single-model methods (0.366–0.405). A standalone version of the pro-

posed method and data files are available at https://github.com/ishidalab-titech/3DCNN_

MQA.

Introduction

The three-dimensional (3D) structure of a protein is related to its function and is important

for life science applications such as drug discovery; however, experimentally determining

three-dimensional protein structures is costly and time-consuming. Thus, many computa-

tional methods for predicting protein 3D structures from amino acid sequences have been

developed [1–4]. Current prediction schemes often output multiple structure models because
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homology searching typically detects multiple template structures, and multiple candidates are

generated for each alignment through energy minimization of the structures. Additionally,

multiple prediction methods may be used because no single method shows the best perfor-

mance for each protein. Thus, a near-native model must be selected from a pool of predicted

models. Various methods have been developed to evaluate protein structure models to select

the best model [5]. These methods are generally referred to as model quality assessment pro-

grams (MQAPs).

MQAPs can be divided into two types: single-model methods [6–12] and consensus meth-

ods [13–15]. A single-model method can be applied to an individual protein model indepen-

dently. In contrast, consensus methods require multiple models because they evaluate a

protein model while referring to other predicted models. In Critical Assessment of Techniques

for protein Structure Prediction (CASP) [16] experiments, consensus methods show better

performance [14]. Consensus methods in CASP can use hundreds of high-quality models, but

it is difficult to obtain such a large dataset in practical cases. Thus, the availability of a single-

model method is greater than that of consensus methods. Moreover, single-model methods

often show better performance when the predicted models contain many low-quality models

[6].

Many single-model methods have been proposed. Most existing single-model methods uti-

lize high-level features for assessment. For example, SVMQA used 8 potential energy-based

features and 11 consistency-based features between the predicted and actual values of the

model [6]. DeepQA used 6 potential-based features and 3 single-model method features [11].

ProQ2 used consistency-based features and chemical property features as well as evolutionary

information [8]. These methods use high-level features, including evolutionary information

and predicted structure property, among others, to achieve more accurate assessment. How-

ever, such high-level features are sometimes unavailable, particularly for completely new pro-

teins. Thus, methods assessing model quality only based on protein tertiary structures are

required.

Recently, deep learning methods have greatly contributed to several fields, such as speech

recognition [17] and image recognition [18]. These deep learning methods often use low-level

features such as RGB values of each pixel in images as the input and show better accuracies

than non-deep learning methods with high-level features. In such studies, convolutional neural

networks (CNNs) are often used rather than general neural networks. Two-dimensional

CNNs (2DCNNs) have been effectively applied in the image recognition field [18,19]. Three-

dimensional convolutional neural networks (3DCNNs) have been proposed and showed

higher accuracy in object recognition [20]. 3DCNN is also applied in bioinformatics applica-

tions, such as protein binding-site detection [21] and for predicting protein-ligand absolute

binding affinity [22].

Derevyanko et al. used 3DCNN for MQA applications [23]. Their method defined a single

120-Å bounding box surrounding each protein structure, followed by grid featurization of the

bounding box and 3DCNN training. However, the large single bounding box-based method

has two limitations: (1) the bounding box size problem and (2) the orientation of the box. For

the first limitation, it is difficult to determine the appropriate bounding box size because pro-

tein structures are not uniform in size. If the size of bounding box is too large, the contents of

the box become too sparse. If bounding box size is too small for a target protein, the whole pro-

tein structure cannot be evaluated. The second limitation involves difficulty in aligning the ori-

entations of proteins, as protein structures have no specific orientation. Thus, the authors

rotated and translated the structure randomly 90 times and averaged the score. However, the

number of rotations was too small to account for the total number of possible rotations and

translations (for example, 5,400 patterns exist if the sampling step uses a 15˚ rotation).

Protein model accuracy estimation using 3DCNN
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Additionally, even if enough rotations and translations were applied, the redundant dataset

generated may cause over-fitting during the training processes. To solve this problem, Pagès

et al. proposed a residue-wise scoring function (Ornate) that uses 3D density maps as input

which corresponds to each residue and its neighboring residues with the backbone topology of

the residue [24]. This approach succeeded to avoid the problem of ambiguous orientations of

the initial models. However, the method proposed by Pagès et al. uses complex inputs and net-

work topology for the neural network, and thus the performance of the method was lower

than that of state-of-the-art single MQA methods.

In this study, we developed a novel MQA method based on a residue-wise assessment

method for evaluating the local structure of each residue using 3DCNN. The proposed method

sets a small bounding box for each residue, and thus the orientations of the boxes can be deter-

mined using main chain coordinates. We used simpler atom categories and network topolo-

gies that could be easily trained. We applied the proposed method and existing methods to the

benchmarking datasets CASP11, CASP12, and 3DRobot [25]. The proposed method showed

significantly better accuracy than the 3DCNN-based method developed by Derevyanko. Addi-

tionally, the proposed method exhibited the best accuracy compared to other state-of-the-art

single-model methods.

Materials and methods

In contrast to the previous method developed by Derevyanko et al. [23] which uses a single

large bounding box for the whole protein structure, our proposed method is based on residue-

wise 3DCNN, which evaluates the local structure of a residue using 3DCNN. This method

assumes that the local structure quality implies global quality. The workflow of the proposed

method is shown in Fig 1. The procedure is separated into three steps: (1) residue-wise low-

level featurization, (2) 3DCNN-based local structure assessment, and (3) integration of resi-

due-wise local results.

Fig 1. Workflow of proposed method. 1. Local structure was extracted by 3D grid bounding box for each residue. 2. Local structure

quality was evaluated using 3D convolutional neural network. 3. Integration residue-wise local score into whole structure score.

https://doi.org/10.1371/journal.pone.0221347.g001
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Residue-wise low-level featurization

To extract input data for a neural network from a protein structure, we first set a 3D grid

bounding box centered by the C-alpha atom (CA) of a residue. One side of the box was 28 Å
and the box was divided into 1-Å voxels. To determine the orientation of the box, the ortho-

normal basis calculated from the C-CA vector and N-CA vector and cross-product of the

C-CA and N-CA vector was used as the axis of the bounding box according to similar defini-

tions used in a related study [26]. Fig 2(b) shows how the orientation was determined. Atoms

within a voxel were checked and the features were assigned to the voxel. Atom features were

placed into 14 categories based on the atom type as shown in Table 1. The 11 categories were

used according to a previous study of previous 3DCNN study based on whole protein struc-

tures [23]. We added 3 categories (CA atom, backbone chain atom, any atom). Each category

feature was assigned to an independent channel of a neural network (Fig 2(c)).

3DCNN-based local structure assessment

In this step, we evaluated the local structure of a residue based on the voxel information gener-

ated in the previous step by supervised machine learning. To train the supervised machine

learning model, a label indicating the local structure quality of each residue was required. We

used lDDT as a label to describe the local structure quality [27]. To overcome the binary

Fig 2. Featurization of local structure. (a) 3D grid bounding box was set for each C-alpha atom (CA) of a residue.

One side size of the box was 28 Å and the box was divided into 1-Å voxels. (b) The orthonormal basis of the bounding

box was calculated from C-CA vector and N-CA vector and cross product of C-CA and N-CA. (c) Atoms featured

within a voxel were labeled into 14 categories as shown in Table 1. Each category feature was assigned into an

independent channel of the CNN. In the figure, each voxel is colored as C, N, O, and S.

https://doi.org/10.1371/journal.pone.0221347.g002
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classification problem, the label was defined using the following formula:

local label ¼
1 if lDDT > 0:5

0 ðotherwiseÞ

(

To predict local structure quality, we used a deep neural network including 3DCNN layers.

A 3DCNN is an expansion of a 2DCNN, which is often used in image recognition. 3DCNN is

used for object recognition [20] and can effectively extract features from 3D structured data, as

conducted in feature learning of 2DCNN for image recognition. S1 Fig shows the neural net-

work architecture. We designed the architecture based on previous 3DCNN research [26]. The

last 3DCNN layer was connected to the global average pooling layer [28]. After each layer,

PReLU [29] was used as the activation function other than the output layer. The batch normal-

ization layer [30] was added before each activation function. The prediction problem is a

binary classification, and thus sigmoid cross entropy was used as a loss function.

Integration of local results

A neural network for local structure assessment returns an estimated quality value for each res-

idue. Thus, we integrated the local scores into a global score to evaluate the quality of a whole

protein structure. It is difficult to use machine-learning methods to integrate these scores

because the number of local scores is not fixed. Thus, the global score was simply calculated as

the mean value of the local scores.

Table 1. Atom feature 14 categories.

Type Description Atoms

1 Sulfur/selenium CYS:SG, MET:SD, MSE:SE

2 Nitrogen (amide) ASN:ND2, GLN:NE2, backbone N (including N-terminal)

3 Nitrogen (aromatic) HIS:ND1/NE1, TRP:NE1

4 Nitrogen

(guanidinium)

ARG:NE/NH�

5 Nitrogen

(ammonium)

LYS:NZ

6 Oxygen (carbonyl) ASN:OD1, GLN:OE1, backbone O (except C-terminal)

7 Oxygen (hydroxyl) SER:OG, THR:OG1, TYR:OH

8 Oxygen (carboxyl) ASP:OD�, GLU:OE�, C-terminal O, C-terminal OXT

9 Carbon (sp2) ARG:CZ, ASN:CG, ASP:CG, GLN:CD, GLU:CD, backbone C

10 Carbon (aromatic) HIS:CG/CD2/CE1,PHE:CG/CD�/CE�/CZ, TRP:CG/CD�/CE�/CZ�/CH2, TYR:CG/

CD�/CE�/CZ

11 Carbon (sp3) ALA:CB, ARG:CB/CG/CD, ASN:CB, ASP:CB, CYS:CB, GLN:CB/CG, GLU:CB/CG,

HIS:CB, ILE:CB/CG�/CD1, LEU:CB/CG/CD�, LYS:CB/CG/CD/CE, MET:CB/CG/

CE, MSE:CB/CG/CE, PHE:CB, PRO:CB/CG/CD, SER:CB, THR:CB/CG2, TRP:CB,

TYR:CB, VAL:CB/CG�, backbone CA

12 Occupancy �:�

13 Backbone �:N,�:CA,�:C

14 CA �:CA

1–11 atom types were cited from Derevyanko et al. [23]. We also added 3 classes (CA atom, backbone chain atom, all

atoms).

https://doi.org/10.1371/journal.pone.0221347.t001
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Dataset

To train the local structure assessment models, native structures and non-native decoy struc-

tures were collected from the targets and prediction results of CASP experiments [16]. We

used the CASP 7–10 datasets obtained from the CASP homepage (http://predictioncenter.org/

download_area/) for training. Decoy structures were 10% randomly sampled for each target

protein in the training datasets (26.6 models per protein were used). In total, the training data-

set contained 11,582 protein structure models for 435 proteins. The training dataset included

968,869 positive data and 958,780 negative data. We used scwrl4 [31] to optimize side-chain

conformations, as used in a previous 3DCNN study based on whole protein structures.

For the test datasets, we used the CASP11, 12 datasets and 3DRobot decoy sets [25], which

were used in a previous study by Derevyanko et al. [23]. The test datasets from CASP include

stage1 and 2 decoys; stage1 uses up to 20 selected predictions spanning the whole range of

model accuracy and stage2 uses the best 150 server predictions according to the ranking from

the DAVIS-EMAconsensus method [32]. Additionally, Targets T0797, T0798, and T0825 in

CASP11 were removed from the benchmark because they were released for multimeric predic-

tion. Similarly, we used scwrl4 for the test datasets. Table 2 shows additional details of the data-

sets. GDT_TS in the Results section was calculated by using TMscore [33]. When using

TMscore, a target structure and model structure must be specified and a different value is

returned if the model structure is considered as a target structure and target structure is con-

sidered as a model structure. In the Results section, GDT_TS was calculated using a target

structure and model structure in an inverted manner according to Derevyanko et al. [23]. The

results for non-inversed GDT_TS are shown in S1 Table.

Evaluation

We used the correlation between the predicted quality scores and GDT_TS values of models as

evaluation measures. We used Pearson’s correlation coefficient and Spearman’s correlation as

the test datasets. A test dataset contained many target proteins, and the correlations were cal-

culated for each target. Thus, we used the average of these values. We also evaluated the near-

native selection performance of the method using two measures. We determined the difference

value between the GDT_TS of a selected model by each assessment method and that of the

best GDT_TS model (GDT_TS loss). We also used the score-based rank of the best GDT_TS

model (best model rank).

Results

Neural network training for local structure assessment and performance

evaluation

We first trained a deep neural network including 3DCNN layers to assess the local structure

quality of a residue. Thus, this analysis is based on the binary classification problem for each

Table 2. Decoy set detail used for comparison to previous 3DCNN method based on whole protein structures.

Decoy set Number of decoys per target Number of targets

CASP11 stage1 20.0 81

CASP11 stage2 148.2 80

CASP12 172.1 40

3DRobot 300.0 200

https://doi.org/10.1371/journal.pone.0221347.t002
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residue. We split the training set into a “neural network training set” and “validation set” with

a split rate of 80% in target protein level. The validation dataset was used to determine the

hyperparameters of a network. To evaluate the accuracy of the networks, we constructed a

receiver operator characteristics (ROC) curve [34]. The area under the ROC curve

(ROC_AUC) of the validation set was used to determine the stopping epoch in the training. In

this study, one epoch was determined as the end of once training with whole the training data.

We used SMORMS3 at a learning rate of 0.001 [35], which is the default value, for optimiza-

tion. The loss and AUC value during training are shown in S2 Fig. The loss and MCC value

using prediction threshold 0.5 are also shown in S3 Fig. Fig 3 shows the ROC curve of the best

epoch model, which showed an ROC_AUC of 0.906. This indicates that the trained model can

be applied to assess local structure quality.

Model quality assessment performance evaluation

The previous section described that the proposed 3DCNN-based model achieved high accu-

racy for local structure quality assessment. However, to estimate the performance of the pro-

posed method for assessing the quality of a whole protein structure model, other evaluation

experiments should be performed.

Fig 3. ROC curve of best epoch model. ROC curve of best validation loss epoch model.

https://doi.org/10.1371/journal.pone.0221347.g003
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To determine the performance of the proposed method, we performed two performance

evaluations. The first involved comparison to a 3DCNN method based on whole protein struc-

tures [23]. We also performed another performance evaluation to compare the performance of

the proposed method with state-of-the-art single MAQ methods because the method described

by Derevyanko et al. does not currently give the best results [23].

Performance comparison with a previous 3DCNN method based on whole

protein structures

We evaluated the model performance using the CASP11, CASP12, and 3DRobot decoy sets

and compared the results with those from the 3DCNN method developed by Dereveyanko

et al. [23]. We compared the performance of the proposed method with the values obtained

from the previous 3DCNN method based on whole protein structures in the article [23].

Table 3 shows the results of the evaluation tests. The values of the previous 3DCNN method

were obtained from the article. The results showed that proposed method achieved better per-

formance than the previous 3DCNN method for all measures. To confirm the significance of

the improvement, we performed a Wilcoxon signed-rank test. The values in parenthesis under

the values obtained using the proposed method are the p-values determined in statistical analy-

sis. The score of the previous method for CASP12 was not available, and thus we did not per-

form the test in this case. The improvement was significant for all datasets. The results indicate

that the proposed method is superior to the 3DCNN method based on whole protein struc-

tures in the MQA task.

Comparison to state-of-the-art methods

We also performed another performance evaluation to compare the performance of the pro-

posed method with the best-performing single-model QA methods according to CASP11,12

assessment: SVMQA [6], ProQ2 [8], ProQ2-refine [8], ProQ3 [12], RFMQA [7], VoroMQA

[9], MULTICOM-CLUSTER [10], and MULTICOM-NOVEL [10]. Additionally, we also con-

ducted comparison with Ornate [24], which is a recent single-model QA method that uses resi-

due-wise 3DCNN. For this evaluation, we used the dataset used in CASP official assessments.

This dataset was slightly different from the dataset used in the previous section and included

GDT_TS labels. The details of the dataset are shown in S2 Table. The CASP11 results of

Table 3. Comparison with previous 3D-CNN method.

Dataset Method Pearson Spearman GDT_TS loss Best model rank

CASP11 stage1 Proposed 0.661 0.531 5.739 3.136

Derevyanko+2018 0.535 (1.43E-08) 0.425 (2.37E-06) 6.396 3.691

CASP11 stage2 Proposed 0.500 0.471 5.000 22.425

Derevyanko+2018 0.421 (1.42E-05) 0.409 (1.03E-03) 6.449 27.563

CASP12 Proposed 0.652 0.614 14.557 44.200

Derevyanko+2018 0.607 (NA) 0.521 (NA) 14.6 NA

3DRobot Proposed 0.931 0.882 1.708 4.290

Derevyanko+2018 0.856 (4.62E-53) 0.839 (1.26E-22) 9.627 18.610

The first and second columns represent the dataset name and method name. The third and fourth columns, respectively, show the average Pearson’s correlation

coefficient (Pearson) and average Spearman’s correlation (Spearman) between the actual ranking and predicted ranking. The fifth and sixth column show the average

GDT_TS loss and best model rank. Values in parenthesis in the columns 3–4 show the p-value (Wilcoxon signed-rank test) for the differences in Pearson and Spearman

results, respectively, between the proposed method and previous method (Derevyanko+2018). A p-value <0.05 indicates that the difference was significant. Values with

high accuracy and p-values <0.05 are shown in bold.

https://doi.org/10.1371/journal.pone.0221347.t003
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ProQ2, ProQ2-refine, RFMQA, VoroMQA, MULTICOM-CLUSTER, and MULTICOM-NO-

VEL were extracted through blind prediction of CASP11. The CASP12 results of ProQ2,

SVMQA, ProQ3, VoroMQA, and MULTICOM-CLUSTER were similarly extracted through

blind prediction of CASP12. Only the results of Ornate were extracted from the previous arti-

cle [24]. CASP11,12 stage2 results are shown in Tables 4 and 5 and CASP11,12 stage 1 results

are shown in S3 and S4 Tables. The score of Ornate for each target was not available, and thus

we did not perform statistical analysis in this case. The proposed method achieved better or

comparable accuracy, particularly in CASP11 stage2, and the proposed method outperformed

the other methods evaluated.

Discussion

Influences of homologues between training and test datasets

We used similar training and test sets as used in previous studies. However, the test dataset

included several homologues proteins to those in the training dataset. To evaluate the influ-

ence of homologues, we removed proteins with sequence similarity to those in the training set

from the test set. We used NCBI BLASTP [36] and an e-value threshold of>1e-4 to identify

the homologues. There were 8 homologues in the CASP11 dataset and 6 homologues in the

CASP12 dataset. The detailed information is shown in S5 Table. S6–S9 Tables show the accu-

racy of model quality assessment without homology proteins for each test dataset. The accura-

cies of the proposed method for the non-homologue dataset were nearly the same as those in

the Results section (for instance, Pearson’s correlations for CASP11 stage2 dataset were 0.486

Table 4. Comparison with single-model methods in CASP11 stage2.

Method Pearson Spearman GDT_TS loss Best model rank

Proposed 0.486 0.452 4.945 26.977

VoroMQA 0.413 (0.0009) 0.394 (0.0080) 7.307 27.25

MULTICOM-CLUSTER 0.405 (0.0001) 0.397 (0.0068) 7.058 31.83

MULTICOM-NOVEL 0.390 (5.73E-05) 0.389 (0.0073) 6.888 32.375

RFMQA 0.369 (1.52E-06) 0.351 (2.64E-05) 7.021 31.621

ProQ2 0.368 (4.89E-07) 0.363 (9.51E-05) 6.34 35.705

ProQ2-refine 0.366 (3.30E-07) 0.373 (0.0003) 6.754 34.67

Ornate 0.39 (NA) 0.37 (NA) 5.5 NA

The legend is the same as that for the columns 2–6 in Table 3.

https://doi.org/10.1371/journal.pone.0221347.t004

Table 5. Comparison to single-model methods in CASP12 stage2.

Method Pearson Spearman GDT_TS loss Best model rank

Proposed 0.665 0.594 6.159 16.563

ProQ3 0.639 (0.0124) 0.590 (0.8081) 5.633 20.343

SVMQA 0.631 (0.2575) 0.587 (0.5408) 5.261 20.743

VoroMQA 0.593 (4.41E-06) 0.544 (0.0030) 7.789 19.914

ProQ2 0.591 (2.97E-05) 0.556 (0.0176) 6.823 20.843

MULTICOM-CLUSTER 0.577 (5.51E-06) 0.540 (0.0233) 7.678 24.543

Ornate 0.49 (NA) 0.46 (NA) 7.200 NA

The legend is the same as that for columns 2–6 in Table 3.

https://doi.org/10.1371/journal.pone.0221347.t005
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and 0.483, respectively). Additionally, the improvement compared to other state-of-the-art

methods did not change. The information of homologues proteins is often useful for this appli-

cation. However, we disintegrate the problem to the residue-level, and thus the influence was

not critical.

Evaluation on non-CASP datasets

In the Results section, we mainly used datasets from the CASP experiments. The datasets were

major in this field [23, 24]. However CASP datasets were constructed for a competition so that

the targets were not systematically selected. Thus, they are not perfectly non-redundant and do

not cover whole protein structure space. Thus, we also evaluated non-CASP datasets: 3DRobot

decoy set [25] and I-TASSER decoy set II [37]. The native structures were removed from all

datasets. Protein sidechain structures were optimized by using Scwrl4 and the ground truth

label was TMscore calculated by using TMscore software. SVMQA [6], RWplus [37], GOAP

[38], and OPUS-PSP [39] were compared to the proposed method. Accuracies were extracted

from the article [6]. The results are shown in S10 and S11 Tables. For the 3DRobot dataset, the

proposed method showed comparable accuracies to SVMQA and outperformed the other

methods. For the I-TASSER dataset, the proposed method also showed better accuracy than

the other methods except for SVMQA but the accuracy of SVMQA was better in all measures.

Our data did not reveal why SVMQA showed better accuracy with the I-TASSER dataset com-

pared to that for the other test sets. In this comparison, only SVMQA used high-level informa-

tion such as evolutionally information. Thus, such information may be effective for the

I-TASSER dataset.

Performance of local structure assessment

In protein structure model quality assessment, local structure assessment, which evaluates the

quality of a structure model in residue-level, is also important because a user can recognize

which substructure needs to be improved. Although proposed method is for assessing the

quality of a global structure, it outputs a score for each residue in the evaluation process. Thus,

we also evaluated the accuracy of local structure assessment of proposed method based on per-

residue error estimation. To evaluate the performance of local structure assessment, we used

CASP12 stage2 dataset. In the dataset, a model structure and a native structure were superim-

posed by local-global alignment (LGA) [40] and the distance between a model structure and a

native structure for a residue can be calculated. According to CASP assessment [16], we evalu-

ated proposed method using two metrics. One is Pearson correlation coefficient between dis-

tances and predicted scores. The other is the ROC-AUC by considering the problem as binary

classification. If a distance is smaller than 3.8Å, the prediction of a residue is considered as cor-

rect. S12 Table shows the result of local assessment evaluation. We compared the accuracy of

proposed method with other single model assessment methods. We used only methods which

can predict residue-wise quality. Proposed method showed comparable performance with the

other methods in AUC. In contrast, the performance by Pearson correlation coefficient was

the worst. This result seems to be reasonable because proposed method was trained as a binary

classification, and thus it is difficult to estimate the quality of a local structure quantitatively.

To improve local structure assessment accuracy by Pearson correlation coefficient, we might

change the problem from binary classification to regression. However, the training of a regres-

sion model is often more difficult to a classification model, and we considered it caused the

decrease of global structure assessment performance.
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Performance difference in core and surface residues

We investigated the local assessment accuracy of proposed method by dividing residues into

core residues and surface residues. Residues on the protein surface often have a small number

of contacting residues in the bounding box and insufficient information may decrease the

accuracy of assessment. The class of a residue was defined by its relative solvent accessibility

area (RSA). If the RSA was less than 25%, the residue was categorized into the core. The

ROC-AUC was used to determine local assessment accuracy. The CASP11 stage2 datasets and

their RSAs were calculated by using FreeSASA [41].

As a result, local assessment accuracy for the core residues (0.918) was superior to that for

the surface residues (0.887). These results support the assumption that core residues are more

important and indicated that surface residues may decrease assessment performance. Thus, we

compared the quality assessment accuracy of the whole model between the proposed method

and method only using core residues for assessment (S13 Table). The method only using core

residue assessments showed decreased accuracy, indicating that assessment based on surface

residues is more difficult but still useful and needed for better assessment. However, improve-

ments can be made by using more sophisticated integration methods rather than the simple

mean value of local assessments.

Conclusion

We proposed a novel model quality assessment method for protein tertiary structure predic-

tion based on machine learning. The method evaluates the local structure quality of each resi-

due using a deep neural network including 3DCNN layers and assesses the quality of the

whole structure through integration. Evaluation tests with multiple datasets revealed that the

proposed method achieved better accuracy than the previous 3DCNN method, which evalu-

ates whole protein structures within a single large box. Compared to other state-of-the-art sin-

gle-model methods, the proposed method showed comparable performance. Particularly, for

the CASP11 stage2 dataset, the proposed method significantly outperformed the other

methods.

Additional studies are needed to extend the training set. In this study, we used a relatively

small dataset containing 435 proteins, but the Protein Data Bank contained more than 140,000

protein structures as of 2018 [42]. Thus, accuracy improvement can be achieved by generating

more training sets. Additionally, we used a simple average to integrate the local assessment

results because the size of the results was not fixed. However, current neural network tech-

niques can deal with such data and may improve the accuracy of the method. Our method

does not use high-level features used in other methods. Thus, using high-level features such as

evolutionally information may improve the accuracy.
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