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Osteoarthritis and intervertebral disc degeneration: Quite
different, quite similar
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Intervertebral disc degeneration describes the vicious cycle of the deterioration of intervertebral

discs and can eventually result in degenerative disc disease (DDD), which is accompanied by

low-back pain, the musculoskeletal disorder with the largest socioeconomic impact world-wide.

In more severe stages, intervertebral disc degeneration is accompanied by loss of joint space,

subchondral sclerosis, and osteophytes, similar to osteoarthritis (OA) in the articular joint.

Inspired by this resemblance, we investigated the analogy between human intervertebral discs

and articular joints. Although embryonic origin and anatomy suggest substantial differences

between the two types of joint, some features of cell physiology and extracellular matrix in the

nucleus pulposus and articular cartilage share numerous parallels. Moreover, there are great sim-

ilarities in the response to mechanical loading and the matrix-degrading factors involved in the

cascade of degeneration in both tissues. This suggests that the local environment of the cell is

more important to its behavior than embryonic origin. Nevertheless, OA is widely regarded as a

true disease, while intervertebral disc degeneration is often regarded as a radiological finding

and DDD is undervalued as a cause of chronic low-back pain by clinicians, patients and society.

Emphasizing the similarities rather than the differences between the two diseases may create

more awareness in the clinic, improve diagnostics in DDD, and provide cross-fertilization of cli-

nicians and scientists involved in both intervertebral disc degeneration and OA.
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1 | INTRODUCTION

Low back pain and osteoarthritis (OA) are the two major musculoskeletal

causes for disability worldwide.1–3 Low back pain has several causes and

degenerative disc disease (DDD) is one of them.4–7 The pain, dysfunction,

and stiffness characterizing patients with DDD and OA can cause signifi-

cant loss in work participation and lead to high socio-economic costs.8,9

The diseases are caused by degeneration of the intervertebral disc and

articular joint, following a vicious circle towards joint deterioration.10,11

While this process of degeneration in the articular joint carries the same

name as its disease (ie, OA), the degenerative process in intervertebral

discs is commonly known as intervertebral disc degeneration.12–14 On

plain X-rays both intervertebral disc degeneration and OA are accompa-

nied by a loss of joint space, formation of osteophytes, subchondral cysts

and sclerosis.15,16 No definitive treatment options are available to halt or

reverse intervertebral disc degeneration and OA, but early symptoms of

DDD and OA can be relieved with physiotherapy and pain medication,

and with spinal fusion and joint arthroplasty in end-stage DDD and OA,

respectively. Inspired by these similarities, we investigated the analogy

between both conditions.

In the 19th century, Luschka was the first to suggest that the inter-

vertebral disc is similar to an articular joint, comparing the cartilaginous

endplates of the intervertebral disc to articular cartilage (AC).17–19 Since

then, several studies have focused on clinical aspects in DDD and OA,
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and pathomechanisms and regenerative strategies in intervertebral disc

degeneration and OA, but this was often in parallel and not in a compara-

tive way.13,20,21 Most research on intervertebral disc degeneration has

concentrated on only one aspect of degeneration (in particular the nucleus

pulposus [NP]),22–24 while OA is generally regarded as a whole organ

disease,25 rather than just degeneration of the AC. Still, most studies con-

sider the differences between intervertebral disc degeneration and OA

rather than the similarities between the two conditions.

In this review, we provide a broad comparison on the human

intervertebral disc and articular joint. We investigate similarities and

differences in anatomy, embryonic development, cellular behavior and

tissue composition. Consecutively, we compare the degeneration of

intervertebral discs and articular joints in humans, followed by a clini-

cal perspective on both diseases. Since the NP and AC are believed to

be the most affected part of the degenerated intervertebral disc and

articular joint, respectively, we focus on the NP and AC.26,27

2 | THE HEALTHY INTERVERTEBRAL DISC
AND ARTICULAR JOINT

2.1 | Anatomy and embryonic development

The intervertebral disc is a unique structure in the human body. The

intervertebral discs are amphiarthrosic joints and consist of: (a) the NP,

(b) the cartilaginous endplates that cover the subchondral bone of the

adjacent vertebrae, and (c) the annulus fibrosus (AF),28 but the func-

tional spinal unit also involves the facet joints and vertebrae

(Figure 1A). The articular joints are diarthrosic joints and consist of:

(a) the synovial fluid, (b) hyaline cartilage covering the subchondral

bone of the adjacent bones, and (c) the capsule (Figure 1B), and its

functional unit also involves tendons, ligaments and the bone of the

adjacent bones. While the structural elements of all mammalian inter-

vertebral discs are essentially the same, articular joints may contain

additional structures specific to the concerning joint (eg, bursae, ten-

dons, menisci).31

During early human embryonic development, starting in week 5, the

intervertebral discs are formed by two structures: the notochord and

sclerotome (Figure 2A). The sclerotome, forming the vertebrae and the

outer AF, surrounds the expanding notochord, which will partition into

the nuclei pulposi. A transition zone of notochord and sclerotome charac-

terizes the inner AF. The NP and AF are unique structures in humans and

other mammals,32–34 but as other vertebrates like birds and reptiles

develop articular joints between vertebrae instead of intervertebral discs,

more similarity is suggested than one may expect from looking at anat-

omy and embryology alone.28,34 For a more extensive description of the

anatomy and embryonic development of human intervertebral discs we

refer to.32,33,35–37

The formation of arms and legs occurs slightly later in human

embryonic development, in week 6 (Figure 2B). Limbs derive from the

limb bud, a structure of mesenchyme covered with ectoderm. The

limb bud starts to grow gradually outwards forming limbs over

time.38,39 The formation of articular joints occurs later in embryonic

development (ie, in week 8) and becomes morphologically visible with

the presence of the interzone, which is a region at the location of the

future joint where the mesenchymal cells transform into an interspace

in between two outer layers adjacent to the epiphyseal end of the

FIGURE 1 A and B, Anatomy of the human intervertebral disc and

articular joint.29,30 A, The intervertebral disc consists of a nucleus
pulposus (light gray), surrounded by an annulus fibrosus (black), and is
between two cartilaginous endplates (dark gray) that adhere to the
adjacent vertebrae (beige). B, An image of a sagittal section of an
intervertebral disc. NP: nucleus pulposus; AF: annulus fibrosus; CP:
cartilaginous endplates; V: vertebrae. C, The articular joint consists of
articular cartilage (light gray), that lies over the subchondral bone (dark
gray) of the adjacent joints, and is divided by synovial fluid (light blue).
The capsule (black) surrounds the articular joint. D, An image of a
sagittal section of an articular joint. AC: articular cartilage; C: capsule;
SB: subchondral bone; SF: synovial fluid

FIGURE 2 A and B, Embryonic development of the human

intervertebral disc and articular joint. A, Starting in week 5, the
intervertebral discs are formed by the notochord and sclerotome. The
sclerotome (on the outside) forms the outer annulus and surrounds
the notochord (inside), which will eventually partition into the nuclei
pulposi. A transition zone between notochord and sclerotome
characterizes the inner annulus fibrosus. B, In week 6, the limb bud is
formed by mesoderm covered by ectoderm and starts to grow
outwards in order to form arms and legs. The formation of articular
joints occurs later in embryonic development (ie, in week 8), and is
characterized by the interzone (light blue), which is a group of
mesenchymal cells that form an interspace
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future bones.40 By contrast, intervertebral discs are formed in a pro-

cess of sequential segmentation. For a more extensive description of

the anatomy and embryonic development of articular joints we refer

to.38,39,41–43

2.2 | Extracellular matrix and biomechanical
properties

The intervertebral disc and articular joint absorb and distribute the

loads that are imposed by muscle force and gravity on the vertebrae

and adjacent bones, respectively. To counterbalance the loads, an

intradiscal pressure is found in the NP and an intra-articular pressure

in the AC.44,45 These pressures are attributed to the high concentra-

tion of negatively charged proteoglycans—predominantly aggrecan—in

the extracellular matrix (ECM) of the NP and AC.44–48 Proteoglycans

attract water which generates a hydrostatic pressure within the tissue.

This hydrostatic pressure is essential for the NP and AC to provide a

healthy mechanobiological stimulus to the cells, and dynamic loading

is necessary for transport of nutrients and waste products.49,50

Besides proteoglycans, the ECM of the NP and AC contains collagen,

mainly collagen type II.51 The ratio of aggrecan to collagen is more than

five times higher in the NP than in AC,35,52,53 and it is this high ratio of

aggrecan that creates a high intradiscal pressure in the intervertebral disc

(ie, 0.43-0.50 MPa in relaxed standing54), whereas the pressure inside AC

is much lower (ie,� 300 kPa in 30% compression45,55). Toward the outer

regions of the intervertebral disc, the AF becomes a more fibrous struc-

ture of mainly collagen type I,51,56 which is able to resist tensile stresses

caused by the intradiscal pressure. The articular joint capsule is also a

dense fibrous connective tissue and surrounds the articular joint with a

variety in thickness, depending on the applied loads.56

The collagen type I fibers in the AF are organized in oblique lamellae

which limits movement of the spinal segment.57 This way, the interver-

tebral disc provides stability and essentially forms an elastic hinge provid-

ing flexibility over a small range of motion by deformation of the tissue,

but is not able to articulate. In contrast, articular joints provide low-

friction articulation, only limited by ligaments that stabilize the articular

joints.58 Thus, articular joints have a much larger range of motion.

2.3 | Cells

At birth, the human NP has a high density of notochordal cells,59 which

are large in diameter, contain intracellular vacuoles and appear in clus-

ters.60 However, they are slowly replaced by chondrocyte-like cells after

birth.61,62 There is some evidence that the cells maintain some of their

notochordal characteristics, as human degenerated intervertebral disc

cells express brachyury, which is a well-established notochordal marker.63

Other cell-specific markers found in NP cells are cytokeratin-19, FOX-F1,

CA12 and PAX-1. The chondrocyte-like cells are much smaller in diame-

ter and lack intracellular vacuoles.60 A lack of innervation and vasculariza-

tion makes that these cells live in a harsh environment, with a relatively

low pH (ie, 7.1).64,65 Only the outer annulus and endplates have minimal

blood supply, which culminates in a suboptimal repair mechanism of the

intervertebral disc itself.

The articular joints are surrounded by the joint capsule. The capsule

has two parts, an inner synovial membrane, consisting of the intima,

which has only one cell layer, and the well-vascularized subintima sur-

rounding the intima.66,67 The outer, more fibrous membrane of the joint

capsule and subchondral bone in the articular joint has minimal blood

supply,68 which is similar to the intervertebral disc. Yet there is an

exchange of solutes between the synovial fluid and joint capsule which is

incomparable to the intervertebral disc, as there is no distinct exchange

between the NP and AF. However, the environment of the chondrocytes,

the only cell type present in AC, is also hostile with minimal repair capac-

ity, as blood vessels are absent in the AC.69 The chondrocytes are differ-

entiated from the embryonal mesenchyme, which is derived from the

mesoderm, and their gene expression profile contains SOX9, COMP,

FGFB, MAPK, WNT, and JNK.70 They are round cells, like NP cells, but

their cell density is much higher compared to the NP and their distribu-

tion differs over the several distinct layers in AC.60 In adult AC, the chon-

drocytes are surrounded by the pericellular matrix and they lack cell-cell

interactions. Just like the chondrocyte-like cells in the NP, their prolifera-

tive activity is very low, but they are still important in maintaining the

homeostasis and production of ECM.71

For a more detailed description of the cell-types in the interver-

tebral disc and articular joint, we refer to more extensive reviews on

this subject.60,69,70,72,73 However, considering the resemblance in

some features of cell behavior after birth (eg, produce the same type

of ECM proteins), the local environment of the cell (ie, ECM and

mechanobiological cues) may have more influence on its behavior

than its embryonic origin.35

In summary, there are differences in anatomy and embryology

between the healthy intervertebral disc and articular joint in humans, but

there are also marked similarities. The NP and AC correspond especially

in the production of predominantly proteoglycans and collagen type II,

resulting in an ECM with a high hydrostatic pressure, which is able to

endure compressive loads. Furthermore, both structures are mostly avas-

cular, limiting their own regenerative capacities (see Table 1). These simi-

larities between the two healthy tissues provide a good base from which

the process of degeneration in the human intervertebral disc and articular

joint can be further understood.10,11

3 | DEGENERATION IN THE HUMAN
INTERVERTEBRAL DISC AND ARTICULAR
JOINT

The balance between anabolic and catabolic processes is tenuous in the

intervertebral disc and articular joint. When the balance is tipped, there is

an inequality between the synthesis and degradation of the ECM due to

catabolic cell behavior (58,74–77). Within the intervertebral disc and articu-

lar joint, this mainly affects the NP and AC. Several systemic inflammatory

factors have been described to tip this balance toward degeneration in

both diseases, such as diabetes, obesity, smoking, and low-grade systemic

infection.78–89 Mechanical overloading is another established factor that

induces local inflammation in NP and AC,90,91 especially in the AC of knee

and ankle,86,92 since the lesions are often localized to weight-bearing car-

tilage or to sites of trauma.93,94

Catabolic cell behavior is characterized by an increase in the

expression of cytokines and matrix-degrading enzymes, and a downre-

gulation of their inhibitors.95–100 The cytokines that have been well-

RUSTENBURG ET AL. 3 of 10



documented to have a detrimental effect in intervertebral disc degen-

eration and OA are tumor necrosis factor alpha (TNFα) and

interleukin-1β (IL-1β).101–105 These cytokines generate local inflamma-

tion in the NP and AC by an upregulation of enzymes that degrade

the ECM: matrix metalloproteinases (MMPs) and a disintegrin and

metalloproteinase with thrombospondin motifs (ADAMTS).106–112

Simultaneously, a downregulation of their inhibitors (eg, tissue inhibi-

tor of metalloproteinase 1-3, TIMP 1-3) occurs,100,113,114 all together

pushing the ECM in a vicious cycle of degradation.10 Several MMPs

have been related to degeneration in the NP, including MMP 1-3,

MMP 7-10, and MMP 12-14.108,113,115,116 These factors show

remarkable similarity to those found in AC, including MMP 1-3 and

7-14,93,117–119 although their expression levels may differ from those

in the NP (see Table 2). Additionally, the ECM in the NP and AC is also

cleaved by ADAMTSs 4 and 5.125–127

3.1 | Effects of ECM degradation

The degradation of the ECM results in a decrease in the production of

proteoglycans in the cartilaginous matrices.120 Consequently, less fluid

is attracted, leading to a decrease in hydrostatic pressure.121 This

causes reduced joint space and an increase in tissue deformation (ie,

shear stresses). Shear stress is a mechanical cue for the cells to shift

from collagen type II to collagen type I production, resulting in a more

fibrous tissue.26,122,123 This fibrous tissue has an inferior capacity to

resist compressive loads, as there is a loss of the typical poro- and vis-

coelastic biomechanical properties.48,121,124 The disruption of ECM

not only results in loss of joint space, but also causes subchondral

sclerosis and the formation of osteophytes, which is a reaction of the

bone to the changing mechanical environment.4,16,129

3.2 | Genetic aspects

Besides shared environmental factors, intervertebral disc degeneration

and OA also share genetic aspects. For example, Bijkerk et al found a

strong genetic effect for intervertebral disc degeneration and hand

OA,132 and Loughlin describes several genetic polymorphisms that are

attributed to both intervertebral disc degeneration and OA.133 They dem-

onstrate that GDF5 polymorphism rs143383 is a risk factor for both

intervertebral disc degeneration and knee OA, just as the repeat polymor-

phism of the asporin gene (ASPN).134 Moreover, polymorphisms of vita-

min D receptor (ie, FokI and TaqI) are not only attributed to OA, but also

to reduced signal intensity on MRI in lumbar intervertebral discs, suggest-

ing an association with intervertebral disc degeneration.135,136 Based on

TABLE 1 Comparison of the healthy intervertebral disc and articular joint

Intervertebral disc Articular joint (eg, the knee)

Anatomy28,32,33,35–37,41–43 Nucleus pulposus Synovial fluid

Cartilaginous endplates covering subchondral
bone endplates

Hyaline cartilage covering subchondral bone adjacent bones

Annulus fibrosus Capsule

Amphiarthrosic joint Diarthrosic joint

Embryonic
development32,33,35–39

Starts in week 5 in humans Starts in week 6 in humans

Notochord Forms the nuclei pulposi Mesenchyme and ectoderm Limb bud

Disappears in vertebrae

Sclerotome Consists of mesenchymal cells

Forms the vertebrae and outer
annulus fibrosus

Transition zone of notochord and sclerotome
in the inner annulus fibrosus

Secondary to somites that form through
sequential segmentation

Limb bud forms by appositional growth

Extracellular
matrix 35,44,46–48,51,55–58

Proteoglycans (mainly aggrecan) in the
nucleus pulposus (15%)

Proteoglycans (mainly aggrecan) in the cartilage (10-15%)

Elastine in the annulus fibrosus Elastine in the capsule

Collagen (20%) Mainly type II in the
nucleus pulposus

Collagen (10-20%) Mainly type II in the cartilage

Mainly type I in the
annulus fibrosus

Mainly type I in the capsule

Biomechanics 35,44,46,55,58 Hydrostatic pressure in the nucleus pulposus;
strain and shear in the annulus fibrosus

Hydrostatic pressure in the synovial fluid and cartilage;
longitudinal strain and shear in the capsule

Normal joint loads transferred to
endplates and vertebrae

Normal joint loads transferred to
underlying subchondral bone

Elastic deformation of disc Articulating surfaces

Stability by annulus fibrosus, posterior
elements, and spinal ligaments

Stability by ligaments and tendons

Stability by muscular force Stability by muscular forces

Cells59,61,62,64,69 Notochordal cells Chondrocytes

Chondrocyte-like cells
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these studies, it is likely that intervertebral disc degeneration is more

prevalent in patients with OA and vice versa, which further supports the

resemblance between both conditions.

4 | CLINICAL PERSPECTIVE ON
INTERVERTEBRAL DISC DEGENERATION
AND OA

Intervertebral disc degeneration is not just a disease of the cartilaginous

structures, but affects the whole intervertebral disc and adjacent struc-

tures, like the vertebrae, nerve roots, ligaments, muscles and spinal facets,

and there is an association with Modic changes (ie, changes in signal

intensity of endplates and subchondral bone on MRI in patients with spi-

nal degenerative diseases).74,131,137 The same applies for articular joints:

OA not only affects the AC, but involves the whole joint as it is accompa-

nied by bony changes, meniscal tears, synovitis, and muscle weak-

ness.25,81 Imaging confirms that the whole joint is affected, as both

conditions share the same characteristic radiological findings throughout

the entire joint: loss of joint space, subchondral sclerosis, and the forma-

tion of cysts and osteophytes4,16,129 (Figure 3A,B).

The degree of degeneration on X-rays, however, in both interver-

tebral disc degeneration and OA weakly correlates to clinical

symptoms.13,138–140 Clinical symptoms are similar in both DDD and

OA: pain, dysfunction and morning stiffness. For OA, these symptoms

are the three most important clinical criteria based on the diagnostic

guidelines of the American College of Rheumatology (ACR), the most

commonly used classification system for OA.128 These guidelines,

combined with patient history, physical examination and X-ray radio-

graphs, make OA easy to diagnose for clinicians. After diagnosis and

treatment following a clinical algorithm based on evidence-based

medicine and expert opinion, patients return to work rather soon.141

OA is even that well-known, that the same term is used for both the

process of degeneration and the accompanying disease by not only

clinicians and scientists, but also by patients and in society.

In contrast to OA, DDD is often disregarded as a risk factor for

function loss and disability associated with low-back pain,142 as widely

used classification criteria do not exist for DDD. As such, it is difficult

for clinicians to find a specific diagnosis when a patient presents itself

with low back pain.143 For example, the Dutch society for general

practitioners has a guideline for “Non-traumatic knee problems” (ie,

NHG guidelines), which mainly focuses on knee OA as a cause of

TABLE 2 Comparison of degeneration in the intervertebral disc and articular joint

Intervertebral disc Articular joint (eg, the knee)

Extracellular
matrix26,76,77,120–123

Degradation of the proteoglycans: Less fluid
attracted to nucleus pulposus

Degradation of the proteoglycans: Less fluid
attracted to the articular cartilage

Decrease in intradiscal pressure Decrease in intra-articular pressure

Shift to collagen type I: Nucleus pulposus
becomes more fibrous

Shift to collagen type I: Articular cartilage
becomes more fibrous

Biomechanics48,121,124 Reduced disc height Reduced joint space

Increase in shear stresses Increase in shear stresses

Less resistive to compressive loads Less resistive to compressive loads

Cells95–100 Inflammatory mediators: Production
of catabolic factors

Inflammatory mediators: Production
of catabolic factors

Catabolism by the chondrocyte-like
cells: Degradation of ECM

Catabolism by the chondrocytes:
Degradation of ECM

Caused by 58,74,75,78–94 Local
inflammation

Systemic
inflammation by

Diabetes Local
inflammation

Systemic
inflammation by

Diabetes

Obesity Obesity

Smoking Smoking

Mechanical
overloading

Mechanical
overloading

Inflammatory
factors93,100–109,125–127

TNF-α and IL-1β TNF-α and IL-1β

MMP 1–3, MMP 7–10, and MMP 12–14 MMP 1-3 and 7–14

ADAMTSs 4 and 5 ADAMTSs 4 and 5

TIMP 1–3 TIMP 1–3

Clinical symptoms12–14,128 Pain Pain

Dysfunction Dysfunction

Morning stiffness Morning stiffness

Radiological findings4,15,129,130 Formation of cysts and osteophytes Formation of cysts and osteophytes

Loss of joint space Loss of joint space

Subchondral sclerosis Subchondral sclerosis

Adjacent structures
involved25,74,81,131

Vertebrae Bone of tibia and femur

Facet joints Meniscal tears

Modic changes Synovitis

Nerve roots, ligaments and muscles Nerve roots, ligaments and muscles
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these problems. The guideline for “Non-specific low back pain,” how-

ever, mentions DDD only briefly as a possible cause, but is oversha-

dowed by other—relatively rare—conditions, like malignancies,

fractures, and spondylarthrosis. This lack of wide recognition and con-

secutive diagnosis means that there is little opportunity to develop

effective evidence-based treatment plans.

4.1 | Treatment

In both DDD and OA, no treatment is available that regenerates the origi-

nal tissue. Current treatments focus on symptomatic relieve, such as the

reduction of overloading and inflammation by physiotherapy and anti-

inflammatory drugs in early stage OA.144,145 Currently, physiotherapy

and anti-inflammatory drugs are only a postponement of surgical treat-

ment in OA and most patients eventually undergo arthroplasty.146,147

Most patients regain their mobility soon after surgery and remain free of

pain and disability for some 10 years.148 Arthroplasty in DD is less typical,

but artificial intervertebral discs are starting to show promising results,

although spinal fusion is still more common.149–151

Several regenerative therapies have been proposed for both dis-

eases, such as hydrogels, stem cell therapy or injectable

medications,20,125,152 but so far none has gained general acceptance.

Finding a cure to restore the cartilaginous structures is quite a challenge,

but in knee OA there are some advancements in regenerative therapies

(eg, by joint unloading), which demonstrate that cartilage does have some

intrinsic healing capacity.153–157 In DDD, however, no regenerative thera-

pies are present, neither clinically nor preclinically.

5 | SUMMARY

In this review, we showed that the cartilaginous structures of both

the human intervertebral disc and articular joint contain predomi-

nantly proteoglycans and collagen type II, resulting in a tissue that is

able to create hydrostatic pressure, endure compressive loads and

provide flexibility. Their roads to degeneration also show striking par-

allels: local inflammation takes place as a result of mechanical over-

loading or low grade systemic inflammation, and is characterized by

increased levels of inflammatory cytokines, mainly IL-1β and TNF-α.

These cause an upregulation of equivalent factors that decompose

the ECM (eg, MMPs 1-3, 7-10, and 12-14; and ADAMTSs 4 and 5)

and a downregulation of their inhibitors (eg, TIMP 1-3), which are sim-

ilar in both tissues. These results in a vicious cycle of tissue damage

and inflammation, causing cell death of the NP cells and chondrocytes,

increased in shear stress and decreased levels of proteoglycans and

collagen type II. When the healthy intervertebral disc and articular

joint degenerate, this is accompanied by identical radiological findings

such as loss of joint space, subchondral sclerosis, and the formation of

osteophytes, which cause pain and stiffness.

We also found some differences, mainly in anatomy, embryonic

development, cells and partly in their biomechanical properties. There-

fore, it would be inappropriate to claim that intervertebral disc and

articular joint and their degenerative conditions are identical. Never-

theless, some important parts of cellular behavior and ECM in the

human adult NP and AC show striking resemblance despite their

completely different origin, which suggests that the local mechanobio-

logical environment of the cell after birth has greater influence on its

behavior than its embryonic origin.

The biggest difference between both conditions, however, lies in

its awareness among health care professionals, patients and society.

OA is a well-accepted health problem in society.158 The condition is

no longer regarded as a “wear-and-tear” disease or patho-anatomical

finding,159,160 but as a common disease that disables the patient. Cli-

nicians are easily accessible and patients follow a clear, clinical algo-

rithm of diagnosis and treatment, despite the fact that the relation

between clinical symptoms in knee OA and radiographic images is also

doubtful.140 Still, clinicians often find it easier to relate pain to radio-

graphic changes in a single joint than in the lower back. The reason

may be that the relation between imaging and pain in articular joints is

thought to be much stronger and that the clear clinical algorithms with

knee, hip or ankle pain are specifically designed for diagnosing or

excluding OA. The clear, clinical algorithm that elderly patients with

joint pain follow in OA despite this weak correlation between symp-

toms and radiographic images, is in contrast to the unawareness, and

thus, undervaluation of DDD as a cause of low-back pain. The lack of

a specific diagnosis for low-back pain patients causes patients to feel

stigmatized.161,162 Most of the times, they end up consulting a para-

medic or psychologist, because no diagnosis is found, nor is there a

FIGURE 3 A and B, Radiological examples in the degenerated articular joint and intervertebral disc. Both OA (A) and DD (B) are radiologically

characterized by loss of joint space, the formation of osteophytes and subchondral sclerosis
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straight-forward clinical algorithm to follow for medical professionals

in primary care.

If the similarities between DDD and OA would be widely

acknowledged, the imbalance between both conditions can be

reduced. This may enhance the clinician-patient communication and

reduce the negative stigma on low-back pain. The knowledge on both

conditions could also be enlarged and finding regenerative therapeu-

tics may be accelerated, as it facilitates cross-fertilization of clinicians

and scientists involved in both intervertebral disc degeneration

and OA.

In conclusion, the human intervertebral disc and articular joint

are not identical, but their composition and process of degeneration

are remarkably similar. Intervertebral disc degeneration and OA both

follow a vicious cycle of degeneration, eventually resulting in

destruction of the intervertebral disc and articular joint, respectively.

However, there is a large imbalance between both conditions in

knowledge and awareness among patients, clinicians, researchers

and society. Acknowledging the similarities between the relatively

unknown DDD to its more famous counterpart OA may reduce this

imbalance, destigmatize patients by affiliating them with a well-

recognized disease, and lower the threshold for patients to visit a

clinician.
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