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Mathematical modeling has played a prominent and necessary role in the current coronavirus disease 2019 (COVID-
19) pandemic, with an increasing number of models being developed to track and project the spread of the disease, as
well as major decisions being made based on the results of these studies. A proliferation of models, often diverging
widely in their projections, has been accompanied by criticism of the validity of modeled analyses and uncertainty as
to when and to what extent results can be trusted. Drawing on examples from COVID-19 and other infectious dis-
eases of global importance, we review key limitations of mathematical modeling as a tool for interpreting empirical
data and informing individual and public decision making. We present several approaches that have been used to
strengthen the validity of inferences drawn from these analyses, approaches that will enable better decision making in
the current COVID-19 crisis and beyond.
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Mathematical Modeling and Coronavirus

Disease 2019

Since the emergence of coronavirus disease 2019 (COVID-
19) as a global pandemic, many policymakers have relied
on mathematical models to guide highly consequential
decisions about mitigation strategy, balancing the goals of
protecting health while limiting economic and social dis-
ruption. This endeavor can be especially challenging when
models disagree. For example, a model from the Institute
for Health Metrics and Evaluation (IHME) in April 2020
forecast around 60,000 total deaths from COVID-19 in
the United States during the first wave of the pandemic.1

This figure was passed before the end of April, with more
than 125,000 confirmed COVID-19 deaths reported by
July 1, at the end of the first wave.2 The IHME model was
reportedly influential in White House deliberations over
strategy,3 even as epidemiologists and modelers criticized

its projections as overly optimistic and methodologically

flawed.4–7 IHME has since made several major revisions in

response to such criticism,8 and their recent analyses have

projected more than 500,000 deaths by March 2021, simi-

lar to other prominent models. The IHME model is hardly

the only model to be received with skepticism.9–11 Early

in the pandemic, several models offered starkly different

projections for COVID-19 cases and deaths,12 and

months later, differences between the available models still

persist.13

Although these publicized disagreements may have

contributed to public mistrust of mathematical model-

ing,7 models remain essential tools for evidence synthesis,
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planning and forecasting, and decision analysis for infec-
tious disease policymaking. They enable formal and
explicit consolidation of scientific evidence on the many
factors relevant to a decision, and allow analysts to esti-
mate dynamic outcomes that would be difficult or impos-
sible to measure empirically, including the long-term
consequences of policy alternatives. Given the high level
of uncertainty around many important parameters (such
as the level and duration of immunity to COVID-19, the
duration of the latency and incubation periods, and
adherence to physical distancing, mask wearing, and
other mitigation measures), mathematical models can
be used to explore uncertainties around model inputs
and assumptions, as well as project plausible ranges for
each outcome of interest. These characteristics make
models highly valuable planning tools. By identifying
the assumptions and uncertainties to which decision
making is most sensitive, they can also be used to
prioritize research investments, describing the informa-
tion that is most important to collect to allow better
decision making.14

In the COVID-19 pandemic, prominent modeling
applications have been used to chart out possible worst-
case scenarios,15,16 shape decisions around major policies
such as physical distancing9,17,18 and testing,19,20 plan for
the deployment of public health resources,21–25 and infer
key epidemiological parameters describing how the epi-
demic might manifest in different settings.9,26 These dif-
ferent purposes shape decisions about model complexity
and approach, the level of precision required of model
results, and the extent to which modeling conclusions
will generalize to different situations or questions.

The Challenges of Modeling

In all cases, analysts constructing mathematical disease
models make decisions about how to represent partially
observed processes—such as disease natural history or

how the public will respond to a new disease threat—that

generate the consequences and outcomes of interest. Due

to imperfect mechanistic information, there can be multi-

ple defensible approaches for constructing and parame-

terizing models, all consistent with current evidence, but

that may nevertheless diverge in their future predictions.

Sensitivity of results to these design choices complicates

the interpretation of modeling studies. This interpreta-

tion has been made more challenging in the current pan-

demic, with rapid changes in the evidence base and the

pressing demand for definitive answers from the public

and policymakers. However, concerns over the validity

of modeling studies have long existed, and the current

debate about severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) modeling mirrors earlier discus-

sions in other disease areas.
Most modeling studies report results from a single

model, either by using fixed parameter values or by aver-

aging the results of multiple parameter sets.27 Although

estimates of uncertainty are sometimes presented, these

are typically used to show the stochastic variation in epi-

demic trajectories or the range of results produced with

alternative parameter values. However, when several

models analyze the same question, there can be large dif-

ferences in reported estimates not attributable to stochas-

tic or parametric uncertainty alone but to the modeling

approach adopted, modeling structural decisions, and

how empirical evidence is incorporated into the model.

For example, to evaluate the effectiveness of mass drug

administration for malaria control, Brady et al.28 com-

pared the expected reductions in malaria prevalence

using 4 well-established mechanistic models, all cali-

brated to the same transmission setting and examining

the same 16 intervention scenarios. As shown in Figure

1, while the models largely agreed on the ordering of

interventions, they diverged enormously in terms of the

effect size of any particular intervention and of the incre-

mental benefits of one intervention compared to another,

differences that would be critical to decision makers from

a benefit-harm or cost-effectiveness standpoint.
Even if there is agreement at a single point in time,

models may diverge in their predictions over other time

periods. To illustrate, in an analysis of tuberculosis inci-

dence and mortality over 2000–2025 in South Africa,

Houben et al.29 reported substantial divergence between

disease trends produced by 8 independently developed

models, as shown in Figure 2. Even though models had

been calibrated to fall within prespecified intervals for

2012, the comparison revealed great variation in modeled

disease trends. Models reporting steep increases in inci-

dence provided a different view of the epidemiological
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Figure 1 The percentage reduction in the all-age prevalence of Plasmodium falciparum malaria in the third year after mass drug
administration, as predicted by 4 different mathematical models (EMOD Disease Transmission Kernel [DTK], Imperial,
Mahidol Oxford Tropical Medicine Research Unit [MORU], Open Malaria), under 4 coverage scenarios and 4 administration
strategies. Re-created from figure in Brady OJ, Slater HC, Pemberton-Ross P, et al. Role of mass drug administration in
elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5(7):e680–7.
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Figure 2 The left panel shows projected tuberculosis (TB) incidence rates in South Africa over the period from 2000 to 2025
from 8 independent models (Harvard, Institut de Recherche pour le Développement [IRD], Stanford [SIPTM], University of
Georgia [UGA], Johns Hopkins [Hopkins], Australian Tuberculosis Modelling Network [AuTuMN], London School of Hygiene
and Tropical Medicine/Futures/TB Modelling and Analysis Consortium [TIME], Institute for Disease Modeling [IDM]). The

black dot and error bar represent the calibration target point estimate and range, respectively. All models were calibrated to the
target range for 2012. The right panel shows calibration target and model projections for TB mortality rates over 2000 to 2025.
The calibration target (range) for TB incidence was 1117 per 100,000 per year (1002, 1259). The calibration target (range) for TB
mortality was 220 per 100,000 per year (179, 270). Adapted from figure in Houben RM, Menzies NA, Sumner T, et al.
Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11
mathematical models. Lancet Glob Health. 2016;4(11):e806–15.
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situation compared to models predicting a steady state

or those showing declines.
In some rare examples prior to COVID-19, model

results have been checked against later empirical data.

Using data from South Africa, Eaton et al.30 reported on

a comparison between 10 modeled forecasts of human

immunodeficiency virus (HIV) prevalence and treatment

coverage and the findings of a subsequent national sur-

vey that reported the same outcomes. Figure 3 sum-

marizes these contrasts—while for some outcomes, the

model estimates were distributed around the survey

mean, for others, the estimates were systematically differ-

ent, with most or all modeled estimates falling to one

side of the survey confidence interval. Thus, while aggre-

gating the results of multiple models may reduce the

impact of misspecification by any single model, pooled

results will still be sensitive to any systematic biases.
Such modeling biases are more likely when evaluating

policies in novel and rapidly evolving epidemiological cir-

cumstances, such as those being considered for COVID-

19 control. For established policies and interventions,

accumulated evidence will document the realities of rou-

tine implementation, whereby policy impact can be less

than originally envisaged31 and can sometimes be harm-
ful.32 For new policies, these factors that limit effective-
ness may not be well described and harmful unintended
consequences not yet known. This may not be helped by
overreliance on early trials, which are typically conducted
in populations where greater impact is expected and
where interventions are provided with a level of fidelity
impractical in routine health services.33,34 Together with
publication bias, failure to rigorously monitor and vali-
date interventions, and the conscious or unconscious
advocacy of well-meaning researchers, systematic biases
in the modeling of novel policies can overestimate the
likely impact of these policies and systematically bias
policymakers in their favor.

Ways to Identify and Address Modeling Biases

As use of mathematical models has become more com-
monplace, approaches have evolved to guard against
modeling biases. First, individual studies may explore
how different modeling assumptions affect their projec-
tions.35 Another approach, somewhat akin to systematic
reviews, is that of model comparison studies, including
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Figure 3 The comparison of predicted outcomes from 10 transmission-dynamic human immunodeficiency virus (HIV) models in
South Africa and subsequently available national survey data from 2012. The outcomes are (A) HIV prevalence for adults aged
15 to 49, (B) HIV prevalence for women aged 15 to 49, (C) HIV prevalence for men aged 15 to 49, (D) ratio of women to men
covered by antiretroviral therapy, (E) HIV incidence rate for women aged 15 to 49, and (F) HIV incidence rate for men aged 15
to 49. For each outcome, the figure shows the difference between the survey value and model estimates, scaled to the width of the
survey confidence interval (shaded gray). Individual model estimates are shown as blue points, and the simple mean of these
estimates is shown with an orange line. Adapted from figures presented in Eaton JW, Bacaër N, Bershteyn A, et al. Assessment
of epidemic projections using recent HIV survey data in South Africa: a validation analysis of ten mathematical models of HIV
epidemiology in the antiretroviral therapy era. Lancet Glob Health. 2015;3(10):e598–608.
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some examples mentioned above. In these studies,

researchers compare projections from multiple models

and examine how any differences are related to modeling

assumptions. Recently, Drolet et al.36 conducted a review

of 115 such model comparison studies for vaccine-

preventable diseases. They found that, while methodolo-

gical heterogeneity made it difficult to draw quantitative

conclusions, these studies were valuable for identifying

tenets of good practice in modeling. Guidelines have

been proposed to standardize the process of model com-

parison,37 and within some disease areas, consensus gui-

dance has been developed on good modeling practices.38

A separate line of methodological research has exam-

ined the biases associated with parameter inference using

mechanistic computer models. This work demonstrates

that failures to account for model discrepancy39,40—an

imperfect fit between model outcomes and the data used

to fit them—may lead to parameter estimates and model

predictions that are overly precise and systematically

biased. The relevance of model discrepancy for health

policy analysis has also been explored.41 While formal

approaches have been developed to account for imper-

fect fit between model and calibration data,42,43 these

methods have infrequently been used in infectious dis-

ease modeling.
Many of the considerations discussed above pertain

to how a model’s outcomes are validated. However, the

value of such validation depends critically on the nature

of the data available for validation. As shown in Figure

2, models with different assumptions can produce

remarkably similar outcomes at certain points in time

while diverging at others. This partial consistency—

which may be used to argue that models agree—is irrele-

vant if the crucial policy questions relate to the time

period where results diverge. Similarly, justifying a mod-

el’s fitness for purpose by validating it against current

policy outcomes is insufficient if divergent results are

seen when models are used to forecast the results of a dif-

ferent policy under consideration. This issue—that the

model outcomes needed for decision making differ from

the outcomes that can be compared to other evidence—

complicates the task of model validation and renders

approaches like cross-validation44 less relevant for policy

modeling. As it is generally never possible to validate all

outcomes of interest (otherwise, why is a model being

used at all?), there will always be some assumptions

needed. Blanket claims of the ‘‘validity’’ of a model

should be viewed with suspicion.
Even if the validation of model outcomes is difficult, it

is still possible to interrogate model processes. One

advantage of mechanistic models (as compared to purely

statistical models) is that they attempt to reproduce the

underlying processes that generate observed outcomes,

such as disease natural history or the processes of provid-

ing health care. Because these intermediate calculations

are designed to represent real, physical processes, the

structures and parameters used to model these mechan-

isms can be critiqued and compared to external data.

For example, in a 2018 systematic review of over 300

tuberculosis transmission models,45 huge variation in

modeled disease risks was attributed to differences in the

representation of latent disease, a crucial part of TB nat-

ural history. Critically, all of these models could be cali-

brated to reproduce a particular incidence and mortality

profile but would produce very different results if used to

compare policy options. By comparing modeled disease

risks to empirical data, models that are inconsistent with

these data can be identified.
Model benchmarking and validation are frequently

undertaken by multimodel collaborations. In the United

States, the Centers for Disease Control and Prevention

(CDC) curates a set of (to date) 37 COVID-19 forecast-

ing models developed by independent research teams.46

These models have been compared against each other

and validated against reported data, as well as used to

project future hospitalizations and deaths. An ensemble

model has also been developed to combine the participat-

ing models.12 Comparable to a meta-analysis, an ensem-

ble model aims to improve predictive performance by

calculating a weighted average of the results of several

models, each of which may rely on different assumptions

and data.47,48 Weights are typically chosen to minimize

prediction error of the ensemble,49 but alternative weight-

ing schemes can prioritize other features if desired. This

COVID-19 ensemble provides forecasts for each US

state, and most of the component models are mechanistic

in nature. It has offered projections since early April, and

the true number of deaths for the United States has

mostly fallen within the model’s 95% credibility interval.

Other collaborations and repositories are also being

established to document the COVID-19 models that are

being developed and will facilitate later comparisons.50,51

The rapid accumulation of empirical data will provide

greater opportunities for model validation early in the

model development process, which may be enhanced by

the adoption of data assimilation frameworks.52,53 In set-

tings of rapid epidemiological change, validation may

only be possible after modeled results are in the public

domain. As such, use of models for real-time decision
making can be perilous, as with the influence of early

IHME forecasts over White House decision makers,

despite prominent critiques of the model.4–7,54

James et al. 383



Living with Modeling Uncertainty

In the rapidly evolving climate of the COVID-19 pan-

demic, there are major uncertainties around disease

dynamics and policy outcomes, as well as ample oppor-

tunity for models to ‘‘get it wrong.’’ We should expect

that the evidence base and epidemiological context will

continue to shift, sometimes making earlier modeled

results obsolete. Modeling is likely to remain prominent

as new policy questions arise, yet the uncritical accep-

tance of modeling results will not serve public health or

the field of modeling. Careful evaluation and compari-

son of results—and benchmarking against empirical

findings where possible—will be important for revealing

assumptions and potential biases, as well as spurring

progressive improvement in modeling approaches.
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