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A human coronavirus OC43-derived polypeptide
causes neuropathic pain
Veronica I Shubayev1,2, Jennifer Dolkas1,2, Glaucilene Ferreira Catroli1,2 & Andrei V Chernov1,2,*

Abstract

Human coronaviruses have been recently implicated in neurologi-
cal sequelae by insufficiently understood mechanisms. We here
identify an amino acid sequence within the HCoV-OC43 p65-like
protein homologous to the evolutionarily conserved motif of mye-
lin basic protein (MBP). Because MBP-derived peptide exposure in
the sciatic nerve produces pronociceptive activity in female
rodents, we examined whether a synthetic peptide derived from
the homologous region of HCoV-OC43 (OC43p) acts by molecular
mimicry to promote neuropathic pain. OC43p, but not scrambled
peptides, induces mechanical hypersensitivity in rats following
intrasciatic injections. Transcriptome analyses of the corre-
sponding spinal cords reveal upregulation of genes and signaling
pathways with known nociception-, immune-, and cellular energy-
related activities. Affinity capture shows the association of OC43p
with an Na+/K+-transporting ATPase, providing a potential direct
target and mechanistic insight into virus-induced effects on energy
homeostasis and the sensory neuraxis. We propose that HCoV-
OC43 polypeptides released during infection dysregulate normal
nervous system functions through molecular mimicry of MBP, lead-
ing to mechanical hypersensitivity. Our findings might provide a
new paradigm for virus-induced neuropathic pain.
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Introduction

Human coronaviruses (HCoV) causing mild and severe respiratory

distress syndromes show evidence for the peripheral and central

nervous systems (PNS/CNS) involvement (Burks et al, 1980; Talbot

et al, 1993; Arbour & Talbot, 1998; Arbour et al, 1999; Edwards et

al, 2000; Glass et al, 2004; St-Jean et al, 2004; Jacomy et al, 2006;

Dub�e et al, 2018), potentially contributing to neurological conditions

(Boziki et al, 2020; Guti�errez-Ortiz et al, 2020; Koralnik & Tyler,

2020; Manji et al, 2020; Montalvan et al, 2020; Romoli et al, 2020;

Troyer et al, 2020; Ermis et al, 2021), including Guillain–Barr�e syn-

drome (Kilinc et al, 2020; Koralnik & Tyler, 2020; Montalvan et al,

2020; Sancho-Salda~na et al, 2020; Zhao et al, 2020; Koike et al,

2021), multiple sclerosis (Burks et al, 1980; Cook & Dowling, 1980;

Talbot et al, 1993; Edwards et al, 2000; Boziki et al, 2020), and

states of neuropathic pain (Kemp et al, 2020; Mao et al, 2020;

Widyadharma et al, 2020; Attal et al, 2021; McFarland et al, 2021;

Şahin et al, 2021). The virus-mediated pathologies can be accompa-

nied by damage to the myelin sheath of the nervous system and

cause rapid-onset demyelination (Croxford et al, 2005).

Cationic myelin basic protein (MBP) controls myelin compaction,

cytoskeletal interactions, and calcium homeostasis through electro-

static interactions with anionic lipids and proteins (Boggs & Moscar-

ello, 1978; Boggs, 2006). MBP is also a major autoantigen

contributing to autoimmune demyelinating disorders, including

Guillain–Barr�e syndrome and multiple sclerosis (Kadlubowski &

Hughes, 1979; Musse et al, 2006). Molecular mimicry between host

and viral proteins (Roos, 1983; Weise & Carnegie, 1988; Adelmann

& Linington, 1992; Stohlman & Hinton, 2001; Getts et al, 2013),

including myelin sheath and HCoV proteins (Wege et al, 1983; Tal-

bot et al, 2001; Savarin & Bergmann, 2017), are thought to contrib-

ute to the etiology of these conditions.

Our earlier work (Kobayashi et al, 2008; Kim et al, 2012; Liu

et al, 2012; Ko et al, 2016; Shubayev et al, 2016, 2018; Hong et al,

2017; Chernov et al, 2018, 2020; Remacle et al, 2018b) implicated

immunodominant MBP regions, proteolytically released after PNS

damage, in initiating mechanical hypersensitivity through autoreac-

tivity targeted at myelin on mechanosensory neurons. MBP84–104 pep-

tide injection into an intact sciatic nerve was sufficient to induce

sustained pain (Liu et al, 2012; Ko et al, 2016) via transcriptional

reprogramming of metabolic, pronociceptive, and inflammatory sig-

naling in the segmental dorsal root ganglia (DRG) and spinal cord in

sex-specific manner (Chernov et al, 2020). MBP84–104 amino acid

sequence conservation is critical for its interactions, trafficking, and

pronociceptive activity (Chernov et al, 2018).

In this report, we identified a coronavirus HCoV-OC43-encoded

amino acid sequence with a striking similarity to MBP84–104. Past

research provided us with biochemical evidence that proprotein

convertase furin and/or matrix metalloproteinase (MMP) inflammatory
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proteolysis releases cryptic MBP fragments implemented in multi-

ple sclerosis (Shiryaev et al, 2009) and PNS injury (Kobayashi

et al, 2008; Kim et al, 2012; Liu et al, 2012; Hong et al, 2017). We

propose that MBP-like polyproteins generated during HCoV infec-

tion, similarly, mediate biological activities in PNS/CNS that pro-

mote neuropathic pain. Using a synthetic peptide specific to the

HCoV-OC43/MBP84–104 homologous region, we tested its activity

in mechanosensitivity behavior upon sciatic nerve injection

followed by RNA-seq, bioinformatics, and proteomic analyses of

the unique DRG and spinal cord molecular signatures relative to

the scrambled peptide.

Results

Identification of HCoV-OC43 fragment with high amino acid
homology to MBP

We have identified the nociceptive activity of the PNS injury-

released MBP-derived peptides with highly conserved sequence

motifs (Liu et al, 2012; Ko et al, 2016; Hong et al, 2017; Chernov

et al, 2018). The MBP84–104 amino acid sequence, corresponding to

positions 84–104 of the human classic MBP isoform 4, was used to

search for homologous sequences in public depositories of clinical

and environmental coronavirus isolates. Position-specific iterative

PSI-BLAST algorithm (www.ncbi.nlm.nih.gov/blast) (Altschul et al,

1997; Altschul & Koonin, 1998) was applied with a standard thresh-

old of 0.005. As a result, MBP84–104 homologous regions were

detected within six individual polyproteins from HCoV-OC43, canine

respiratory coronavirus, bovine coronavirus E-AH65, Bat SARS-CoV

Rm1/2004 and CoV279/2005, and nucleocapsid protein from porcine

epidemic diarrhea (corona)virus (Fig 1A). Because of its relevance to

human disease, we selected the amino acid sequence of HCoV-OC43

ORF1ab polyprotein for further analysis. A highly homologous 12

amino acid sequence IVHFFKTFTTST (OC43656–668) is localized at

positions 656–668 of ORF1ab (at positions 409–421 of p65-like, also

known as mouse hepatitis virus (MHV) p65-like protein) (Fig 1B).

Structural similarity revealed by predictive analysis

Although MBP is an intrinsically disordered protein, several regions

exhibit secondary structure, including the conserved MBP84–104

(Ahmed et al, 2012). Predictions conducted with MBP isoform 4

sequence using AlphaFold2 (Jumper et al, 2021; Tunyasuvunakool

et al, 2021) supported these conclusions. Because experimentally

resolved 3D structures of HCoV-OC43 p65-like were not available, we

predicted structures of both OC43656–668 and MBP84–104 using Alpha-

Fold2 using identical computational parameters. 3D structure models

with the highest scores were compared by alignment. A remarkable

structural similarity was observed between MBP84–104 and OC43656–668

(Fig 1C). Each peptide is folded into a characteristic N-terminal

α-helix and unstructured C-terminal tail. The aligned α-helices com-

prised the VHFFK motif, including the invariable histidine-89

(Chernov et al, 2018). Less conserved C-terminal tails consisted of

multiple threonine/serine residues in close proximity to α-helix. When

AlphaFold2 predictions were performed with the full-length proteins

(human classic MBP, isoform 4, NP_001020263; HCoV-OC43 p65-like,

YP_009555238.1), predicted structures of the corresponding protein

regions and the respective peptides were highly similar. We concluded

that OC43656–668 exhibited high amino acid sequence homology and

structural similarity to the pronociceptive MBP84–104 peptide.

HCoV-OC43-derived peptide causes persistent mechanical
hypersensitivity in female rats

We have shown repeatedly that MBP84–104 peptide produces

mechanical allodynia with no effect on thermal sensitivity (Liu et al,

2012; Ko et al, 2016) likely due to its myelin-dependent pronocicep-

tive activity on myelinated A-afferents, sparing unmyelinated heat-

sensitive nociceptors (Shubayev et al, 2016). Thus, to test the ability

of the OC43-derived peptide to regulate mechanical hypersensitivity

characteristics to the homologous MBP84–104, we used a synthetic

20-amino acidOC43653–673 peptide (OC43p, VSKIVHFFKTFTTSTALAFA),

and scrambled peptides OC43p-SCR1 and OC43p-S2 designed to

mismatch the MBP84–104 amino acid sequence. Female rodents dis-

play robust mechanical hypersensitivity to intrasciatic MBP84–104

relative to males (Chernov et al, 2020). Female rats received a sin-

gle bolus intrasciatic injection (Fig 2A) of OC43653–673, scrambled

peptides (10 µg in 5 µl, each), or PBS vehicle (5 µl) (n = 6/group),

followed by von Frey testing. The rats displayed a significant

reduction in the mechanical force required to evoke hind paw

withdrawal after OC43653–673 injection, and the effect was sustained

during the 3-week observation period (Fig 2B and C). In contrast,

the withdrawal thresholds remained significantly higher in rats

injected with OC43p-SCR and alternative OC43p-S2 peptides, or

PBS. In agreement, our prior studies found no hypersensitivity aris-

ing from scramble MBP84–104 peptide sequences and PBS vehicle in

the equivalent experimental designs (Liu et al, 2012; Ko et al,

2016; Hong et al, 2017; Chernov et al, 2020). No significant contra-

lateral hypersensitivity was observed in response to either peptide.

Unstimulated pain-like behavior was measured according to the

method described by Attal et al (1990) with modifications. Rats

injected with OC43p exhibited slightly higher unstimulated pain-

like behavioral indices, although differences from the control ani-

mals were not statistically significant (Fig 2D). We concluded that

OC43p, like MBP84–104, induced a robust and sustained pain

mechanical hypersensitivity in female rats.

Nerve injections of OC43p induced vast transcriptional changes
in the spinal cord

Next, genome-wide transcriptomes were compared in animal groups

injected with either OC43p or OC43p-SCR control. Total RNAs from

ipsilateral L4–5 DRG and lumbar spinal cord (dorsal quarter) were col-

lected at day 21 post-injection and analyzed by RNA-seq. We detected

17 up- and 21 downregulated differentially expressed genes (DEGs,

adjusted P (Padj) < 0.1) in DRG in the OC43p group relative to the

scrambled-injected group (Fig 3A). In the spinal cord, 724 up- and 160

downregulated DEGs (|Log2(fold change (FC))| > 1, Padj < 0.1) were

recorded (Fig 3B, Dataset EV1). The principal component analysis

(PCA) (Fig 4A) attributed 87.8% of the variance (PC1) to the effect of

peptide injections, highlighting LOC108348215, Col8a1, Six1, Slc26a7,

Kcnj13, and Tlr12 genes as the most potent drivers of variation.

Hierarchical clustering (Fig 4B) showed the most significant DEGs

ranked by Log2FC between the OC43p and OC43p-SCR groups in the

spinal cord. A remarkable enrichment of transcripts encoding many
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voltage-gated ion channels was observed in the OC43p group. Calcium

(Cacna2d1, Cacnb4, Cacna1c, Cacna1d, Cacng4, Cacna1e, Cacna1a,

and Cacna1b) and sodium (Scn7a, Scn3a, Scn1a, and Scn2a) voltage-

gated channels exhibited an increase. A set of potassium voltage-gated

channels was upregulated, including Kcnq3, Kcna3, Kcnj13, Kcnk9,

Kcnma1, Kcnh7, Kcnj3, and Kcnh5. Transient receptor channels

(Trpm3, Trps1, Trpc5, and Trpm7), nicotinic receptors (Chrnb3,

Chrna7, Chrna5, and Chrnb2), muscarinic Chrm2 receptors, glutamate

ionotropic NMDA-type receptor Grin2A, glutamate ionotropic AMPA-

type receptors (Gria2 and Gria1), and GABA receptors (Gabrg3,

Gabra2, Gabra3, and Gabrg2) were significantly upregulated.

Crucial innate immune system genes encoding pattern-recognition

receptors (PRPs), including Toll-like receptors (TLRs) Tlr4, Tlr7, Tlr8,

Tlr12, and Tlr13, exhibited upregulation. Interleukin receptors Il17,

Il1, Il20, Il7, Il2, and Il6, and chemokine receptors Cx3cr and Ccr5

increased, although no increase in cytokine ligands was detected.

In female rats, which are susceptible to MBP peptide-induced

pain (Chernov et al, 2020), we detected a large number of X-linked

upregulated DEGs in response to OC43p (Fig 4C). The expression of

LOC100911498 (a homolog of XIST non-coding RNA in rats), a

marker for Xi in females, exhibited upregulation. Another epigenetic

factor crucial for the Xi state, the X-linked chromatin remodeling

helicase II (Atrx), also demonstrated robust upregulation. Taken

together, we concluded that OC43p induced multifaceted transcrip-

tional responses in the PNS/CNS consistent with pronociceptive and

proinflammatory signaling.

Gene ontology (GO) analysis identified pronociceptive signaling
pathways activated by OC43p

OC43p-regulated signaling pathways were predicted using the Inge-

nuity Pathway Analysis (IPA) knowledgebase and DEGs with
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Figure 1. Amino acid sequence homology and structural similarity of OC43p and MBP84–104.

A MBP84–104 homology search in Coronaviridae (taxid: 11118) datasets by position-specific iterative (PSI)-BLAST is displayed on a distance tree with a maximum
sequence difference of 0.85.

B Schematic organization of HCoV-OC43 coronavirus ORF1ab polyprotein. Triangles indicate the canonical cleavage sites. Amino acid sequence alignment of
homologous MBP84–104 and OC43p is plotted using Clustal Omega.

C 3D structure of MBP84–104 (blue) and OC43p (yellow) according to AlphaFold2 predictions. Key amino acid residues are labeled by single-letter codes and numbers
corresponding to the relative position in the human classic MBP, isoform 4 (NP_001020263), and HCoV-OC43 p65-like (YP_009555238.1). Structures are visualized in PyMOL.
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|Log2FC| > 1 and Padj < 0.1. Pathogen response-specific pathways,

FXR/RXR, LXR/RXR, T-cell receptor signaling, and immune response-

specific pathways were affected in DRG (Fig 5A). In the spinal cord,

due to a robust upregulation of multiple voltage- and ligand-gated

ion channels, signaling pathways involving neural signal transduc-

tion were predictably activated (Fig 5B). Notably, the activation of

Mechanical hypersensitivity

A

B C

D

DRG

Sciatic nerve

injection

Spinal cord

0

5

10

15

0 1 3 5 7 10 15 18 21
Time after IS injection, days

Ta
ct

ile
 th

re
sh

ol
d,

 g

***
****

****

0

100

200

OC
43

p

OC
43

pS
CR

HC
OV

2p

PB
S

Ar
ea

 u
nd

er
 th

e c
ur

ve

**** ** *** ****

OC43p-SCR
OC43p-S2

Injected peptides:
OC43p

PBS

0.2

0.4 Observational behavior

Un
sti

m
ula

ted
 pa

in-
lik

e 
be

ha
vio

r i
nd

ice
s

0 144 20

Time after injection, days

Figure 2. OC43p is a prospective determinant of pronociceptive activity.

A A schematic of the injections into the sciatic nerve followed by ipsilateral DRG and dorsal spinal cord tissue analysis.
B von Frey testing in female rats (n = 6/group) at 1–21 days after injections of OC43p peptide, respective control scrambled OC43p-SCR, OC43p-S2 (10 μg in 5 μl, each)

peptides, and PBS vehicle. Responses were recorded in ipsilateral hind paws. Mean tactile withdrawal thresholds are in gram force (g) � standard deviation; two-way
analysis of variance (ANOVA) with Bonferroni post hoc test: **P ≤ 0.005; ***P ≤ 0.0005; and ****P ≤ 0.00005.

C Areas under the curve (AUC) were calculated for days 1–21 (n = 6 animals/group). Bars show the mean AUC and standard deviations (error bars) for each injection
group. Data were analyzed by two-way ANOVA with Tukey’s post hoc test: ***P ≤ 0.0005; ****P ≤ 0.00005.

D Observational assays of unstimulated pain-like behavior. Assays were conducted in female rats (n = 6/group) after injection of OC43p (red), OC43p-SCR (purple), or
PBS (green) on days 4, 14, and 20 post-injection. Each animal was video-recorded for 2 min three times within a 2 h period of time. Hind paw positions were scored
to calculate unstimulated pain-like behavioral indices. Index means and standard deviation are shown; two-way ANOVA with Tukey’s post hoc test was used for
group comparisons.
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synaptogenesis signaling, CREB signaling in neurons, neuropathic

pain signaling in dorsal horn neurons, glutamate receptor signaling,

calcium signaling, opioid signaling, and endocannabinoid neuronal

synapse pathway was expected in connection with persistent pain

hypersensitivity demonstrated by behavioral tests.

The activation of estrogen receptor signaling and androgen sig-

naling pathways due to robust Esr2 and Ar upregulation was

recorded. The activation of TLR signaling, neuroinflammation

signaling pathway, IL-2/IL-6/IL-8, and PI3K signaling in B lympho-

cytes was low to moderate relative to other pathways. It is worth

noting the activation of the long-coding RNA HOTAIR regulatory

pathway was previously not associated with pain signaling. Path-

ways related to mitochondrial function, metabolic pathways, and

protein synthesis demonstrated a decline. Remarkably, prolactin sig-

naling was elevated (Fig 5B) due to more than twofold elevation of

genes encoding prolactin receptor dimer (Prlp/Prlr), Irs1, potassium
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Figure 4. Transcriptome changes in the spinal cord.

A Principal component (PC) analysis of DEGs in OC43p (red) and OC43p-SCR (blue) groups (n = 3/group).
B Hierarchical clustering plot of 548 significant upregulated DEGs (Log2FC > 1, Padj < 0.1, n = 3/group). Heatmap color scheme corresponds to logarithms of variance

stabilized counts.
C Hierarchical clustering plot of X-linked upregulated DEGs (Log2FC > 1, Padj < 0.1, n = 3/group).
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channel Kcnma1, PI3K family member Pik3c2a, protein kinase C

epsilon type (PKCε), Irs1, and Socs4 (Fig 6A).

The most significant DEGs were attributed to molecular functions

(MFs) using the GO database to enrich the biological interpretation.

The best-match average (BMA) distance plot represents the proxim-

ity of the eleven MF clusters (Fig 6B) summarized on the distance

heatmap (Fig 6C). A broad range of cellular functions was affected,

including transcriptional regulation, ribosome activity, binding to

fatty acids, hormones, and ECM (collagen and fibronectin). We

identified signaling pathways, including voltage-gated ion channel

activity, ligand-gated channel activity, and cytokine receptor activity

directly relevant to pain hypersensitivity and nociception.

OC43p affinity to the Na+/K+-transporting ATPase complex

To identify proteins potentially interacting with OC43p, we

conducted the affinity capture in rat protein lysates (spinal cord)

using biotinylated OC43p and OC43p-SCR peptides bound to para-

magnetic beads. To reduce non-specific binding, in the protein

lysates we preincubated with OC43p-SCR beads. Beads were

removed and affinity capture was conducted with OC43p-bound

beads. Bound proteins were digested with trypsin, digestion prod-

ucts were separated by liquid chromatography, and analyzed by

mass spectrometry. Strikingly, Atp1a1, Atp1a2, Atp1a3, and Atp1b1

proteins produced high significance scores and peptide coverages

32% to 57% (Fig 7A). These proteins represent subunits of

the Na+/K+-transporting ATPase complexes (Fig 7B) (http://

geneontology.org). According to RNA-seq, the expression of the

ATPase subunits is high in the spinal cord and DRG but lower in sci-

atic nerves (Fig 7C). Protein immunoblotting further confirmed that

Atp1a1 and Atp1a2 interaction is specific to OC43p (Fig 7D; Atp1a3

and Atp1b1 were not probed).

Discussion

Neurotropic viruses (Johnson, 1999; Dahm et al, 2016; Maximova

et al, 2021), including HCoVs (Burks et al, 1980; Talbot et al, 1993;

Arbour & Talbot, 1998; Arbour et al, 1999; Edwards et al, 2000;

Glass et al, 2004; St-Jean et al, 2004; Jacomy et al, 2006; Dub�e et al,

2018), expose cells to overwhelming quantities of viral proteins

and, due to molecular mimicry with host proteins (Roos, 1983;

Wege et al, 1983; Weise & Carnegie, 1988; Adelmann & Linington,

1992; Stohlman & Hinton, 2001; Talbot et al, 2001; Getts et al, 2013;

Savarin & Bergmann, 2017), may disrupt cellular protein–protein/
RNA/DNA/lipids interactions in the host. Expectedly, HCoV

sequence evolution continues to introduce novel amino acid

sequence patterns, which may eventually include novel HCoV

strains, such as SARS-COV-2. Molecular mimicry can assist the virus

in hijacking host-specific functions to (i) mediate immune and

neuroimmune responses in the upstream, uninfected regions of the

nervous system by axonal trafficking; and (ii) directly affect tran-

scriptional programs in the PNS/CNS neurons in favor of virus sur-

vival and immune system evasion. Interference with the PNS/CNS

regulatory networks leads to detrimental long-term neurological

health outcomes (Burks et al, 1980; Cook & Dowling, 1980; Talbot

et al, 1993; Edwards et al, 2000; Boziki et al, 2020; Guti�errez-Ortiz

et al, 2020; Kemp et al, 2020; Kilinc et al, 2020; Koralnik & Tyler,

2020; Manji et al, 2020; Mao et al, 2020; Montalvan et al, 2020;

Romoli et al, 2020; Sancho-Salda~na et al, 2020; Troyer et al, 2020;

Widyadharma et al, 2020; Zhao et al, 2020; Attal et al, 2021; Koike

et al, 2021; McFarland et al, 2021).

As a proof of concept, the perspective synthetic peptide used in

this study was derived based on strong sequence and structure

homology to MBP84–104. The OC43/MBP homologous region is local-

ized at positions 407–422 of the MHV p65-like protein of HCoV-

OC43 (GenBank ID YP_009555247), and sequences with such iden-

tity are unknown in other (corona)viruses to date. The expression

and proteolytic processing of this protein product during viral infec-

tions as part of the pp1ab polyprotein were demonstrated in cells

infected with coronaviruses and related viruses (reviewed in Weiss

et al, 1994). We propose that nociceptive activity can be exhibited

by polypeptides of varying lengths. Our investigation centers on the

MBP homologous sequence accessible for interaction with respec-

tive host protein targets. It is noteworthy that peptide epitopes were

used in a conceptually similar study that established high-affinity

molecular mimicry based on a short amino acid homologous motif

shared by the Epstein–Barr virus-encoded transcription factor

EBNA1, and host-encoded GlialCAM protein was implicated in mul-

tiple scleroses (Lanz et al, 2022). Future translational and clinical

studies in patients with diagnosed infections can ascertain the pre-

cise identity of the pronociceptive viral polypeptides.

In MBP, the algesic sequence is buried inside the intact protein

and becomes exposed for interaction after proteolytic degradation of

MBP by cellular peptidases as we shown previously. If the MBP-like

viral sequences are readily exposed to the interface of unprocessed

◀ Figure 5. Canonical pathways affected by OC43p.

A, B Canonical pathways (A, DRG and B, spinal cord) identified by IPA are ranked by P (-log10P). Positive and negative z-scores (in the spinal cord) indicate upregulation
or downregulation, respectively, according to the color scale. Bar colors correspond to significant activation (orange), deactivation (blue), or no change (gray) in
pathway regulation.

▸Figure 6. Pronociceptive signaling induced by OC43p in rat spinal cord.

A Prolactin signaling pathway plotted in IPA. Red and green colors indicate up- and downregulated DEGs, respectively, relative to thresholds (|Log2FC | > 0.58,
Padj < 0.1). Orange arrows indicate activation of signaling.

B Gene ontology (GO) molecular function clusters are schematically shown on a two-dimensional scaling plot. Cluster groups 1–11 are marked by colors and explained
on panel 6C. Clusters of potentially pronociceptive molecular functions are circled.

C Molecular function clusters are summarized on the best-match average (BMA) distance heatmap. Heatmap colors correspond to a number of GO terms in each
cluster.
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or partially processed viral proteins, further proteolytic cleavage of

the viral polypeptides to shorter peptides is not a prerequisite of

molecular mimicry activity. We hypothesize that viral infection-

related proteolytic mechanisms, such as the inflammatory propro-

tein convertase/MMP proteolytic pathway (Shiryaev et al, 2009),

and viral intrinsic proteinases, can further stimulate a release of

cryptic viral peptidic fragments with biological activities. Intrigu-

ingly, recent evidence that MMP2/MMP9 can activate the SARS-

CoV-2 fusion (preprint: Benlarbi et al, 2022) in cells expressing high

levels of MMPs provides a connection with the role of these MMPs

in nerve injury and pain (Shubayev et al, 2006; Chattopadhyay et al,

2007; Kobayashi et al, 2008; Kim et al, 2012; Liu et al, 2012;

Remacle et al, 2015, 2018a).

The N-terminal invariable 87-(V/I)VHFFK-92 motif of MBP84–104

and OC43p is folded into structurally similar α-helices. The unstruc-

tured C-terminal tails included 3–5 threonine and serine residues,

subject to enzymatic phosphorylation by MAPK, CDK5, GSK3

(Pelech, 1995; Chernov et al, 2018), and other kinases. Dynamic

phosphorylation/dephosphorylation by cellular kinases can engage

a regulatory switch critical for the peptide’s biological activity. We

propose that the bipartite characteristics of the MBP84–104 and

OC43p peptides may be crucial to promoting pronociceptive and
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Figure 7. OC43p affinity to the Na+/K+-transporting ATPase complex.

A Mass spectrometry identification of the Atp1 family of proteins captured by biotinylated OC43p peptide in rat dorsal spinal cords from female rats (n = 2/groups).
Negative log10P – confidence score and peptide sequence coverage (%) were calculated in PEAKS StudioTM 8.5 (BSI).

B Relationship of ATPase subunits identified in string-db.org. Lines indicate evidence-based interactions.
C ATPase gene family expression in sciatic nerves, DRG, and spinal cords of naïve rats. TPM (transcripts per kilobase million) measures the transcription frequency of a

specific gene by RNA-seq (n = 3/group). Blue to red color intensity corresponds to Log2(TPM).
D Affinity capture of proteins by OC43p- and OC43-SCR-bound magnetic beads. Specific reactivity to Atp1a1 and Atp1a2 was detected by protein immunoblotting using

specific primary antibodies. OC43p-SCR-coated and uncoated beads (Beads) were used to control non-specific binding. Spinal cords were isolated from male (M) and
female (F) rats (n = 2/group). Input protein lysates (right side, in duplicates) served as loading controls. Approximate molecular weights (in kDa) are indicated by
arrows.
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other neuropathological activity. We identified an intriguing affin-

ity of OC43p to the Na+/K+-transporting ATPase complex responsi-

ble for electrochemical cation gradient across the plasma

membrane and electrical excitability in the nervous system. The

ATPase’s multiple subunits have been implicated in Charcot–
Marie–Tooth disease, peripheral neuropathies, neuromuscular dis-

orders (reviewed in Clausen et al, 2017), and inflammation-

induced mechanical allodynia (Wang et al, 2015). In the context of

virus–host interaction, based on our transcriptomics analysis and

affinity capture assay we hypothesize that OC43p can directly

affect ion transport and aberrant neuroplasticity leading to persis-

tent mechanical allodynia.

We demonstrated that OC43p induced persistent pain hyper-

sensitivity in female rats. Females are more susceptible to devel-

oping chronic pain states as compared to males, including MBP-

induced pain in rodents (Chernov et al, 2020). Bioinformatics

analysis of RNA-seq data illuminated pronociceptive transcrip-

tional changes in the dorsal spinal cord established within three

weeks after sciatic nerve injection. Supporting the observed pain

effects, peripheral terminals of nociceptor neurons and spinal

higher-order neurons in the dorsal spinal cord increased expres-

sion of a broad spectrum of ion channels in response to OC43p.

This observation was consistent with its potential role in neuron

excitability in the pain sensation (Suzuki & Dickenson, 2000;

Julius & Basbaum, 2001; Kidd & Urban, 2001). Our prior observa-

tions of mechanical hypersensitivity were not accompanied by

thermal hyperalgesia in response to the homologous MBP84–104

peptide (Liu et al, 2012; Ko et al, 2016) consistent with the model

of a myelin-dependent pronociceptive activity on myelinated A-

afferents, sparing unmyelinated heat-sensitive nociceptors

(Shubayev et al, 2016).

The proallodynic MBP84–104 activity and the downstream sig-

naling are sexually dimorphic (Chernov et al, 2020). In agree-

ment, upregulation of sex hormone receptors Esr2 and Ar in

females in response to OC43p predicts activation of the estrogen

and androgen signaling pathways, respectively, and potentially

virus-induced hypersensitivity. Upregulated cytokine receptor

genes and respective signaling pathways outlined the mechanistic

link between Esr2, neuroimmune properties of glia, and neuronal

excitability as a characteristic of sustained neuropathic states.

Accordingly, activation of prolactin signaling (Patil et al, 2019)

and the regulatory role of the X chromosome in immunity,

(neuro)-inflammation, and neuropathic pain (Syrett et al, 2019;

Shenoda et al, 2021; Tang et al, 2021) contributed to the female-

specific pain response. Accordingly, we observed unexpected

upregulation of the XIST homolog and other X-linked epigenetic

factors. The role of sexual dimorphism in coronavirus-related

chronic pain requires focused investigation using both female and

male animals.

To summarize, our data strongly support the pronociceptive bio-

logical activity of OC43p due to molecular mimicry mechanisms to a

neural-specific host protein, MBP. We propose that HCoVs evolve

their encoded protein sequences to mimic host proteins in order to

hijack cellular programs related to immune, metabolic, and cellular

energy functions in the somatosensory nervous system. The HCoV

peptide’s identification in clinical specimens, their pronociceptive

properties, and pathobiochemical processes of their release consti-

tute topics of perspective research.

Materials and Methods

Peptides

Peptides OC43p (VSKIVHFFKTFTTSTALAFA), OC43p-SCR

(VFIAHSVKFTKSFTLATTFA), and OC43p-S2 (DNPVLHYFASTEKSN)

were synthesized with > 95% purity, N-terminal acetyl, and

C-terminal amide groups. Trifluoroacetic acid was removed after

synthesis, and counterions were exchanged for acetates. Biotin-

tagged peptides were synthesized with N-terminal biotin modifica-

tions. Peptides were dissolved in sterile PBS (vehicle). Key reagents

and resources are described in Table EV1.

Antibodies

Antibodies used for protein immunoblotting were as follows: anti-

Na+/K+-transporting ATPase α-1 antibody, clone C464.6 ZooMAb®

mouse monoclonal IgG (Millipore Sigma, Cat. no. ZMS1029, used at

1:5,000 dilution); rabbit polyclonal anti-Na+/K+-transporting

ATPase α-2 antibody (Millipore Sigma, Cat. no. 07-674, at 1:2,500

dilution); cross-adsorbed donkey anti-rabbit, horseradish peroxidase

(HRP)-conjugate (Thermo Fisher, Cat. no. 0031458, at 1:5,000 dilu-

tion); and goat anti-mouse IgG (H + L) HRP-conjugate (Bio-Rad,

Cat. no. 1706516, at 1:5,000 dilution).

Amino acid homology search

Amino acid sequence homology search was conducted using

position-specific iterative PSI-BLAST tool (www.ncbi.nlm.nih.

gov/blast) (Altschul et al, 1997; Altschul & Koonin, 1998)

within NCBI (www.ncbi.nlm.nih.gov), VIPR (www.viprbrc.org),

and GISAID SARS-CoV-2 mutant variants (www.gisaid.org)

depositories.

Protein structure predictions

AlphaFold2 (Jumper et al, 2021) in ColabFold (preprint: Mirdita et

al, 2021) with multiple sequence alignments generated by MMseqs2

was used to predict 3D structure. Predicted models were aligned,

processed, and visualized in PyMOL (www.pymol.org).

Animal procedures

Sprague Dawley female rats (8–10 weeks old) were obtained from

Envigo and housed in a temperature-controlled room (~22°C), on a

12-h light/dark cycle, and with free access to food and water. All

procedures were conducted during the daytime. Under isoflurane

anesthesia, the common sciatic nerve was exposed unilaterally at

the mid-thigh level. A single bolus injection of the peptides (10 µg
in 5 μl vehicle) into a nerve fascicle was performed using a 33-

gauge needle on a Hamilton syringe. All animal procedures were

performed according to the Policy on Humane Care and Use of Lab-

oratory Animals and the protocol approved by the Institutional Ani-

mal Care and Use Committee at the VA San Diego Healthcare

System. Weekly weight measurements and daily assessments of the

hydration status and post-operative wound infection were

conducted. Animals that developed surgery-related abnormalities

were excluded from the study.
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Behavioral tests

All behavioral measurements were taken by a tester blinded to the

experimental groups. Animal groups were formed randomly. von

Frey testing was performed before and at the indicated time points

after peptide injections (n = 6/group). Rats were placed in individ-

ual compartments with a wire mesh bottom. von Frey filaments

(0.41–15.2 g, Stoelting) were applied perpendicularly to the mid-

hind paw for 4–6 s. A withdrawal response was recorded by an

experimenter blinded to the groups. The 50% probability of with-

drawal threshold was determined by up-down method as described

previously (Chernov et al, 2020) using software developed in R

(https://github.com/chernov-lab/VonFreyTest). Areas under the

curve were calculated using Prism 9 (GraphPad).

Unstimulated pain-like behavior was analyzed on days 4, 14,

and 20 post-injection as previously described (Attal et al, 1990;

Paulson et al, 2002; Chattopadhyay et al, 2007) with modifications.

Each animal was video-recorded for 2 min three times within a 2

h period of time. Positions of the injected hind paw were continu-

ously rated according to the scoring system: 0, the paw was placed

normally on the floor; 1, the paw was placed lightly on the floor,

and the toes were in a ventroflexed position; 2, only the inner

edge of the paw was placed on the floor; 3, only the heel was

placed on the floor, and the hind paw was inverted; 4, the hind

paw was elevated; and 5, animal licked the hind paw. Scoring data

were interpreted using custom Java software. Unstimulated pain-

like behavioral indices were calculated by the time interval the rat

spent in each behavior multiplied by weighting factors, and

divided by the length of the observational period according to the

formula:

index ¼ 0 � t0 þ 1 � t1 þ 2 � t2 þ 3 � t3 þ 4 � t4 þ 5 � t5
120

where t0–t5 is the time duration (s).

Samples

Tissues (DRG and spinal cord, lumbar (L)1–6, quartered) were

placed in 500 µl RNAlater, left at 4°C overnight, and then stored at

−20°C. All sample groups were processed synchronously to mini-

mize batch effects.

RNA purification

Tissues were homogenized, and total RNAs were purified using

RNeasy reagents. RNA concentration and integrity were determined

using Qubit 4 and Bioanalyzer, respectively. 500 ng of RNA (3 repli-

cates/group) with RIN ≥ 7.0 was used for RNA-seq.

RNA-seq

RNA-seq library preparations and sequencing were performed at the

Genomics High Throughput Facility (University of California,

Irvine). In brief, mRNA libraries were generated following the

TruSeq Stranded mRNA library preparation protocol (Illumina).

Poly-A-enriched mRNAs were purified using poly-T oligo coupled

magnetic beads, followed by mRNA fragmentation, first and second

strands synthesis, cleaning on AMPure XP beads, and 3’-

adenylation. Ligation of TruSeq dual-index adapters was used for

barcoding. The quality of RNA-seq libraries was validated using

qPCR. Libraries were sized on an Agilent Bioanalyzer DNA high-

sensitivity chip and normalized. RNA-seq was performed using the

paired-end 100 cycle program on the NovaSeq 6000 system. Base

calls were recorded and converted to FASTQ files containing

sequencing reads and the corresponding quality scores using Illu-

mina software. Sequencing was conducted until at least 25 million

paired-end reads per sample were acquired.

Data processing

The data analysis workflow is schematically presented in Fig EV1.

FASTQ files were filtered to remove low-quality bases, TruSeq dual-

index adapter sequences, and unpaired reads using Trimmomatic

(Bolger et al, 2014). Transcript-level quantification was performed

using Salmon (Patro et al, 2017) in quasi-mapping mode using the

Rat genome version R7. To correct systematic biases commonly pre-

sent in RNA-seq data, -seqBias and -gcBias options were applied.

Transcript- to gene-level conversion was done using Tximeta (Love

et al, 2020). RNA-seq coverage and data quality were assessed using

MultiQC (Ewels et al, 2016).

Gene count matrices were imported into the DESeq2 package

(Love et al, 2014). Outliers were identified by Cook’s distance

method and excluded from further analysis. Dataset’s normalization

was conducted using trimmed M-values (TMM) included in the

DESeq2 package. Log2FC was calculated using the Wald test. The

adjusted (shrunken) Log2FC values were calculated using the adap-

tive t-prior apeglm method (Zhu et al, 2019). Significant DEGs were

identified by Padj values below a false discovery rate cutoff (Padj <
0.05) (Dataset EV1). Padj < 0.05 was used in downstream analyses

unless otherwise noted. Batch effects were controlled using remove-

BatchEffect (Ritchie et al, 2015) and RUVseq (Risso et al, 2014)

functions.

Signaling pathway analysis

Bioinformatics tools used for the processing of RNA-seq data are

listed in Table EV1. Ingenuity Pathway Analysis based on the causal

network approach (Kr€amer et al, 2014) was used to predict signaling

pathway regulation. The activation directionality was estimated

based on z-scores. Gene ontology analysis was performed using

ViSEAGO package and other Bioconductor tools.

Affinity capture assay

Peptide-bound beads were prepared by incubating biotin-tagged

OC43p and OC43p-SCR peptides (9 nmole) with 100 µl Dynabeads
MyOne Streptavidin T1 (10 mg/ml) for 2 h at 25°C in 500 µl of

TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween-20, and pH 7.4).

Beads were washed using a magnetic separation rack 6 times with

750 µl TBST to remove unbound peptides, and resuspended in

100 µl of affinity capture buffer (TBST supplemented with 1 mM

CaCl2, 1 mM MgCl2, 1 mM Na3VO4, and EDTA-free protease inhibi-

tors (Roche)).

All affinity capture steps were performed at 4°C. Frozen rat dor-

sal spinal cord tissues were submerged in 300 µl of lysis buffer
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(affinity capture buffer supplemented with 50 mM octylthiogluco-

side (OTG)), and homogenized using BioMasher microhomogen-

izers for 1 min, followed by centrifugation in QiaShredder units

(Qiagen) for 5 min at 21,000 g. Protein lysates were diluted with

affinity capture buffer and pre-adsorbed with 100 µl Dynabeads

MyOne Streptavidin T1 (10 mg/ml) for 2 h with agitation. Lysates

were incubated overnight with 50 µl of respective peptide-bound

beads with agitation. Beads were washed seven times with 750 µl
of TBST. For mass spectrometry, beads were washed three times

with 750 µl PBS. For immunoblotting, proteins were eluted by

heating at 70°C for 10 min in 100 µl of NuPAGE LDS Sample

Buffer (Thermo Fisher Scientific) supplemented with 50 mM 1,4-

dithiothreitol. Protein concentrations were measured using a

bicinchoninic acid assay.

Liquid chromatography and mass spectrometry

LC/MS was performed at the Biomolecular Mass Spectrometry Facil-

ity (University of California San Diego). In brief, affinity-captured

proteins were trypsin-digested, and peptides were separated by liq-

uid chromatography for 1.5 h using a reverse-phase C18 gradient.

Mass spectrometry was performed using Orbitrap FusionTM Lumos

Tribrid (Thermo Fisher Scientific). Proteomics data were analyzed

using PEAKS StudioTM 8.5 (BSI).

Immunoblotting

Proteins were separated on Bolt 4–12% Bis-Tris protein gels

(Thermo Fisher Scientific) and transferred onto a PVDF membrane

(Thermo Fisher Scientific) following the manufacturer’s instruc-

tions. The membrane was blocked in 5% non-fat milk for 1 h and

incubated for 18 h at 4°C with specific primary antibodies. Mem-

branes were washed 6 times with TBST and incubated for 1 h at

ambient temperature with respective secondary HRP-conjugated

antibodies. Membranes were washed six times with TBST, and

chemifluorescence signals were developed using a SuperSignal West

Dura Extended Duration Substrate kit (Thermo Fisher Scientific)

and documented on X-ray films.

Data availability

The original and normalized transcriptomics data are available in

the Gene Expression Omnibus (GEO, GSE182706, https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182706).

Expanded View for this article is available online.
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