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Bisphenol A (BPA) is a recognized xenoestrogen, in that it possesses oestrogenic and

anti-androgenic properties. These endocrine-disrupting effects of BPA at the estrogen

receptor (ER) occur despite the very low affinity of BPA for the ERβ, which is 10,000 times

lower than that of 17-β estradiol, and despite the European regulatory authorities stating

that BPA is safe, at usual exposure concentrations, the use of BPA in baby drink bottles

was banned in 2011. There exists conflicting evidence from human epidemiological

studies as to its influence on adult male reproductive function, although animal data is

more convincing. This mini-review will report on the limited epidemiological data from

human studies relating early life exposure to BPA on adult male reproductive function. A

long term follow-up study from Western Australia using a birth cohort, the Raine Study,

demonstrated no adverse associations of antenatal exposure to BPA, and potentially a

positive association with antenatal BPA exposure with sperm concentration and motility

at 20 years of age, although recent scientific reports suggest traditional measures of

BPA exposure may underestimate exposure levels, which makes data interpretation

potentially flawed.

Keywords: BPA, sperm count, testosterone, male reproduction, raine study, endocr disrupting chemicals, early

life exposures, in-utero

INTRODUCTION

Bisphenol A (BPA) is a widely used chemical which is ubiquitous within the environment, being
present within plastics and epoxy resin. In the United States the Centre for Disease Control and
Prevention reported that more than 90% of individuals, in the early years of the twenty-first
century, had measurable concentrations of BPA present within their body (1). The production
of BPA has increased substantially over the last 15 years and the projection for 2020 is 9,600
kilo tons http://www.digitaljournal.com/pr/2009287 (2). Exposure to BPA can be through the diet,
drinking, inhalation or dermal contact, although inhalation exposure appears to be negligible in
comparison to the dietary route (3). Furthermore, measurable levels of BPA have been detected
in breast milk, amniotic fluid, and cord blood. Furthermore, the fetus is at risk of BPA exposure
as it freely crosses the placenta. In the circulation BPA is present in the free form at about 8%
of the total BPA in the blood (4). Subsequent to eating, after gastric absorption, peak serum BPA
concentrations are reached within 90min (5), and BPA is rapidly eliminated, after gut absorption
(6), dermal and sub-lingual absorption have different pharmacokinetics. After undergoing rapid
conjugation, forming inactive glucuronides and sulfates by the liver of the mother and fetus, and
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by the placenta, BPA is excreted in the urine (7), although some
work suggests that the glucuronide metabolite may be active
(8). Consequently, it is theoretically possible for the fetus to be
exposed to a greater concentration of BPA than the mother, as the
placenta can de-conjugate BPA by placental sulphatase and beta-
glucuronidase enzymes (9), and furthermore, the immaturity
of fetal liver would make the BPA conjugation poorly effective
in the fetus (9). However, the significance of this placental
metabolism is believed to be low (7), although studies suggest
almost universal exposure of pregnant women to BPA, and a
substantial variation in its metabolic clearance, which will lead
to substantial variability of fetal exposure (10).

Despite reassurances of the safety of BPA by the European
Food Safety Authority (EFSA) as recently as 2015, the EFSA
reduced the tolerable daily intake of BPA from 50 µg/kg body
weight per day (bw/day) to 4 µg/kg bw/day, and stated that the
average daily exposure was below this “safe” level (11). With
estimated BPA dietary intake in infants and toddlers (up to 0.875
µg/kg bw/day), with reproductive aged women having dietary
exposures comparable to men of the same age (up to 0.388 µg/kg
bw/day), and adolescent exposure of upto 1.449 µg/kg bw/day,
in 2011 the European Union banned the use of BPA within baby
bottles. Interestingly, due to the lipophilic properties of BPA, BPA
could concentrate in the breast milk, and levels of infant exposure
to BPA decrease with the introduction of solid foods (11).

Due to its prevalence within the environment, and its known
endocrine disrupting effects, it has been suggested that BPA
may have a negative impact on male fertility acting as a
xenoestrogen. Unconjugated BPA binds as a weak agonist to
estrogen receptors α and β (12, 13), as well as the androgen
receptor (14). Hence, it may be expected to potentially impact the
reproductive development of the male, particularly if exposure
was to occur during a vulnerable period of development of
the male fetus during pregnancy. It has been demonstrated in
rodent models that a “masculinization programming window”
exists in pregnancy, and would be expected to correlate with
8–14 weeks gestation in humans (15). Features of lack of male
androgenisation are a shorter anogenital distance, impairment of
sperm production, hypospadias and cryptorchidism (15), which
have been grouped together as part of a “testicular dysgenesis
syndrome” (TDS) (16, 17). Consequently, it is during this period
of time that the male fetus would, theoretically, be at greatest
vulnerability to chemicals that either interfere with the secretion,
transport, action, metabolism, and excretion of testosterone; the
hormone primarily responsible for fetal masculinisation. This is
particularly of relevance as BPA freely diffuses across the placenta
(7), and the placenta’s ability to conjugate, and hence potentially
de-activate BPA is limited. Hence, BPA at maternal serum
concentrations may freely pass to the fetus across the placenta,
leading to near-equivalent levels in fetal and maternal blood
(7), therefore measuring maternal circulating concentrations is
a reasonable proxy for fetal exposure.

It has been assumed by many experts that sperm counts
may have been diminishing over the last 30 years, although
this is hotly debated (18, 19), however it is not disputed
that the incidence of undescended testis, hypospadias and
testicular cancer is increasing in some countries (20–23).

The TDS hypothesis proposes that, as a result of abnormal
testicular development, a secondary abnormality in Leydig
and/or Sertoli cells results during male sexual differentiation,
leads to reproductive disorder in later life (24, 25), again, this
assertion has been disputed (26). However, with the increasing
prevalence of oestrogenic endocrine disrupting chemicals within
the environment it is plausible, but unproven, that human
fetal Sertoli cell proliferation may be altered by an excessive
oestrogenic environment in early life. Consequently, researchers
have attempted to study potential associations of early life
exposures to oestrogens (27), and endocrine disrupting chemicals
(28, 29), with the incidence of cryptorchidism (30), anogenital
distance (a reliable marker of prenatal androgenisation) (31),
pubertal timing (32), sperm counts (27), and adult markers
of testicular function (27). This mini-review will review the
epidemiological studies of prenatal BPA exposure on humanmale
reproductive function.

BACKGROUND ANIMAL STUDIES OF
EXPOSURE TO BPA

Data from animal studies provide potential mechanistic insights
to the human data and are briefly reviewed for context. Animal
studies suggest that exposing mice early in the neonatal period to
BPA, at concentrations that humans encounter daily, may reduce
sperm number, motility, and maturation, without influencing
testicular histology (33). Perinatal BPA administration to female
rats has been reported to reduce the fertility of the mature
male offspring (34). Furthermore, negative influences on plasma
testosterone and estradiol concentrations have been reported
subsequently, after maturity, when pre-pubertal rats were
exposed to low doses of BPA, inducing some degree of androgen
deficiency features in adulthood (35, 36).

Male mice exposed in utero to BPA have been demonstrated to
have reductions in concentrations of serum and intra-testicular
testosterone (37), impairments of testicular development (37)
and spermatogenesis (37), with reduced sperm counts (38).
Indeed, studies suggest that BPA may be a testicular toxicant
in animal models (39, 40). Furthermore, adverse effects of
BPA exposure on rodents’ developing testis and prostate stem
cells have been also reported (41, 42). Other animal studies
suggest that BPA may exert it effects through central influences
from in-utero maternal BPA exposure causing alterations in
gonadotrophin releasing hormone and kisspeptin secretion, and
consequently influence anterior pituitary function (43). From
Figure 1 (44), it can be seen that the influence of BPA exposure
at different stages of development in the animal model appears to
produce similar effects on reproductive function in adulthood.
Due to the concerns of the potential health effects of BPA
on human health analogs to BPA have been introduced into
commercial production. However, this approach may not be
entirely beneficial, as one study that administered BPA, and its
analogs bisphenol B, bisphenol F, and bisphenol S, at various
low concentrations to pregnant rats, demonstrated in the male
offspring a decrease in sperm production, testosterone secretion,
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FIGURE 1 | Reproduced with permission Cariati et al. (44). FSH, Foliular stimulating hormone; LH, Luteinising hormone; GnRH, Gonadotrophin releasing hormone;

T, Testosterone.

and histological changes in the reproductive tissues with these
analogs (45).

HUMAN STUDIES OF PRENATAL
EXPOSURE TO BPA

Due to the difficulty of completing human studies, there
are understandably less studies that have addressed human
prenatal exposure to BPA on subsequent male reproductive
development. This is in part due to the duration of follow-
up required to study potential exposure effects, the potential
multiple confounders inherent in any human exposure study,
and consequently the cost of such long-term studies. As the
measured anogenital distance (AGD) is now a recognizedmarker
of prenatal androgenisation (46), with a longer AGD being
a marker of greater prenatal androgen exposure, this offers
a potential reference point to assess prenatal androgenisation.
Researchers from Shanghai measured the AGD of male infants,
and related this distance to thematernal urine BPA concentration
at 12–16 weeks of gestation (47). This early stage of pregnancy
is considered a critical time for prenatal androgenisation, as
described the masculinization programming window (48), where
perturbations in the androgenic environment, may have long
term consequences. This study demonstrated that those boys,
whose mothers had detectable levels BPA in their urine, at 12–
16 weeks of gestation, were more likely to have shorter AGD at
birth, than boys with undetectable levels of maternal BPA (47).
These findings were consistent when measured again at both 6
and 12 months of age, and was irrespective of ascertainment of
AGD by measuring from the anus to the base of the penis, or the
scrotum (47). A further study was performed using cord blood
measurements of BPA in relation to the AGD among 72 boys,
which demonstrated an inverse relationship between cord blood
BPA concentrations and male newborn ano-scrotal distance (49).

With respect to pubertal timing, a recent study demonstrated
an association of greater prenatal exposure to BPA, assessed
by maternal urine measurement, with later puberty in girls
and earlier puberty in boys (50). Nevertheless, when data
were adjusted for overweight/obesity status, all associations for
boys were attenuated, suggesting a contribution of body fat

in mediating the associations (50). An earlier study, possibly
the first reported study, of BPA exposure as assessed by a 3rd
trimester urine sample relating exposure to pubertal timing, did
not demonstrate any association with hormone levels or pubertal
staging in adolescence (51). However, this may relate to the
sampling timing in this study not being performed at a vulnerable
time in pregnancy.

With respect to deriving associations of in-utero exposures
to BPA with adult reproductive assessment only one study has
been undertaken (28). This study, led by the author of this
mini-review, studied early life influences on adult testicular
function. This was a birth cohort study where men from the birth
cohort, who had been followed very closely through childhood,
were recruited at 20 years of age to undergo a thorough
testicular assessment (serum sex steroids and gonadotrophins
were measured, semen assessment undertaken, and a testicular
ultrasound examination performed). The mothers of 149 of
the men had blood drawn at 18 and 34 weeks of gestation in
1990–1991, and their paired samples were mixed to provide an
“average” of antenatal exposure. The total BPA concentrations in
the maternal samples were measured by mass spectrometry and
correlated with their sons’ adult testicular function. There was a
substantial range in serum concentrations measured in maternal
serum, with the 10, 25, and 95th percentile concentrations
recorded as ≤0.005, 0.08, and 2.15 µg/l, respectively, reflecting
a large variation in exposures. The result of the analysis after
adjustment for time since last ejaculation, maternal smoking,
sexual abstinence, and presence of a varicocele, demonstrated
that maternal BPA exposure was positively associated with
their sons’ sperm concentration and motility in adulthood. In
addition, no associations of maternal serum BPA concentrations
were detected with their sons’ testicular volume or hormonal
measures of male reproductive function in adulthood; serum
testosterone, LH, FSH, or inhibin B concentrations (28). The
positive association of maternal BPA exposure with sperm
concentration and motility may be chance findings (Table 1),
in view of the lack of other associations being identified.
However, the association may be real, but the study is limited by
numbers of participants (maternal BPA measures were available
for 284 men, however only 149 of them underwent testicular
assessment at 20 years of age). It is important to state that
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TABLE 1 | Correlation between adult testicular volume and semen parameters with BPA exposure.

Ranked phthalates Testis volume (mls) Semen sample parameter

Volume Sperm output Concentration SCSA Normal morphology Motility

(mls) (million) (million/ml) (%) morphology (a + b grade)

BPA Correlation −0.05 −0.05 0.13 0.18 0.05 0.00 0.18

P-value NS NS NS 0.037 NS NS 0.036

All correlations were adjusted for abstinence period, presence of a varicocele and maternal smoking and in addition, testicular volume was also adjusted for adult height (z-scores). NS,

not statistically significant; BPA, bisphenol A; SCSA, sperm chromatin structural assay.

Values in bold purely highlighting the statistically significant results.

contemporary BPA exposure was not measured, which may have
influenced the results, as recent xenoestrogen exposure has the
potential to influence the testicular assessment. Furthermore,
any potential associations may be lost by the long duration
of follow-up, due to the multiple exposures and life events
that will have occurred over 20 years. Within our study the
median total serum BPA concentration within the maternal
blood was 0.25 µg/l, which is similar to reported by the
EFSA (11), and other authors (52, 53). However, it must be
stated that the assessment of BPA exposure was via serum
sampling, whereas the standard method of assessment is urine,
hence the serum concentration documented may not reflect a
more sustained exposure as recorded in urine measurement.
As the concern with serum measures is that urine provides
significantly less variability than serum for a compound with
a relatively short half-life, although even urinary total BPA
concentrations vary across different times in pregnancy (54),
and individuals have a diurnal variation, with the exposure
levels generally being lower in the morning than the evenings
(55). Consequently variability of the concentrations recorded
understandably reduces the power of any statistical analysis.
Furthermore, as recently proposed, if the method of analysis of
BPA concentrations was flawed, then the exposure levels may
have been greater than reported, and subtle associations may
have been missed (56), although the recognized measurement of
serum BPA is well-established and reliable, as BPA contamination
can be controlled during sample collection and inadvertent
hydrolysis of BPA conjugates can be avoided during sample
handling (57, 58).

CONCLUSIONS

The focus of this mini-review has been to determine if there is
any association between prenatal BPA exposure and human male
reproductive function. There have been many cross-sectional
studies looking at linking assessment of reproductive function
with current BPA exposure, such as timing of puberty and sperm
counts, however the purpose of this review was to determine
if the exposures to BPA at a critical stage of development,
the “masculinization programming window” may lead to a
permanent perturbation in the hypothalamic-pituitary-gonadal
axis. Furthermore, from animal studies it may be suspected that
BPA exposure may also have a permanent gonadotoxic effect.
The benefit of animal studies are numerous, in that they are

comparatively cheap, have the ability to control for multiple
confounders and exposures within an environment, and due to
their short gestation, and pubertal maturation period, provide
an ability to review a life-span in a relatively short period of
time. However, a major problemwith animal studies of endocrine
disrupting chemicals is that these chemicals are known to have
potential different effects at different concentrations leading to
difficulty in extrapolating animal effects to the human situation.
Furthermore, whilst it appears form the animal studies that BPA
has an endocrine disrupting influence when administered in
the prenatal, and perinatal period, it is important to determine
whether human exposures are at, above or below, safe levels
of exposure in the perinatal period. Controversially, the EFSA
stated in 2015 that current levels of exposure are below the
tolerable daily intake (<4 µg/kg bw/day) and as such current
BPA exposure does not pose a threat to the fetus (11). However,
work performed by independent researchers cast some doubt on
these claims, and raise concerns that very low doses of exposure
may pose a risk during development (59, 60). Furthermore,
there is evidence to suggest that the previous methods used
to measure BPA exposure, using enzyme de-conjugation, may
substantially underestimate human exposure, and hence fail to
detect any subtle associations (56). The explanation for this is
that an assay that reduces the variance in BPA concentrations,
underestimates the exposures of those most highly exposed,
tends to lead to an increase in the likelihood of false negative
findings. Furthermore, it is proposed that the current safe levels
are flawed, as evidence suggests that low-dose BPA exposure
induces marked adverse effects below the considered safe levels
(40). Indeed, the greatest number of effects were observed,
in one study, at doses substantially lower than the current
“safe” dose of BPA for humans (59). As this CLARITY study
found that there were evidence of detrimental effects detected
at doses of 2.5 µg/kg per day (59). With respect to human
serum levels of free BPA, the serum concentrations have been
reported to be below the limits of detection (<0.2µg/L) in several
cohorts (11, 52), which has led to doubts around the potential
for environmental BPA exposure to exert endocrine disrupting
effects (52).

The limited human data presented suggest that prenatal
exposure to BPA may have a potential negative association
with early life anogenital distance for boys, but the evidence
for an influence on pubertal timing is less clear. Furthermore,
it is unclear whether prenatal exposure to BPA in-utero has
an influence on later life mature male reproductive health,
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with the data suggesting a potential positive association

with sperm concentration and motility at 20 years of age.

Certainly there is a need for further long-term studies of

early life exposure to endocrine disrupting chemicals, such

as BPA, to assist individuals and regulatory authorities

in their decision making for the use of chemicals in

the environment.
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