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Abstract
Background and Aims: Inflammatory bowel disease [IBD] is a chronic relapsing disorder of the gastrointestinal tract, which generally manifests 
as Crohn’s disease [CD] or ulcerative colitis [UC]. These subtypes are heterogeneous in terms of disease location and histological features, while 
sharing common clinical presentation, genetic associations and, thus, common immune regulatory pathways.
Methods: Using miRNA and mRNA coupled transcriptome profiling and systems biology approaches, we report a comprehensive analysis of 
blood transcriptomes from treatment-naïve [n = 110] and treatment-exposed [n = 177] IBD patients as well as symptomatic [n = 65] and healthy 
controls [n = 95].
Results: Broadly, the peripheral blood transcriptomes of CD and UC patients were similar. However, there was an extensive gene deregulation 
in the blood of IBD patients, while only a slight deregulation in symptomatic controls, when compared with healthy controls. The deregulated 
mRNAs and miRNAs are mainly involved in the innate immunity and are especially enriched in neutrophil activation-related pathways. Oxidative 
phosphorylation and neutrophil activation-related modules were found to be differentially co-expressed among treatment-naïve IBD as com-
pared to healthy controls. In the deregulated neutrophil activation-related co-expression module, IL1B was identified as the central gene. Levels 
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of co-expression among IL1B and chemosensing receptor [CXCR1/2 and FPR1/2] genes were reduced in the blood of IBD patients when com-
pared with healthy controls.
Conclusions: Immune dysregulation seen in peripheral blood transcriptomes of treatment-naïve IBD patients is mainly driven by neutrophil 
activation.

Graphical Abstract

Study approach and analysis
Cohorts Whole

blood
Co-expression network analysis

HC

mRNA

Differential expression analysis

IBD
CD/UC,
treated/

untreated

miRNA

RNA
extraction

IBD

Outcome

Lack of differences
between CD and UC
transcriptomes

Signi�cant
differences between
CD/UC and HC
transcriptomes

Deregulated mRNA
and miRNA are
involved in
neutrophil activation
and innate immunity

IL1B is a central
gene in IBD
neutrophil activation

HC

Key Words:   Inflammatory bowel disease; peripheral blood; gene expression

1.   Introduction
Beyond oxygenation and nutrition of tissues, circulating per-
ipheral blood cells act as a surveillance system for damaged 
tissue, reflecting and providing information on pathological 
events occurring throughout the human body, especially 
those related to immune dysfunction.1 One such dysfunction 
is inflammatory bowel disease [IBD], an idiopathic disease 
probably caused by an inappropriate immune response 
against environmental factors, including luminal and mi-
crobial antigens, in genetically susceptible hosts.2,3 IBD en-
compasses two major subtypes, specifically Crohn’s disease 
[CD] and ulcerative colitis [UC], each showing heterogeneity 
in terms of disease location, histological features, as well as 
response to treatment,4 but both subtypes also show signifi-
cant overlap in their clinical presentation and genetic predis-
position.2,5,6 Various subtypes of blood circulating immune 
cells, including CD4+ and CD8+ T cells, CD14+ and CD16+ 
monocytes, as well as neutrophils, have been implicated in 
the pathogenesis of IBD and associated with clinical hetero-
geneity, including disease activity and treatment response.7–11 
Associations between the observed heterogeneity of the IBD 
subtypes and variations in blood transcriptomes have also 
been described.12,13 Previous studies have specifically aimed 
to identify diagnostic biomarkers to discriminate between 
CD and UC using microRNA [miRNA] or messenger RNA 
[mRNA] expression data, but most of these studies used small 
clinical cohorts or only analysed a preselected group of can-
didate miRNAs or mRNAs. The results from these studies are 
rather inconsistent and may have been influenced by previous 
disease history, i.e. age of diagnosis, disease relapse frequency, 
comorbidities and especially systemic treatment. Imprecision 
in this information and unbalanced patient selection or 
missing cross-disease comparisons can easily lead to misin-
terpretation of newly identified biomarkers and predictive 
models. Also, the association of newly identified molecules to 
disease pathogenesis can be confounded, since blood-based 
biomarkers potentially reflect the secondary effects of the 
illness or treatment rather than pathophysiological factors.14

A comprehensive systemic network analysis of miRNA- and 
mRNA-coupled blood profiling in treatment-naïve IBD pa-
tients has not yet been performed. Here, we report an explora-
tory analysis of blood miRNA and mRNA transcriptomes 
from treatment-naïve and treatment-exposed IBD patients as 
well as control individuals using differential expression, gene 
set enrichment analysis and tensor decomposition of gene co-
expression networks. By comparing transcriptomes among 
groups of interest, we describe differentially expressed tran-
scripts and differentially co-expressed gene programmes as 
well as define biological pathways in which they are involved.

2.   Materials and Methods
2.1.   Patients and samples
Study participants were recruited in two cohorts, including 
205 Swedish individuals and 242 German individuals. For all 
study participants, peripheral blood samples and clinical in-
formation were collected. The study was approved by the re-
spective local ethics committees (PopGen 2.0 Network [P2N] 
and ethics committee of the Medical Faculty of the University 
Hospital Schleswig-Holstein, Kiel, Germany; Uppsala 
Regional Ethics Committee 2010/313). All participants pro-
vided written informed consent.

The German cohort comprised 65 healthy individuals and 
177 patients diagnosed with IBD, including CD [n  =  100] 
and ulcerative colitis UC [n = 77]. All German patients were 
systemically and/or topically treated with one or more of 
the following drugs: infliximab, adalimumab, methotrex-
ate, azathioprine, mesalazine, sulfasalazine or corticoster-
oids [for details see Supplementary Table S1]. In contrast 
to the treatment-exposed German cohort, the Swedish co-
hort [Swedish Inception Cohort in IBD, SIC IBD] included 
175 treatment-naïve patients, 17–78 years of age, referred to 
the gastroenterological unit at six Swedish hospitals, for sus-
pected IBD. The presence of gastrointestinal symptoms, such 
as diarrhoea, abdominal pain and blood or mucus in stool for 
>2 weeks, indicative of IBD, was an inclusion criterion. The 
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diagnosis of IBD was established according to internationally  
accepted criteria, following thorough clinical, microbio-
logical, endoscopic, histological and radiological evalu-
ation. The diagnoses comprise CD [n = 52] and UC [n = 58]. 
Patients with gastrointestinal symptoms with no endoscopic 
or histological signs of IBD-associated inflammation at inclu-
sion, and no evidence of IBD during follow-up [for details 
see Supplementary Table S2] were considered as symptomatic 
controls [SC, n = 65]. In total, 30 healthy individuals were 
also included in the SIC IBD cohort.

Harvey–Bradshaw index [HBI]15 was used to classify 
disease activity in patients with CD and partial Mayo score16 
in patients with UC. Activity groups [remission, mild, mod-
erate and severe activity] were specified employing standard 
thresholds.16,17 In addition to medication and disease activity, 
patients were evaluated regarding common clinical param-
eters such as age, sex and smoking status. Furthermore, in-
formation on disease location, behaviour, extent [Montreal 
classification18] and serological markers (C-reactive protein 
[CRP], albumin) were collected. The summarized pheno-
typic and clinical information of the participants is provided 
in Table 1.

2.2.   RNA isolation
Peripheral blood samples were collected and stabilized using 
a PAXgene Blood miRNA System [Qiagen]. Total RNA was 
isolated using QIAcube automation with the PAXgene Blood 
RNA Kit [Qiagen] in accordance with the manufacturer’s 
instructions. Quality control and assessment of total RNA 
samples were performed using an Agilent 2200 TapeStation 
[Agilent Technologies].

2.3.   Small RNA sequencing analysis for miRNA 
profiling
Small RNA libraries were prepared using a TruSeq Small 
RNA Sample Preparation Kit [Illumina] according to the 
manufacturer’s protocol with 1 μg of total RNA as an in-
put per sample of Swedish [n = 205] and German [n = 242] 
cohorts. The generated small RNA libraries were quality-
controlled using an Agilent 2200 TapeStation [Agilent 
Technologies] and sequenced using an Illumina HiSeq 
2500 platform [1 × 50 bp SR, v3.0 or v4.0]. The obtained 
demultiplexed raw sequencing reads [.fastq] were pro-
cessed using cutadapt v1.919 to remove adapters, low-
quality bases [<Q20] and reads shorter than 18 nucleotides. 
Quality-controlled reads were mapped to miRNA reference 
sequences from miRBase release 2220 using mirAligner21 
with default parameters. The R package isomiRs22 and its 
default parameters were used to generate the count matrix 
of miRNA reads per library. Samples with fewer than one 
million mapped reads, and those for which the number of 
detected miRNAs on a log2 scale fell below Q1−1.5 inter-
quartile range [IQR], were removed from further analysis. 
Non-expressed miRNAs were excluded based on their aver-
age expression [>1 raw count] values in libraries per co-
hort. For each cohort, quality-controlled miRNA count data 
were then normalized using calcNormFactors followed by 
voomWithQualityWeights functions from the edgeR23 and 
the limma24 R packages, respectively. The generated quality-
controlled counts and raw sequencing reads of Swedish 
and German cohorts have been deposited at NCBI Gene 
Expression Omnibus [GEO]25 under accession numbers 
GSE169569 and GSE169570, respectively.

2.4.   BeadChip microarray analysis for 
transcriptomic profiling
The total RNA samples of the Swedish cohort [n = 205] were 
reverse transcribed and biotin-labelled using the TargetAmp-
Nano Labeling Kit for Illumina Expression BeadChip 
[Epicentre] according to the manufacturer’s protocol. The la-
belled antisense RNA was hybridized to a Human HT-12 v4 
BeadChip array [Illumina] following the standard hybridization 
protocol of the supplier. Array imaging was performed on an 
iScan system [Illumina] according to the manufacturer’s proto-
col. The obtained raw intensity information [.idat] and probe 
annotation [.bgx] files were used to generate a probe-intensity 
matrix of transcripts per sample using the read.idat function 
from the limma24 R package. Background correction followed 
by quantile normalization was performed using limma’s neqc 
function.26 The probes were annotated using the mappings 
from the illuminaHumanv4.db27 R package. Probes which were 
flagged as ‘bad’ or having ‘No match’ [without match to cod-
ing sequences or to any genomic region] were discarded. Non-
expressed probes [in at least 10% of samples] were identified by 
limma’s detectionPValues function and removed from further 
analyses. Probes that were unannotated or mapped to ribo-
somal genes [those beginning with MRP, RPL and RPS] were 
also discarded from further analysis. Finally, the findLargest 
function from the R package genefilter28 was used to remove a 
set of quality-controlled probes that mapped to the same gene 
symbol, while retaining the probe with the highest median in-
tensity value, resulting in 11 727 probes. The generated quality-
controlled expression values and raw intensities have been de-
posited at NCBI GEO25 under accession number GSE169568.

2.5.   Data analysis
The quality-controlled and normalized data of both miRNA 
and mRNA expression datasets were analysed using limma’s24 
workflows for differential expression analysis including age and 
sex as covariates. Lists of significantly differentially expressed 
protein-coding genes or validated target genes [miRTarBase29] 
of significantly deregulated miRNAs were used for gene set en-
richment analysis [GSEA] in Gene Ontology [GO] terms imple-
mented in the clusterProfiler30 R package. Cell-type enrichment 
analysis was performed based on cell type-specific mRNA,31 
and miRNA32 [Supplementary Table S3] signatures of main im-
mune cell types were made using the single sample gene set en-
richment analysis [ssGSEA] method.33 Co-expression networks 
[signed scale-free topology overlap matrices] of protein-coding 
genes were generated using the weighted gene correlation net-
work analysis [WGCNA]34 workflow. Gene co-expression net-
works of each diagnosis [CD, UC, SC and HC] were assembled 
into third-order tensor and decomposed into ten latent compo-
nents [R = 10]. Tensor decomposition was performed using the 
non-negative CP tensor decomposition by hierarchical alternat-
ing least squares [HALS] method35 implemented in the ncp_hals 
function from the TensorTools Python package.36 Knee point 
detection was applied to remove low scoring genes from each 
co-expression component [module] using the KneeLocator 
function implemented in the kneed package of Python.37 Co-
expression modules were functionally annotated using GSEA. 
Experimentally validated protein-coding gene–gene interactions 
of the co-expression modules were retrieved from the STRING 
v11 database.38 Experimentally validated miRNA–target 
interactions [DIANA-TarBase39] were integrated into the net-
works using negative correlation. Correlations between clin-
ical variables and a component’s eigengene40 were measured by 
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Pearson’s correlation. Detailed descriptions of the data analyses 
performed are provided in the Supplementary Methods.

3.   Results
3.1.   Characterization of peripheral blood 
transcriptomes derived from IBD patients and 
controls
By including two independent cohorts of IBD patients and 
controls from Germany [treatment-exposed patients] and 

Sweden [treatment-naïve patients], we were able to inves-
tigate transcriptional profiles of IBD while considering the 
interference of medications via comparison of results from 
the two cohorts. For both cohorts, miRNA expression pro-
files were generated using small RNA-sequencing (RNA-
seq), while mRNA expression profiles were generated using 
the BeadChip array only for the treatment-naïve cohort 
[Figure 1A].

After data pre-processing and quality control, a total of 
12  284 transcripts [including miRNAs] were found to be 

Table 1.  Clinical and phenotypic characteristics of the Swedish [treatment-naïve] and the German [treatment-exposed] study cohorts

 Swedish cohort German cohort

Treatment- 
naïve CD, 
n = 52 

Treatment- 
naïve UC, 
n = 58 

Symptomatic 
controls,  
n = 65 

Healthy 
controls,  
n = 30 

Treatment-
exposed CD, 
n = 100 

Treatment-
exposed UC, 
n = 77 

Healthy 
controls, 
n = 65 

Mean age, years [range] 33.6 [17–76] 35.5 [18–73] 39.3 [18–78] 47.4 [21–69] 38.5 [15–61] 39.4 [18–73] 69.7 [56–82]

BMI [range]     25 [16–92] 27.1 [18.8–92]  

Sex female, n [%] 26 [50] 27 [46.6] 39 [60] 15 [50] 61 [61] 40 [51.9] 25 [38.5]

Smoking, n [%]        

  Current 9 [17.3] 8 [13.8] 9 [13.8] 0 [0] 21 [21] 11 [14.3] 33 [50.8]

  Previous 12 [23.1] 16 [27.6] 9 [13.8] 0 [0] 13 [13] 5 [6.5] 0 [0]

  Never 25 [48.1] 31 [53.4] 38 [58.5] 0 [0] 63 [63] 56 [72.7] 32 [49.2]

  Unknown 6 [11.5] 3 [5.2] 9 [13.8] 30 [100] 3 [3] 5 [6.5] 0 [0]

Location, n [%]        

  Ileal, L1 19 [38]    12 [12]   

  Colonic, L2 15 [30]    44 [44]   

  Ileocolonic, L3 16 [32]    37 [37]   

  Unknown     7 [7]   

Behaviour, n [%]        

  Inflammatory, B1 38 [76]    52 [52]   

  Stricturing, B2 6 [12]    13 [13]   

  Penetrating, B3 6 [12]    30 [30]   

  Unknown     5 [5]   

  Perinanal disease 5 [9.6]    21 [21]   

Extent, n [%]        

  Proctitis, E1  19 [32.2]    8 [10.4]  

  Left-sided colitis, E2  16 [27.1]    25 [32.5]  

  Extensive colitis, E3  24 [40.7]    33 [42.9]  

  Unknown      11 [14.3]  

HBI, n [%]        

  Remission 18 [36]    23 [23]   

  Mild 7 [14]    12 [12]   

  Moderate 11 [22]    12 [12]   

  Severe 4 [8]    2 [2]   

  Unknown 10 [20]    51 [51]   

Partial Mayo Index, n [%]        

  Remission  2 [3.4]    15 [19.5]  

  Mild  17 [28.8]    18 [23.4]  

  Moderate  28 [47.5]    5 [6.5]  

  Severe  8 [13.6]    7 [9.1]  

  Unknown  4 [6.8]    32 [41.6]  

Mean albumin, g/L [range]a 36.4 [24–45] 39.2 [28–49] 39.6 [30–48]     

Mean CRP, mg/L [range]b 27.7 [0.89–242] 7.6 [0.3–91] 6.8 [0.3–87]  8 [0–67.5] 6.4 [0–70.2] 3.6 [0–48.2]

UC, ulcerative colitis; CD, Crohn’s diseases; BMI, body mass index; HBI, Harvey–Bradshaw index; CRP, C-reactive protein.
aInformation on albumin was missing in eight [4.6%] of Swedish cases [and symptomatic controls] and all German individuals.
bInformation on CRP was missing in eight [4.6%] of Swedish cases [and symptomatic controls] and 21 German individuals [8.7%].
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expressed in peripheral blood. For each generated dataset, 
normalized gene expression values were used to evaluate 
the global similarity structure of transcriptomes by utilizing 
multidimensional scaling analysis [MDS], which positions 
samples in two-dimensional space in relation to dissimilarity 
distances between them. In all three expression datasets, the 
results of MDS showed highly heterogeneous blood transcrip-
tomes of the inflammatory and symptomatic traits [CD, UC 
and SC] when compared to healthy individuals [HC], who 

displayed lower within-group variability [Supplementary 
Figure S1A]. The analysis also revealed a high overlap [95% 
confidence ellipses for group centroids] among the subtypes 
of IBD [CD and UC] as well as symptomatic controls [SC], 
suggesting a considerable similarity of their blood transcrip-
tomes. The overlap between CD and UC patients’ transcrip-
tomes was consistent in both cohorts.

An elevated white blood cell count is common in IBD pa-
tients.41 To determine whether transcriptional changes reflect 
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Figure 1.  Characterization of peripheral blood miRNA/mRNA transcriptomes obtained from IBD treatment-naïve/-exposed patients and control 
individuals. [A] Schematic representation of the study design and included cohorts. The study consists of two independent cohorts – German and 
Swedish. The German cohort comprises treatment-exposed IBD patients [CD and UC subtypes] and healthy controls [HC], while the Swedish cohort 
comprises treatment-naïve patients [CD and UC], symptomatic [SC] and healthy controls [HC]. For both cohorts, miRNA expression profiles were 
generated using small RNA-seq, while the mRNA expression profiles were generated using the BeadChip array for the treatment-naïve cohort only. 
Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. [B] Immune cell type enrichment analysis based on 
cell-specific multi-marker gene expression. Peripheral blood transcriptomes show relative increase in B cells [on the miRNA level] and myeloid cells, 
including neutrophils and monocytes [on mRNA and miRNA levels] in the treatment-naïve IBD patients. While treatment-exposed IBD patients also 
show an increase in B cells and neutrophils, monocyte levels remain unchanged compared to healthy controls [HC]. The treatment-exposed IBD 
patients also show a relative decrease in CD4+ T cells, suggesting treatment effects on cellular blood composition. Coupled mRNA [C] and miRNA [D] 
differential gene expression analysis of treatment-naïve IBD patients [CD and UC] and control individuals [SC and HC]. While an extensive transcript 
deregulation [FC > 1.5 and pFDR < 0.05] was observed in the peripheral blood of inflammatory [CD and UC] and symptomatic traits [SC] when compared 
to healthy controls [HC], there were no significantly deregulated transcripts between the CD and UC subtypes of IBD. This observation was consistent 
on mRNA [treatment-naïve] and miRNA [treatment-naïve and treatment-exposed] expression levels [see Supplementary Figure 1B and Table S4 for 
results for the treatment-exposed cohort]. Top five up- and downregulated transcripts are annotated as gene symbols or miRNA names.

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
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alterations of immune cell composition in peripheral blood, 
relative estimates of specific cell populations were evaluated 
using cell type enrichment analysis [see Methods]. The gene-
based marker cell type estimates showed a consistent increase in 
relative abundance of neutrophils in the blood of IBD patients 
when compared to HC. This increase was independent of data 
type and treatment status [Figure 1B]. The relative increase of 
neutrophils was more pronounced in CD than in UC patients. 
Interestingly, when compared to HC, higher levels of monocytes 
were observed in the treatment-naïve IBD patients, but not in 
treatment-exposed patients. Based on miRNA data alone, the 
relative abundance of B cells was elevated in both cohorts.

3.2.   Differential expression analysis reveals 
extensive gene deregulation between IBD patients 
and healthy controls, but not between the subtypes 
CD and UC
To further characterize the differences between IBD patients 
and healthy individuals, as well as the transcriptional differ-
ences between treatment-naïve and treatment-exposed IBD 
patients, differential gene expression analysis [DEA] was per-
formed. To achieve this, the expression datasets (miRNA [i] 
and mRNA [ii] expression of treatment-naïve cohorts, and 
miRNA [iii] expression of treatment-exposed cohorts) were 
analysed separately and the results from the two cohorts were 
then compared.

The most profound deregulation of transcripts [FC > 1.5 and 
pFDR < 0.05] was observed in peripheral blood of inflammatory 
[and symptomatic] patients when compared to healthy con-
trols. This effect was observed in both treatment-naïve [Figure 
1C and D] and treatment-exposed cohorts [Supplementary 
Figure S1B] with a substantial overlap of differentially ex-
pressed transcripts among the pairwise comparisons. For ex-
ample, in the treatment-naïve patients, transcripts encoded by 
HBE1, LSP1, PTGDR2, HIST2H3D and IGFBP1 were con-
sistently among the most deregulated genes in the blood of IBD 
patients and symptomatic patients when compared to healthy 
controls [CD vs HC, UC vs HC and SC vs HC; Supplementary 
Table S4]. Additionally, hsa-mir-144, hsa-mir-618, hsa-mir-98 
and hsa-mir-96 were among the most deregulated miRNAs in 
treatment-naïve, as well as in treatment-exposed, CD and UC 
patients compared with healthy controls. Overall, correlation 
analysis of fold change values showed significant concordance 
between miRNA differential expression in treatment-naïve and 
treatment-exposed IBD patients compared to healthy controls 
[r = 0.7 in CD vs HC; r = 0.6 in UC vs HC]. By contrast, several 
miRNAs [n = 12 in CD vs HC; n = 13 in UC vs HC] showed an 
opposite direction of deregulation in the treated IBD patients, 
suggesting their possible relation to the effects of medications 
[Supplementary Figure S1C].

Interestingly, none of the transcripts in the peripheral 
blood were found to be significantly differentially expressed 
between the subtypes of IBD [CD vs UC]. This observation 
was consistently observed on both the miRNA and mRNA 
levels and also independent of treatment status [Figure 1C 
and D and Supplementary Figure S1B], suggesting a similar 
pathological mechanism [at least secondary] between the 
subtypes. However, the comparisons of treatment-naïve IBD 
subtypes with symptomatic controls [SC] showed differen-
tial expression on the mRNA level but not on the miRNA 
level. Most of the differentially expressed genes [e.g. ANXA3, 
ARG1, S100A12, LY96, JCHAIN and SLC26A8] were 
overlapping in both of the comparisons [CD vs SC and UC 

vs SC], whereas some of the genes were found to be uniquely 
deregulated in one of the IBD subtypes. Genes such as HLA-
DRB1 and CCL23 were found to be differentially expressed 
in UC alone, while genes including XIST and OAS2 were 
only deregulated in CD when compared to SC. These obser-
vations, however, should be interpreted with caution because 
the selected thresholds of DEA are always arbitrary [Figure 
1C and D; Supplementary Table S4].

3.3.   Differentially expressed mRNAs and miRNAs 
are mainly involved in neutrophil signalling 
pathways
To place the differential expression results into a biological con-
text, GSEA was performed for each pairwise comparison using 
lists of either significantly deregulated genes or validated target 
genes of significantly deregulated miRNAs [see Methods section].

Independent of data type and treatment status, the differ-
entially expressed transcripts were recurrently enriched in 
pathways related to immune response and myeloid mediated 
immunity, especially neutrophil signalling [Figure 2A]. More 
precisely, GO terms including ‘neutrophil activation’, ‘neutro-
phil activation involved in immune response’, ‘neutrophil de-
granulation’ and ‘neutrophil mediated immunity’ were among 
the top ten most significant pathways in the comparisons be-
tween IBD subtypes and control groups of differentially ex-
pressed protein-coding genes [CD vs HC, UC vs HC, CD vs SC 
and UC vs SC; Supplementary Table S5]. To challenge whether 
these results are caused by the relative increase of the neutro-
phils in the blood of IBD patients [as shown in the cell type 
enrichment analysis], GSEA was performed separately on the 
lists of up- and downregulated genes. The results implied that 
although the majority of neutrophil activation-related genes 
were upregulated, a number of these genes [ACLY, HUWE1, 
PTPRC, CXCR1, CXCR2, etc.] were downregulated in com-
parisons between IBD and healthy controls [data not shown]. 
This supports the conjecture that the effect was not only 
driven by the quantitative increase in neutrophils, but to a 
certain extent rooted in a qualitative transcriptional change. 
Additionally, the reliability of miRNA–target enrichment ana-
lyses was assessed by Pearson’s correlation. The analysis was 
performed on normalized expression values of differentially 
expressed miRNAs and their known target genes that mapped 
to the neutrophil activation pathway [see Methods]. There 
were numerous [n  =  912] unique negative correlations be-
tween miRNAs and their targets, reflecting the expected nega-
tive regulatory effect of miRNAs [Figure 2B]. Furthermore, 
the replicability of our results was evaluated by performing 
identical GSEA on the differentially expressed genes obtained 
from a study by Ostrowski et al.42 As in our data, neutrophil 
activation-related pathways were among the most signifi-
cantly over-represented terms within differentially expressed 
genes comparing adult- as well as paediatric-onset IBD to their 
according controls [Supplementary Figure S2 and Table S6].

Collectively, the results show that differentially expressed 
genes, including miRNAs, in the blood of IBD patients are 
mainly enriched in pathways related to innate, rather than to 
adaptive, immunity.

3.4.   Gene co-expression networks show disturbed 
connectivity in neutrophil activation pathways in 
patients with chronic inflammation
Together, the transcriptome analyses show higher heterogen-
eity, increased number of myeloid cells and deregulated innate 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
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http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
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immune-related pathways in the blood of individual IBD sub-
types compared to healthy controls. To gain deeper insight 
into the complexity of blood transcriptomes and to extract 
differences in their modular structure [i.e. co-expressed gene 
programmes] among distinct diagnoses [CD, UC, SC and 
HC], a gene co-expression network analysis was conducted. 
First, co-expression networks for each diagnosis were con-
structed using weighted pairwise correlations of all included 
genes. Then, to capture differences of co-expressed gene pro-
grammes among traits, non-negative tensor decomposition 
and other downstream analyses were applied on the con-
structed co-expression networks [for detailed workflow see 
Figure 3A and Methods].

The variability in gene co-expression among the diagnoses 
was captured in ten latent factors [components], which en-
code interactions between gene co-expression and diagnoses 
via membership scores of each diagnosis [Figure 3B] and each 
gene [Figure 3C] in a given component. The highest member-
ship scores having genes [referred to as co-expression modules;  

Supplementary Figure S3] within each component were 
functionally annotated in silico using GSEA. Annotation of 
component’s co-expression modules showed that seven out 
of ten modules were significantly enriched [pFDR < 0.05] for at 
least one GO term [Figure 3D and Supplementary Table S7]. 
Some of the component’s co-expression modules were of par-
ticular interest, including neutrophil signalling- [component 
#10] and oxidative phosphorylation- [component #5] related 
modules [Figure 3D]. To get more detail on specific gene co-
regulatory relationships, experimentally validated gene inter-
actions of functionally annotated component module genes 
were retrieved [Supplementary Figure S4] and mapped to the 
previously generated co-expression networks [see Methods]. 
The co-expression level of the oxidative phosphorylation 
module network was highly pronounced in CD followed by 
UC, SC and lowest in HC [Supplementary Figure S5], showing 
its activation during gastrointestinal inflammation. The most 
interconnected genes, manifesting as central nodes of this 
co-expression network, were ATP5F1C, ATP5PO, COX7C 
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Figure 2.  Differentially expressed mRNAs as well as miRNAs are involved in inflammatory response and neutrophil activation signalling in the blood 
of IBD patients. [A] Gene set enrichment analysis [GSEA] of differentially expressed genes and validated target genes of significantly deregulated 
miRNAs. The figure displays the most significantly overrepresented biological pathways [GO biological process terms; y-axis] of differentially expressed 
protein-coding genes [mRNA] and significant terms that overlap with validated target genes of significantly deregulated miRNAs in each pairwise 
comparison [x-axis]. Dot size corresponds to the proportion of differentially expressed genes that overlap total genes of the particular pathway, while 
colour indicates statistical significance [FDR] of the pathway enrichment. Pathways highlighted in grey are overlapping in all pairwise comparisons of all 
three differential gene expression analyses (mRNA and miRNA results of treatment-naïve traits and miRNA results of treatment-exposed IBD patients 
compared to healthy controls [HC]). Complete results of GSEA are provided in Supplementary Table S5. [B] Example of negative correlations of miRNA 
and their target genes, which are involved in neutrophil activation pathways. The figure shows normalized miRNA expression on the x-axis, normalized 
expression values of its validated target gene on the y-axis and their regression line [see Methods]. Every data point corresponds to an individual 
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overrepresentation of neutrophil activation pathways. These results are consistent independently of treatment status.
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and HINT1. This may indicate the respective importance 
of these nodes within this context. In contrast to the oxida-
tive phosphorylation module, the co-expression level of the  

neutrophil signalling module was reduced in IBD. Co-
expression among its member genes as well as their targeting 
miRNAs was lowest in the blood transcriptomes of CD  
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Figure 3.  Differences of gene co-expression patterns in blood among different diagnoses, including IBD. [A] To identify gene co-expression modules, 
activity of which is different across blood transcriptomes of treatment-naïve UC, CD, SC diagnoses and healthy controls [HC], the following strategy 
was used: [1] to identify co-expressed gene pairs, weighted gene correlation networks [using WGCNA] were generated for each trait [gene × gene]; [2] 
to determine gene co-expression modules, whose activity is different among diagnoses, diagnosis-wise co-expression networks were assembled into 
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the particular GO term [y-axis], while colour indicates statistical significance [FDR] of the overrepresentation test.
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followed by UC, and SC, when compared to HC [Figure 4A]. 
The most interconnected genes of this module included IL1B, 
CXCR1, CXCR2, FPR1 and FPR2. The two CXC chemokine 
receptors were downregulated, despite the fact that the genes 
IL1B and FPR1/2 were not significantly deregulated in in-
flammatory traits when compared to HC [Supplementary 
Table S4]. Negative correlation-based integration of miRNA 
and their known target mRNA expression revealed miR-10b-
5p, miR-335-5p and let-7b-5p as being the most intercon-
nected miRNAs in the module [Figure 4A], suggesting their 
possible regulatory function in neutrophil signalling.

Further analysis of the clinical parameters showed that the 
eigengene [summarized expression value] of the neutrophil 
signalling module [component #10] was negatively correl-

ated with CRP [r = −0.23; p = 0.003] and partial Mayo score 
[r = −0.35; p = 0.0083], but was positively correlated with 
albumin [r = 0.17; p = 0.032] levels of the treatment-naïve 
IBD patients [Figure 4B], but not with HBI score [data not 
shown]. Overall, this suggests a consequence of gastrointes-
tinal inflammation rather than persistent and disease activity-
independent deregulation of these signalling pathways.

4.   Discussion
Using transcriptome profiling, we have generated the lar-
gest and most comprehensive investigation of combined 
mRNA and miRNA expression in peripheral blood of IBD to 
date. Our study comprised two independent IBD cohorts: a  

Figure 4.  Neutrophil activation-related co-expression module in different diagnoses and its correlation with clinical variables such as albumin and C 
reactive protein [CRP]. [A] Networks displaying co-expression module [component #10] activity among diagnoses [CD, UC, SC] and healthy controls 
[HC]. The neutrophil activation-related component module shows strong co-expression (note edge widths [thickness of line] between nodes) in healthy 
controls [HC], while co-expression of its member genes is reduced in inflammatory traits with the weakest co-expression in CD followed by UC and 
SC. The most central [hub] genes of this co-expression module are IL1B, CXCR1, CXCR2, FPR1 and FPR2 [highlighted in bold], whose differential 
expression during inflammation may disturb the co-expression of other member genes. Negative correlation-based integration of miRNA and their 
known target mRNA expression revealed miR-10b-5p, miR-335-5p and let-7b-5p as being the most interconnected miRNAs of co-expression module 
#10. The correlation coefficient [r] corresponds to co-expression activity [indicated by edge width], while the direction of correlation corresponds to 
edge colour. Nodes of the network represent genes [or miRNAs], the differential expression [log2FC] of which, compared to healthy controls [HC], is 
indicated by the colour gradient. The size of a node indicates its degree centrality, i.e. number of gene–gene interactions of a given gene [node]. The 
most central genes and miRNAs [hubs; having highest values of centrality degree] are annotated using gene or miRNA symbols. [B] Correlation of 
clinical variables [serum albumin concentration, serum and CRP concentration in CD and UC patients and partial Mayo score only in UC patients] and 
component [#10] eigengenes [summarized expression values, see Methods].
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treatment-naïve cohort to study the combined miRNA and 
mRNA expression profiles without previous exposure to IBD 
medications, and a treatment-exposed cohort. The latter co-
hort was used to test if medications have an effect on miRNA 
expression profiles [Figure 1A]. As expected, we observed 
higher heterogeneity of blood transcriptomes in IBD patients 
and symptomatic controls [SC] than in healthy controls [HC] 
[Supplementary Figure S1A]. Using cell type enrichment ana-
lyses, we show that this observation was partially explained 
by a compositional shift towards innate immune cells [i.e. 
monocytes and neutrophils] in the peripheral blood of the 
treatment-naïve IBD patients [Figure 1B]. Based on miRNA 
cell markers, the blood of treatment-exposed IBD patients 
was also enriched in neutrophils, but not in monocytes. This 
may be explained by the effect of immunosuppressants, such 
as glucocorticoids, since their mechanism of action directly 
or indirectly affects the proliferation and migration of mono-
cytes.7 Although we observed extensive gene deregulation 
between IBD and healthy controls, we did not identify any 
significantly differentially expressed transcripts [FC  >  1.5 
and pFDR  <  0.05] between CD and UC [Figure 1Cand D; 
Supplementary Figure S1B]. Albeit in line with some previous 
studies, this observation also contradicts some of the earlier 
reported findings [including our own] on miRNA12,13,43,44 as 
well as mRNA levels.45,46 We believe that these inconsisten-
cies may be due to small sample sizes in the previous studies, 
use of different profiling technologies or different measures of 
disease activity or treatment effects, since all previous studies 
have examined patients with ongoing or previous medical 
treatment. For example, Schaefer et al. suggested a panel of 
miRNAs to discriminate CD from UC.13 However, five of these 
six miRNAs [miR-21-3p, miR-31-5p, miR-101-3p, miR-375-
3p and miR-146a-5p] are known to have anti-inflammatory 
properties and have been associated with immune response to 
infections and inflammation.47,48 This may indicate that the 
diagnostic capacity of this signature in the North American 
cohort was explained by differences in inflammatory activity, 
since the findings were not validated in an independent co-
hort. Intriguingly, we found the majority of these miRNAs, 
including miR-146a-5p, miR-21-3p, miR-31-5p and miR-
375-3p, were differentially expressed in CD and/or UC com-
pared with healthy controls, but not when comparing CD 
vs UC patients. Furthermore, miR-375-3p was upregulated 
in the blood of treatment-exposed patients [~30% of pa-
tients received corticosteroids], but was downregulated in 
the treatment-naïve IBD patients [Supplementary Figure 1C]. 
This observation is in accordance with the results by Lu et al., 
who showed reversibility of miR-375-3p downregulation by 
glucocorticoids in patients with eosinophilic oesophagitis.49 
As observed in our data, the analogous effect for miR-210-
3p clearly demonstrates the impact of treatment on miRNA 
expression levels in blood. Regarding protein-coding gene ex-
pression, Ostrowski et al. identified nine genes which showed 
moderate discriminative power [area under the curve = 0.81] 
for paediatric inactive IBD vs healthy controls.42 However, 
they were neither able to discriminate between active or in-
active adult IBD patients from controls, nor to distinguish 
between active UC and active CD in paediatric or adult 
populations.42 We also observed dysregulation of seven out of 
these nine genes, including S100A12, ANXA3, CACNA1E, 
GALNT14, MMP9, OPLAH and ATP9A, comparing the 
IBD subtypes with healthy controls. Notably, ANXA3, 
CACNA1E and GALNT14 were also differentially expressed 

between IBD and SC. These genes are all highly expressed in 
neutrophils and have been previously reported to be differen-
tially expressed in peripheral blood of patients with various  
inflammatory conditions, including chronic inflammatory 
diseases such as rheumatoid arthritis.50–53 Upregulation of 
these genes has also been associated with sepsis,54 and both 
ANXA3 and S100A12 have been identified as marker genes 
for bacterial infection50 in peripheral blood.

In general, the majority of differentially expressed coding 
genes between IBD and HC were enriched in pathways re-
lated to bacterial infection and innate immune response. This 
also includes neutrophil activation/degranulation signalling, 
which was deregulated based on miRNA differential expres-
sion [Figure 2A]. Investigating the miRNA–target gene rela-
tionships in the neutrophil activation pathway, we were able 
to capture known miRNA–target interactions in more detail 
[Figure 2B]. One such interaction was miR-641 and the ATP 
citrate lyase [ACLY] target gene. Expression of these tran-
scripts was deregulated and negatively correlated in periph-
eral blood of IBD patients. Interestingly, Lauterbach et  al. 
previously showed that ACLY is involved in TLR4 signalling 
and that its inhibition leads to decreased expression of the 
costimulatory molecule CD86 in the lipopolysaccharide-
induced circulating neutrophils and inflammatory monocytes, 
indicating its importance in systemic immune response to bac-
terial infection.55 Our weighted gene correlation network ana-
lysis also revealed neutrophil activation-related module [com-
ponent #10] as differentially co-regulated among traits. The 
co-expression level between gene members of this module was 
found to be reduced in the blood of IBD patients compared to 
healthy controls, showing loss of correlation among the mod-
ule genes in IBD patients [Figure 3B–D]. The most intercon-
nected [hub] genes of this module belong to the interleukin 
1 beta [IL1B] signalling pathway, with IL1B itself being the 
most central gene in the co-expression module [Figure 4A]. 
The other hub genes of this co-expression module, including 
the CXC chemokine receptors CXCR1/2 and the formyl pep-
tide receptors FPR1/2, had reduced co-expression as well as 
expression levels in IBD and symptomatic controls when com-
pared to healthy individuals. These findings are in line with 
previous reports showing reduced CXCR1/2 expression via 
the IL1B/CXCL8/CXCR1/2 axis during neutrophil priming, 
activation and recruitment.56–58 Interestingly, not only can 
pro-inflammatory IL1B prime neutrophils,59 but primed neu-
trophils themselves can also activate expression of IL1B.60 
Several genetic and functional studies have reported IL1B 
as being implicated in IBD pathogenesis.61,62 The chemokine 
receptors CXCR1/2 are known to be broadly co-expressed 
in immune cells such as neutrophils, T cells and mast cells. 
Inhibition of these receptors reduces neutrophil recruitment 
in vivo, suggesting a crucial role in mediating neutrophil mi-
gration to sites of acute inflammation.63 It has been previously 
shown that CXCR1/2 are consistently downregulated [as in 
our data] in response to bacterial infection in peripheral neu-
trophils, but are strongly upregulated in monocytes.64,65 This 
might be caused by either downregulation of CXCR1/2 genes 
in activated neutrophils, e.g. via CXCL8 and/or miRNAs, or 
depletion of high CXCR1/2-expressing peripheral neutro-
phils, due to migration towards the site of inflammation. For 
instance, miR-335-5p was upregulated in our data and has 
been previously shown to interact with CXCR1/2 mRNAs 
and might suppress their expression.66 On the other hand, 
the existence of heterogeneous neutrophil subtypes [including 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac003#supplementary-data
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CXCR1/2low] was shown in peripheral blood of systemic lupus 
erythematosus patients,67 suggesting that a compositional 
shift of neutrophil populations in blood is also possible. Such 
a shift due to neutrophil migration is also supported by the 
observation of increased expression of CXCR1/2 and their 
ligand IL-8 in colonic tissues of newly diagnosed treatment-
naïve IBD patients.68 This even may be caused by neutrophil 
priming [e.g. by chemoattractants, microbial products and in-
flammatory cytokines]59 once passing through inflammation 
site, which would stimulate the migration and infiltration of 
CXCR1/2high neutrophils and/or increased production of IL1B 
in CXCR1/2low neutrophils, which could further prime, or in 
the presence of other activating agents, activate other neutro-
phils in the circulation. Recently, Sudhakar et  al. identified 
CXCR2 as a hub gene that was associated with monocyte 
gene expression modules, which were active across the CD 
phenotypes of disease behaviour or disease location. However, 
the fact that the authors did not include expression profiles 
of neutrophils69 limits the possibility to compare our find-
ings with these previous data. Further genes we identified as 
hub genes of the neutrophil activation-related co-expression 
module, namely FPR1/2, are mainly expressed in neutrophils 
and monocytes and are well known as chemotactic receptors 
and pattern recognition receptors that interact with bacter-
ial and mitochondria-derived formylated peptides.70 Several 
reports show that FPR1/2 are associated with IBD patho-
genesis possibly via effects on neutrophil migration,71–73 per-
haps in a similar fashion to the chemokine receptors. With 
respect to clinical parameters, our data revealed the summar-
ized expression [eigengene] value of the neutrophil activation 
module was negatively correlated with CRP and positively 
correlated with albumin levels, suggesting that the genes of 
this co-expression module may contribute to the systemic 
burden of inflammation [Figure 4B]. Another interesting co-
expression module [component #5], which we observed to be 
active in the blood of IBD patients, while inactive in healthy 
controls, was responsible for oxidative phosphorylation 
[Supplementary Figure S5]. Bao et  al. reported that mito-
chondria regulate neutrophil activation by generating ATP for 
autocrine purinergic signalling.74 Purinergic signalling plays a 
key role in inflammatory processes and modulates immune 
responses against bacterial and eukaryotic parasites.75 Also, 
this pathway has been shown to be implicated in gastrointes-
tinal inflammation as well as the pathogenesis of IBD.76

Together, the results of blood transcriptome analysis 
of treatment-naïve IBD patients presented here point to 
neutrophil-related innate immune activation, probably in 
response to bacterial antigens. However, it remains unclear 
whether these observations are disease-specific and explain 
the progression from subclinical disease to onset of symp-
toms, or if they only represent a secondary response to gastro-
intestinal inflammation. The comparisons with symptomatic 
controls, which include some patients diagnosed with bacter-
ial infection [such as Clostridium difficile or Campylobacter], 
suggest that the latter scenario is more plausible, since expres-
sion on the miRNA level did not show any significantly de-
regulated miRNAs comparing IBD and SC. At this point, we 
also note that we did not apply depletion of highly abundant 
erythropoietic miRNAs77 in this study, and were therefore un-
able to capture the complete miRNA repertoire of peripheral 
blood. Thus, differential expression of some low-abundance 
miRNAs might be undetected. However, we have captured the 
signals coming from the most abundant cell types of blood, 

so the results are still representative. The ‘secondary response’ 
scenario is also supported by another study analysing blood 
transcriptomes from patients with primary biliary cholangitis 
[PBC], primary sclerosing cholangitis [PSC] and IBD.78 The re-
sults revealed commonly deregulated genes among the exam-
ined autoimmune inflammatory diseases when compared to 
healthy individuals. In support of this, Nikolaus et al. have 
shown that polymorphonuclear neutrophil granulocytes are 
primed to secrete enhanced amounts of pro-inflammatory 
cytokines [including IL1B] and that this observation is not 
specific for IBD but rather reflects intestinal inflammation in 
general.79 Therefore, technologies such as single-cell RNA-seq 
need to be used to analyse activated peripheral neutrophils 
coming from blood of various infectious and autoimmune 
diseases, including IBD, in order to fully answer this question.

To summarize, in this study we show a lack of broader differ-
ences in blood transcriptome profiles between the CD and UC 
subtypes of IBD. This observation was consistent on the mRNA, 
as well as miRNA, expression levels and also independent of 
treatment status. However, we cannot exclude that the applica-
tion of technologies which achieve higher profiling resolution 
and depth might reveal subtle differences at the transcriptome 
level between CD and UC peripheral blood. In comparison with 
healthy controls, the differences in treatment-naïve IBD transcrip-
tomes were highly pronounced and indicated neutrophil activa-
tion in peripheral blood. Gene co-expression network analysis 
showed that IL1B might be substantially involved in neutrophil 
activation during IBD, since it was identified as the central gene 
of the neutrophil-related co-expression module. Consistently, 
co-expression levels among IL1B and chemosensing receptor 
[CXCR1/2 and FPR1/2] genes were reduced in the blood of IBD 
patients when compared to healthy controls.
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