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Abstract

COVID-19 has disrupted healthcare operations and resulted in large-scale cancellations of elective surgery. Hospitals
throughout the world made life-altering resource allocation decisions and prioritised the care of COVID-19 patients. Without
effective models to evaluate resource allocation strategies encompassing COVID-19 and non-COVID-19 care, hospitals
face the risk of making sub-optimal local resource allocation decisions. A discrete-event-simulation model is proposed in
this paper to describe COVID-19, elective surgery, and emergency surgery patient flows. COVID-19-specific patient flows
and a surgical patient flow network were constructed based on data of 475 COVID-19 patients and 28,831 non-COVID-
19 patients in Addenbrooke’s hospital in the UK. The model enabled the evaluation of three resource allocation strategies,
for two COVID-19 wave scenarios: proactive cancellation of elective surgery, reactive cancellation of elective surgery, and
ring-fencing operating theatre capacity. The results suggest that a ring-fencing strategy outperforms the other strategies,
regardless of the COVID-19 scenario, in terms of total direct deaths and the number of surgeries performed. However, this
does come at the cost of 50% more critical care rejections. In terms of aggregate hospital performance, a reactive cancellation
strategy prioritising COVID-19 is no longer favourable if more than 7.3% of elective surgeries can be considered life-
saving. Additionally, the model demonstrates the impact of timely hospital preparation and staff availability, on the ability
to treat patients during a pandemic. The model can aid hospitals worldwide during pandemics and disasters, to evaluate their
resource allocation strategies and identify the effect of redefining the prioritisation of patients.
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virus. Healthcare systems are under immense pressure, and
governments introduced public health measures to ’sup-
press’ the wave of infections and alleviate the subsequent
pressure on hospitals. In order to prepare for and respond to
this disaster, hospitals engaged in two efforts to cope with
this influx, by i) predicting COVID-19 hospital admissions
and resource requirements, and ii) building the capacity to
treat COVID-19 patients optimally. This response suggests
that the focus is solely on COVID-19 patients. However, the
need for non-COVID-19 care did not disappear, and patients
still need their urgently required healthcare. For the United
Kingdom (UK) alone, it is expected that 1-3 million peo-
ple will be awaiting surgery by 2021 [20]. Therefore, it is
essential from an ethical and strategic point-of-view to focus
on both COVID-19 and non-COVID-19 care by allocating
the scarce resources to both patient groups. This paper uses
a discrete-event simulation model to evaluate the impact
of hospital resource allocation decisions on both patient
groups. This study was carried out as part of hospital’s oper-
ational response to the pandemic. We now provide a brief
review of the literature on predicting resources during a
pandemic and allocating scarce resources.

1.1 Pandemic resource prediction modelling

COVID-19 places a substantial burden on a range of
resources, including oxygen, general ward (GW) beds,
intensive care (ICU) beds, ventilators, anaesthetists, inten-
sivists, nursing staff (RN), mortuary, consumables, and
personal protection equipment (PPE). Combined with the
push over the last decades to increase resource utilisa-
tion and minimise safety stock levels through just-in-time
principles, hospitals now face extreme resource scarcity
[36]. In order to understand the magnitude of the resource
requirements, resource prediction models were developed
[2]. These data-driven approaches are increasingly more
popular for decision-makers to make informed decisions on
resource allocations affecting millions of people.

Predominantly, epidemiological models were used to
predict the spread of the virus on a national and regional
level. The models predicted the number of COVID-19
infections and hospital admissions, subsequently translated
into bed requirements and deaths [10, 22, 24, 28,
31]. Additionally, epidemiological models were extended
by incorporating lock-down measures and other non-
pharmaceutical interventions to inform public policy [19].
Despite the benefits of the vast number of pandemic
resource prediction models, three drawbacks limit the
usefulness of these models for hospitals.

Firstly, prediction models lack the ability to integrate
multiple patient flows and stochastic parameters (e.g.
assumes fixed Length-of-Stay (LoS) for every patient).

This reduces the accuracy and validity of the model in
representing reality. However, Costa et al. [12] stated that
“Using [...], average length of stay, [...] to calculate the
number of critical care beds needed is mathematically
incorrect because of nonlinearity and variability in the
factors that control length of stay” (p.320). Additionally,
Weissman et al. [45] stated that there is a need to
inform the model with local data and local parameters,
and to include multiple patient flows to predict resource
requirements more accurately. In response, Zhang et al.
[50] did model different patient flows, but failed to
incorporate stochastic parameters. A systematic review of
LoS parameters concluded that there is a need for stochastic
LoS distributions, fitted to local and patient flow-dependent
data [32].

Secondly, the prediction models concentrate on mod-
elling a limited set of resources: (ICU) beds, ventilators and
deaths. Woodul et al. [49] summarised the common strat-
egy adopted in literature to decrease modelling complexity:
“Hospital beds, [...] is used as a proxy for space, resources
and providers” (p.4). Nevertheless, this approach is too sim-
plistic and does not accurately reflect the resource scarcity
in hospitals during the first wave: there were hundreds of
empty beds, but there is a lack of PPE, staff, oxygen and
mortuary capacity [6, 46]. Some models [37, 38] included
more resources, such as PPE and staff. However, these
models did not account for different patient flows (e.g. a
complicated patient flow: general ward — ICU — general
ward).

Finally, the overwhelming majority of the resource
prediction models discussed do not predict non-COVID-
19 care, whilst these activities were significantly cut down
during the pandemic. This was recognised as a significant
shortcoming, requiring further research [27, 30].

1.2 Resource allocation modelling

Scarcity of hospital resources calls for effective resource
allocation strategies [44], regardless of COVID-19: “Effi-
cient functioning of a hospital depends on how it allocates
its resources, particularly allocating beds to patients, a prob-
lem fraught with complexities and uncertainties” (p.298)
[5]. Models were developed to evaluate resource allocation
decisions, such as bed-plan expansions [11], and specific
events, such as the annual winter bed crisis [43].

Literature proposed several methods to allocate scarce
resources. Hospital resources can be allocated based on
i) patient flows or demand intensity [8, 44], ii) priority
of patient groups (e.g. by ‘ring-fencing’ capacity [1, 14]),
and iii) the likelihood of favourable outcome (i.e. triage of
patients [39]). In this section, we describe the limitations of
models evaluating resource allocation decisions.
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Firstly, disaster resource allocation models fail to provide
a holistic view on health care during a disaster. Apart from
resource scarcity in regular times, there is an increased
scarcity of healthcare resources during disasters (incl.
pandemics). However, the literature has only analysed
resource allocation within the disaster [4, 42]. This implies
that a fixed set of resources is shared between the patients
affected by the disaster, rather than balanced between all
patients requiring care.

Secondly, allocation models fail to acknowledge that
non-pandemic care cannot be modelled as a constant
baseload during a pandemic. The impact of surging
pandemic care on non-pandemic care is often not evaluated
in prediction or allocation models. For example, Wood
et al. [48] stated that the act of balancing resources and
evaluating the opportunity cost of surging capacity is left as
an exercise for decision-makers. Zhang et al. [50] included
regular care as a baseload factor to the model. Nevertheless,
this baseload is independent of lock-down policies, the
availability of resources, or the intensity of the virus-
spread. The application of such a baseload is found both
in models studying pandemics in general [29, 49] and
COVID-19 specifically [26]. This method fails to account
for essential characteristics of hospital operations during a
pandemic.

1.3 Literature gap and relevance

Based on the limitations outlined, there is a need for
resource allocation models to include and balance both
pandemic care and regular care [17, 27, 30]. Balancing the
two types of care requires an integrated prediction of both
types of care, to subsequently determine the overall impact
of different allocation strategies. Secondly, there is a need to
model a more comprehensive set of resources, such as staff.
Thirdly, there is a need for stochastic and locally-informed
parameters and processes to resemble local healthcare
practises and clinical variability more closely. Subsequently,
this paper aims to answer the question: What is the impact
of scarce resource allocation strategies on the ability to treat
patients during a pandemic?

1.4 Structure of the paper

This paper is structured as follows. First, the modelling of
patient flows and scarce resources is presented in Section 2,
alongside an identification and analysis of the required
input data. Following the methodology, Section 3 presents
the main results of the model, tailored to a large regional
hospital in England. Finally, Section 4 discusses the key
findings, its implications, and limitations. Directions for
further research on scarce resource allocation modelling
were provided.
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2 Materials and methods

This study aims to quantitatively measure the impact of
resource allocation strategies on the ability to treat patients.
This study evaluates the specific setting of Addenbrooke’s
Hospital, a major regional hospital in Cambridge (United
Kingdom). However, the study is set-up to be generalisable
for hospitals worldwide.

2.1 Identification of scarce resources

The resource scarcity that hospitals face is time and context-
dependent. Scarce resources were defined as: resources
which i) are in greater demand than supply now or in
the future, ii) are shared between COVID-19 and non-
COVID-19 patients, and iii) are predictable in both supply
and demand. From a long-list of eight hospital resources
(i.e., beds, equipment, staff, PPE, consumables, oxygen,
medication, mortuary), two sets of scarce resources were
identified based on the definition provided. The definition
and choice of scarce resources were co-constructed and
validated by managers, planners and clinician leads in
Addenbrooke’s hospital. Resources which were scarce but
not shared between COVID-19 and non-COVID-19 patients
were excluded, as this study aimed to explore the inter-
group balancing effects.

First, critical care (CC) beds are used by both COVID-
19 and non-COVID-19 patients and are extremely scarce
and resource-intensive. CC is defined as the combination of
the intensive care unit (ICU) and the high-dependency unit
(HDU).

Secondly, the pandemic places extraordinary pressure on
CC staff, requiring other staff groups to fulfill the role of
CC staff, especially operating theatre staff. Hence, CC and
operating theatre staff collectively form a pool of shared
and scarce resources, illustrated in Fig. 1'. This study
focused on operating theatre staff in contrast to nursing
staff from other specialties, as operating theatre staff proved
to form the outer flexible deployment layer for CC at
Addenbrooke’s hospital. It was assumed that all available
nursing staff from other wards was already transferred to
CC. Although essential to the care of patients, the other
resources were assumed to have sufficient capacity.

2.2 Mapping patient flows

This study aimed to integrate COVID-19 with forms of
non-COVID-19 care. Whereas emergency department (ED)

IRN(CC): Registered Nurse - Critical Care; RN(Scrub): Regis-
tered Scrub Nurse; RN(Recovery): Registered Recovery Nurse;
RN(ODP/AP): Registered Nurse - Operating Department Practi-
tioner/Anaesthetic Practitioner; RN(In-Charge): Registered Nurse-In-
Charge
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Fig. 1 Staff pool for critical care

services continued throughout the pandemic, surgical care
saw an inverse relationship with the COVID-19 wave: many
surgeries were cancelled to enable increased capacity on
CC. Hence, this study focuses on the relationship between
COVID-19 and surgical patient streams.

Hospital patient flows are highly variable and unique.
Despite the high variation, the majority of COVID-19
patients seem to follow one of two categories of patient
flows (see Fig. 2): complicated stay (requiring GW and
ICU stay) and uncomplicated stay (requiring GW stay
only), based on experiences in Addenbrooke’s Hospital
and available literature [51]. Figure 2 displays the patient
flows identified by Addenbrooke’s lead infectious disease
consultant, based on observed patient flows of 475 COVID-
19+ patients. For simplicity, unobserved or unlikely patient
flows were excluded.

Complicated Stay

In parallel, a flow of elective (EL) and emergency
(NEL) surgical patients move through the hospital after
leaving the operating theatre (OR). Whereas COVID-19
patient flows were modelled using a set of sequential-
processes, surgical patient flows were described by a
process-network accounting for the variability in clinical
needs. Figure 3 presents the network structure of levels-
of-care, according to the process-network approach sug-
gested by Devapriya et al. [16]. The network includes
additional levels-of-care besides GW, HDU and ICU: the
overnight-intensive recovery (OIR) and intermediate-
dependency area (IDA). The modelling approach accommo-
dates for all possible flows between all nodes, whilst allow-
ing the transfer probability between certain nodes to be zero.
To acknowledge the clinical differences between elective
and emergency surgical patients, the network was modelled

COVID-19 Patient Flow

GW
(Pre-1CU)

}JQ[ 1cU

Uncomplicated Stay

Legend
GW: General Ward
[CU: Intensive Care Unit

Fig.2 Identification of COVID-19 patient flows
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Elective and Emergency Surgery Patient Flow

Patient Flow Network
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GW: General Ward, IDA: Intermediate Dependency Unit, HDU: High Dependency Unit, OIR: Overnight Intensive Recovery, ICU: Intensive Care Unit

Fig.3 Identification of surgical patient flows

separately to facilitate different transfer probabilities and
LoS.

2.3 Resource allocation strategies

Three resource allocation strategies were co-constructed
with directors of Addenbrooke’s Hospital: i) a proactive
cancellation strategy of non-COVID-19 care, ii) a reactive
cancellation strategy of non-COVID-19 care, and iii) a ring-
fencing strategy of elective surgical care. The strategies
reflect different ways of preparation for an uncertain wave,
and vary the prioritisation of COVID-19 and elective
surgical patients, which hospitals -including Addenbrooke’s
Hospital- consider to deploy for a second wave (see
Table 1). The first two strategies prioritise COVID-19 over
elective surgery but assume different forms of preparation;
the pro-active cancellation strategy enables staff training for
CC whereas the reactive cancellation assumes staff training

Table 1 Resource allocation strategies

1. Pro-active 2. Reactive 3. Ring-fencing

Cancellation Cancellation Theatres
Priority 1. NEL 1. NEL 1. NEL

2. COVID-19 2. COVID-19 2.EL

3.EL 3.EL 3. COVID-19
Close At the start of When necessary When necessary,
Theatres the wave up to a threshold.
Open After peak when When possible When possible
Theatres possible
Source [23] [41] [14]

NEL: non-elective surgery, EL: elective surgery
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is no longer required. The ring-fencing strategy prioritises
elective surgical care over COVID-19 care up to a certain
threshold to enable life-saving surgery.

2.4 Key performance indicators

The resource allocation policies were analysed using a
balanced set of key performance indicators (KPIs), based on
hospital operations literature [16, 52]. The KPIs evaluated
the core concepts: i) how many patients can be admitted
to the hospital, ii) how many patients can be provided full
treatment, and iii) what was the outcome of these treatments
(see Table 2). ‘KPI-3 CC Rejections’ was defined as: the
number of patients not being able to capture the appropriate
bed or staff required for their level of care on CC [52] within
a given time-frame. Rejections were documented separately
from direct deaths, as rejections are the result of hospital
operations rather than the patient’s clinical characteristics.

Table 2 Key performance indicators to evaluate resource allocation
strategies

KPI Focus Goal
Elective Surgeries Patient arrival Maximise
Performed
2 COVID-19 Admissions Patient arrival Maximise
3 CC Rejections Patients deferred Minimise
required bed-level
4 Deaths Effectiveness of Minimise

treatment
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While acknowledging that weighting these KPIs requires
ethical considerations, the Aggregated Hospital Perfor-
mance measure (AHP) was introduced to compare the
strategies using a single metric, by making the following
assumptions:

— A proportion of elective surgery can be considered
life-saving, avoid an -otherwise inevitable- death;

—  Waiting for more than 24h for CC (i.e. CC Rejection)
will result in death;

— Not admitting a COVID-19 patient will result in death.

Subsequently, the AHP is calculated using Equation 1. The
‘life-saving proportion’ was introduced based on validation
of the AHP by clinicians, to account for the fact that not all
surgery can be considered life-saving. A sensitivity analysis
of the AHP measure is performed on the proportion of life-
saving surgeries in Section 3.4. The AHP measure enables a
comparison of strategies for a specific situation but should
not be used as stand-alone metric to compare different
hospitals or situations.

AHP = EL Surgeries Performed % % Life Saving +
COVID 19 Admissions —
Total Deaths —
CC Rejections (D)

2.5 Stochastic modelling

Analysing hospital patient flows and evaluating the con-
sumption of resources requires an approach accounting for
different patient flows and variability [12]. This section
describes the modelling approach and assumptions.

2.5.1 Selection of modelling methodology

A stochastic modelling methodology is required to account
for the operational and clinical variability inherent to
COVID-19. The most common method to model COVID-
19, epidemiological models, are used to predict the demand
for hospital resources [10, 19, 28], but failed to model
COVID-19 and non-COVID-19 care. On the other hand,
analytical models are powerful to derive mathematically
optimal allocation strategies for a given resource set [7].
Despite providing optimal results, fundamental assumptions
limit the validity of the results in practice [7]. Finally,
simulation models are applied for both COVID-19 and non-
COVID-19 purposes [34, 35, 37, 40] by modelling patients,
processes and resources [9], but have not been integrated as
of yet. Seeing that COVID-19 and non-COVID-19 patients
have high resource inter-dependency and diverse patient
flows [3], simulation is deemed most suitable.

2.5.2 Selection of simulation paradigm

Different simulation tools have been applied to model
pandemics: system dynamics (SD), agent-based modelling
(ABM) and discrete event simulation (DES) [15, 18]. For
this study, DES is the most suitable simulation tool. DES
recognises the hospital unit-of-analysis, stochastic patient
flows [21], and has the ability to analyse resource allocation
policies.

2.5.3 Simulation model

The patient flows, KPIs and resource allocation strategies
were implemented in Arena software, version 16 (2019,
Rockwell Automation Technologies). The model is open
source and modifiable but requires a commercial Arena
software license. The number of replications was deter-
mined using the Monte-Carlo sampling method [47]. The
model was run for 85 replications to account for a desired
error margin of 1 CC bed at a 95% confidence level.
The output was analysed and visualised using Python, ver-
sion 3.7 (2020, Python Software Foundation). The results
were supplemented with 5% and 95% percentile bands to
represent the degree of uncertainty.

2.5.4 Modelling logic

The model encompasses three main capacity decision-
making heuristics derived from hospital operational pro-
cesses, co-constructed and validated by hospital directors
and clinicians. Firstly, ICU capacity surging is potentially
required if too many (COVID-19) patients require an ICU
bed. When and how much to expand is detailed in the ICU
capacity surge logic, presented in Fig. 4.

Secondly, Fig. 5 illustrates the process of open-
ing/closing theatres to account for additional staff needs
on CC during a pandemic wave. Opening/closing theatres is
evaluated weekly, to account for the preparation of theatres,
equipment, staff and patients for these major operational
changes.

Thirdly, there may be insufficient beds or staff available
for patients requiring ICU/HDU, resulting in CC rejections,
illustrated in Fig. 6. Following the definition of KPIs
in Section 2.4, rejections and deaths were documented
separately to enable in-depth analysis.

2.6 Data collection and processing
The collection and processing of the input data is discussed
in the subsequent sections, following the patient’s journey:

arrival scenarios, hospital patient flows, LoS and resource
consumption.
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ICU Bed Capacity
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Fig.5 Modelling of opening and closing of operating theatres. OR: operating theatre/room, ICU: intensive care unit
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Fig.7 COVID-19 daily
admission scenarios; base case

COVID-19+ Daily Admissions
Base Case Scenario

COVID-19+ Daily Admissions
Worst Case Scenario

(left) and worst case (right)
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2.6.1 Patient arrivals & scenarios

The simulation model evaluates the resource allocation
strategies for two COVID-19-positive hospital admission
scenarios, depicted in Fig. 7. First, the base case scenario
describes hospital admissions to Addenbrooke’s hospital
similar to what was observed during the first wave. Second,
the worst case scenario describes an alternative scenario to
the base case scenario, with a peak number of admissions
more than twice as high.

The arrival of elective and emergency surgical patients
is determined separately. Figure 8 illustrates the capacity
of emergency theatres required by Addenbrooke’s hospital
to treat all emergency surgical patients within appropriate
time-frames. The number of daily elective surgeries is based
on the number of elective theatres open, and assumed to
have ample demand, seeing the insurmountable backlog [13,
20].

Emergency Theatre
Capacity Required

Capacity Emergency Theatres

)
©
[a)
>
]
=
=
m

Monday - Day
Monday - Night
Tuesday - Day
Tuesday - Night
Wednesday - Day
Thursday - Day
Thursday - Night
Friday - Night
Saturday - Day
Saturday - Night
Sunday - Day
Sunday - Night

Wednesday - Night

Fig.8 Emergency theatre capacity Addenbrooke’s

2.6.2 Transition probabilities

After COVID-19 patients enter the hospital according to
the arrival schedule, they follow one of the patient flows
depicted in Fig. 2, with the transition probabilities presented
in Table 3, based on anonymised patient flow data of 475
COVID-19 patients.

In parallel, surgical patients are released from the
operating theatre and enter the hospital patient-flow
network (Fig. 3). The patient-flow network is accompanied
by a transfer-probability matrix, which was constructed
separately for elective and emergency surgical patients
(Tables 4 and 5, respectively). The matrices are derived
based on 28,831 patients receiving surgery in 2019, by
analysing their 128,811 anonymised and unique one-step
ward transitions at Addenbrooke’s hospital, using a three-
step methodology:

1. Every patient’s individual sequence of ward locations is
transformed into a patient flow of ‘level-of-cares’ (e.g.
GW — OR — OIR — ICU — GW).

2. Each individual patient flow is split into a set of one-
step transitions (e.g. GW — OR; OR — GW).

Table3 COVID-19 transfer probabilities based on patient data March-
June 2020, Addenbrooke’s Hospital

Transfer Probability Value
Survival Rate ICU 61.1%
Survival Rate GW 71.8%
ICU Required 22.4%
GW (Pre-ICU) Required 28.3%
Transfer-out Probability 7.4%

GW: general ward, ICU: intensive care unit
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Table 4 Transition probability matrix for elective surgical patients

Elective Destination

Transition Prob. (in %) OR ICU OIR HDU IDA GW Death Discharge Other

Origin OR 0.10 0.69 3.82 0.05 0.30 91.3 0.00 0.04 3.66
ICU 16.8 3.29 0.00 0.41 19.7 50.2 2.47 4.94 2.06
OIR 1.84 1.84 0.00 0.25 29.2 56.9 0.00 2.82 6.99
HDU 0.00 0.00 0.00 0.00 0.00 81.8 0.00 18.1 0.00
IDA 4.38 2.84 0.00 0.26 0.00 88.4 0.00 1.80 2.32
GW 1.21 0.40 0.48 0.04 0.23 421 0.04 92.7 0.64

3. Based on all one-step ward transitions, the probability
of transitioning to another ward is calculated, condi-
tioned on the current location.

It is important to note that this approach does take into
account a patient’s previous level-of-care when determining
the probability of transferring, but is limited by not
considering all previous levels-of-care of a patients journey.
This reduces the accuracy of predicting patient flows for the
surgical patients.

2.6.3 Length-of-stay

Demand for resources by COVID-19 patients is signifi-
cantly influenced by the LoS of patients, and hence the
accuracy of resource demand-prediction models are sensi-
tive to the parameters used to model the LoS distribution
[32]. LoS distributions were fitted for each level-of-care
(e.g. ICU) on anonymised patient flow data. More specif-
ically, the stage in the patient flow is incorporated. For
example, the average time on a general ward before going to
ICU is significantly shorter than the time spent on a general
ward after being discharged from ICU [51].

The distribution fitting was performed using @RISK
software, version 8 (2005, Palisade USA), using the
patient data of 475 COVID-19+ adult patients admitted to

Table 5 Transition probability matrix for emergency surgical patients

Addenbrooke’s hospital between March-June, 2020. The
best fit was determined based on a combination of the
Chi-Squared and Kolmogorov-Smirnov (KS) test.

For surgical patients, the LoS was constructed based on
analysing the anonymised patient flows of 28,831 patients
receiving surgery in 2019 at Addenbrooke’s hospital. To
account for LoS differences based on improving and
deteriorating health-conditions, the LoS was based on both
the level-of-care of interest and the preceding level-of-care
[16], similar to the methodology described in Section 2.6.2.
To enable the health condition-based LoS, the simplifying
assumption was made that the LoS can be modelled in a
deterministic manner for surgical patients, using the average
LoS.

2.6.4 Resource consumption

A patient requires both a bed and staff. Staff as a resource is
expressed in whole time equivalent (WTE), which enables a
capacity management on a weekly level. Figure 9 presents
the estimated staffing ratios in Addenbrooke’s hospital
during a pandemic. Additionally, the model captures the
ability to work together with the Independent Sector (IS).
IS theatres only require a hospital’s anaesthetist consultant,
but no theatre nurses. Finally, 25% of staff capacity was
reserved for annual leave, sickness, shielding and training.

Emergency Destination

Transition Prob. (in %) OR ICU OIR HDU IDA GW Death Discharge Other

Origin OR 0.78 15.0 0.40 1.37 1.77 75.5 0.22 0.02 491
ICU 23.3 2.95 0.00 10.19 9.39 42.8 6.69 3.03 1.59
OIR 1.89 3.77 0.00 1.89 15.0 71.7 0.00 1.89 3.77
HDU 9.88 6.48 0.00 0.00 0.00 82.4 0.62 0.62 0.00
IDA 9.12 7.06 0.00 0.29 0.00 78.5 1.76 2.65 0.59
GW 9.24 2.88 0.33 1.38 1.32 29.7 0.86 53.3 0.94
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Also non-surgical patients occupy CC resources, usually
through direct referral from the ED. This additional patient
flow to CC is accounted for by including a baseload-
factor, derived from historical CC occupancy. Data analysis
suggests on average 15 patients in ICU and 10 in HDU, are
non-surgical patients.

2.7 Model validation

Model validation is performed to evaluate the degree to
which the model accurately represents reality [25].

Firstly, black-box testing is the validation of the model
output with the actual numbers observed in reality. Black-
box testing was performed by comparing the predicted and
actual bed occupancy for COVID-19 during the first wave,
and by comparing the predicted number of theatres open and
the actual number of theatres open.

Secondly, structure-verification testing was applied
[25] to validate the structure and processes in the model
[52]. More specifically, patient flows, decision nodes
and main decision-making heuristics were validated by
operational managers and clinicians.

3 Results

The impact of resource allocation strategies on hospi-
tal performance was evaluated using the proposed sim-
ulation model. This chapter highlights the results from
data-gathering and processing, and the results from the
simulation model.

3.1 Data analysis results
3.1.1 Patient flow transition probabilities

A COVID-19 patient follows one of a set of structured
flows (see Fig. 2), for which the probability of following
an arbitrary route was presented in Table 3, based on
anonymised patient flow data. On the other hand, a surgical
patient’s journey is driven by their health condition. The
transition matrices for elective and emergency surgery
(Tables 4 and 5, respectively) present the chance of
transferring to a specific location (i.e. destination), given
the previous location (i.e. origin), after completing the LoS
of the previous location. It is also possible for a patient to
transition to a destination with the same level-of-care as the
origin, e.g. a patient moving from a specialised colorectal
post-surgical recovery ward (GW) to a general oncology
ward (GW). Hence, P(Destination =Y | Origin =Y) >
0, where Y represents any level-of-care.

The results show that a patient will always have the
highest chance to move to a general ward or to get
discharged from a general ward. Also, the chance of
transitioning from operating theatres to CC is significantly
higher for emergency (16.4%) than for elective (0.74%)
surgical patients.

3.1.2 Length-of-stay
COVID-19 length-of-stay Table 6 presents the best-fitted

distribution to capture the variability in LoS of COVID-19
patients. The null-hypothesis (i.e. the theoretical distribution

Table 6 Length of Stay (LoS) distribution fitting COVID-19 Patients. GW: General Ward, ICU: Intensive Care Unit

Parameter n Mean (days) SD Distribution Chi-Sq. KS p-value
GW (Pre-ICU) 28 2.65 3.13 Gamma(a=0.81, $=3.23) x2(27)=4.14 0.19 0.313
ICU 99 18.4 17.9 Weibull(e=1.02, B=18.6) x2(98)=12.8 10.0 0.131
GW (Post-ICU) 52 13.6 11.2 Erlang(m=2, $=6.80) x2(51)=13.0 3.00 0.054
GW (Uncompl.) 346 10.3 9.61 Weibull(w=1.03, $=5.41) x2(345)=12.2 18.0 0.662
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accurately reflects the empirical distribution) was accepted
at 5% significance-levels (i.e. p-value > 0.05) for each
of the fitted distributions. Figure 10 illustrates the high
variability in LoS and the visual fit of the fitted theoretical
distributions.

Post-surgical length-of-stay Tables 7 and 8 present the
average LoS for each origin-destination combination for
elective and emergency patients, respectively. The results
reiterated the need for origin-dependent LoS parameters:

Table 7 Average LoS for elective surgical patients

Theoretical Distribution EEm Histogram of Observed Data

e.g. the mean LoS for elective patients on GW and ICU
ranged between 0.9-8.1 and 3.3-5.4 days, respectively.

3.2 Model validation

Black-box testing was performed to evaluate the accuracy
of model predictions with the actual observations in
the hospital. First, black-box testing for COVID-19 bed
occupancy was performed over the period March - June
2020, based on actual admissions. Figure 11 illustrates the

Table 8 Average LoS for emergency surgical patients

Elective Destination Emergency Destination

LoS (in days) ICU OIR HDU IDA GW LoS (in days) ICU OIR HDU IDA GW

Origin OR 4.46 1.13 1.54 2.39 0.85 Origin OR 5.81 1.16 3.46 2.19 4.78
ICU 3.30 0.00 0.94 3.34 7.55 ICU 3.28 0.00 6.07 2.99 9.32
OIR 4.05 0.00 3.43 3.15 5.46 OIR 2.67 0.00 2.68 4.00 4.01
HDU 0.00 0.00 0.00 0.00 1.95 HDU 4.37 0.00 0.00 0.00 6.93
IDA 5.43 0.00 1.05 0.00 8.10 IDA 4.66 0.00 0.47 0.00 8.75
GW 3.29 1.08 4.22 3.16 2.68 GW 3.54 0.91 2.74 2.57 5.55
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Fig. 11 Black-box testing of
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high accuracy of the model in terms of GW bed occupancy
and ICU bed occupancy.

On the other hand, Fig. 12 shows that the model underesti-
mates the total number of operating theatres which can be
opened during an in-between-waves context (i.e. June 2020)
by 20%. Two assumptions concerning staff requirements
explain the discrepancy. Firstly, ‘COVID-19 staffing ratios’
were assumed for all operating theatres (i.e. increased
staffing ratios) to account for infection-control regulation.
However, in June 2020 several ‘normally-staffed’ theatres
were in operation, due to the low prevalence of COVID-
19 in the hospital and community. Secondly, the model
assumed a COVID-19 consultants rota, requiring more
consultants to be present in the hospital during the night,
reducing the available capacity for elective theatres.

Model Validation
30 Operating Theatres Capacity
[ Elective Theatres IS
25 3 Elective Theatres CUH

Hl Emergency Theatres

201

15

10

Operating Theatres Open

5 -

O_

Actual
(CUH June 2020)

Predicted
(Simulation Model)

Fig. 12 Black-box testing of Operating Theatre Capacity. CUH:
Cambridge University Hospitals, IS: Independent Sector

18-Mar 01-Apr 15-Apr 29-Apr 13-May2020

—— Actual Bed Occupancy
—— Simulation Model - Predicted Mean
Simulation Model - 5% & 95% Percentile Bands

3.3 Resource allocation strategy results

The simulation model enabled an analysis of the resource
allocations strategies. This section presents the in-depth
results for the individual strategies, followed by an overall
comparison.

3.3.1 Resource allocation strategies

Strategy 1 - proactive cancellation of elective surgery The
first strategy dictates that from the onset of a COVID-
19 wave, all elective surgery is cancelled, such to allow
for CC training for theatre staff. Figure 13 illustrates the
evolvement of open elective theatres over time, showing a
significant drop in capacity under both the base case and
worst case COVID-19 scenarios. In a worst case scenario,
the process of opening theatres is more gradual and takes
an additional month to achieve the same level, compared
to a base case scenario. Notably, Fig. 13 refutes the idea
that the end of the admissions peak inherently marks the
start of opening theatre capacity. Firstly, the evaluation of
opening capacity occurs weekly and takes a subsequent
period to transition. Secondly, the CC occupancy graph does
not necessarily match the COVID-19 admissions graph.

Strategy 2 - reactive cancellation of elective surgery The
second strategy is similar to the proactive cancellation
strategy, but elective theatres are opened or closed in a
more agile way. Figure 14 illustrates that 60% more theatres
need to be closed during a worst case scenario than in a
base case scenario. The results suggest that Addenbrooke’s
hospital can always maintain some level of elective surgery
throughout the pandemic. Finally, the recovery period for
both scenarios takes approximately 4-5 months, affecting
elective capacity until April 2021.
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Fig. 13 Development of elective theatres open under proactive
cancellation policy for COVID-19 base case (top) and worst case
(bottom)

Strategy 3 - ring-fencing elective surgery The ring-fencing
strategy limits the process of closing theatres to a certain
level to facilitate elective surgery. Figure 15 shows that for a
base case scenario, ring-fencing resulted in relatively minor
differences compared to a reactive cancellation strategy.
However, in a worst case scenario, significantly more
theatres remain open. The secondary effects were analysed
in subsequent sections.

3.3.2 Comparative analysis

The previous section presented the impact of resource
allocation policies on the ability to open elective theatres.
A comparative analysis of strategies aids the discussion to
determine the ‘optimal’ resource allocation strategy.

Hospital front-end Hospitals aim to admit any patient
requiring care without delay. Figure 16 presents the number
of admitted COVID-19 patients and Fig. 17 presents the
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Fig. 14 Development of elective theatres open under reactive
cancellation policy for COVID-19 base case (top) and worst case
(bottom)

number of elective surgeries performed, for each strategy,
grouped by COVID-19 scenario. The negligible effect of
the strategies on COVID-19 admissions is explained by the
assumption that every patient requires a GW stay before
potentially requiring CC. It was further assumed that GW
beds are not scarce in a hospital during a pandemic, in line
with Addenbrooke’s hospital’s experience during the first
wave.

The ability to perform surgery is significantly dependent
on the strategy. Firstly, proactive cancellation results in
11% fewer surgeries compared to reactive cancellation, as
an effect of proactively closing theatres. Secondly, a ring-
fencing strategy translated in significantly (i.e. 10%) more
surgeries compared to a reactive strategy in a worst case
scenario, but only performs marginally better (i.e. 2.5%) in
a base case scenario.

Patient outcomes Even though hospitals aim to maximise
the number of people it can admit, it simultaneously aims
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Fig. 15 Development of elective theatres open under ring-fencing
policy for COVID-19 base case (top) and worst case (bottom).

to maximise patient treatment and outcomes. Figure 18
presents the number of rejections for each strategy and
scenario. The most important conclusion is that the ability to
treat patients is greater under a base case scenario; a worst-
case scenario results in at least 20 times more CC rejections.
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Fig. 17 KPI - elective surgeries performed

Moreover, the ring-fencing strategy results in 10% more
surgeries but 50% more rejections. These results expose
the multi-objective optimisation context: maximising the
number of surgeries performed whilst minimising the
number of rejections.

Minimising the total number of deaths is often a core
objective during pandemics. This study defined deaths
more holistically by including non-COVID-19 deaths;
specifically surgical patients not surviving their hospital
stay. Figure 19 shows that the total direct deaths are twice
as high in the worst case scenario. While there is no
significant difference in a base case scenario, a ring-fencing
strategy results in slightly fewer direct deaths in a worst
case scenario. This effect is predominantly explained by
the increased rejection of COVID-19 patients under a ring-
fencing strategy, which results in fewer direct deaths in the
hospital.

Aggregated hospital performance The four KPIs were
aggregated by the AHP-measure into a single-currency
metric by using the assumptions stated in Section 2.4.
In addition, for this preliminary analysis, we assume that
100% of the elective surgeries are life-saving, e.g., the
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Fig. 18 KPI-ICU & HDU rejections. ICU: intensive care unit, HDU:
high dependency unit
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Fig. 19 KPI - Total direct deaths (excl. CC rejections and surgeries
performed)

unavailability of surgery will result in the death of the
patient. Figure 20 presents the AHP results, suggesting that
a ring-fencing strategy is superior over both the proactive
and the reactive cancellation strategy, resulting in a 2-
20% performance improvement. A proactive cancellation
strategy -potentially unnecessarily- reduces the number
of surgeries performed, where the reactive cancellation
policy prioritises resources to a group of resource-intensive
patients with a relatively low likelihood of a favourable
outcome. Both the order of magnitude of average AHP and
the ranking of strategies are consistent and independent of
the COVID-19 scenarios. Hence, the AHP-measure is robust
in different contexts.

3.4 Sensitivity analysis

A sensitivity analysis was performed to evaluate the
robustness of the model and results. More specifically, the
underlying assumptions of the proposed AHP-measure were
evaluated. The proportion of elective surgeries which can
be considered ‘life-saving’ was stretched between 0-100%.
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Fig.20 KPI - Aggregated Hospital Performance (AHP)
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Fig. 21 Sensitivity analysis of Aggregate Hospital Performance
(AHP)-measure on proportion of surgeries classified as life-saving

Figure 21 shows the sensitivity analysis of performance
of the resource allocation strategies in terms of AHP. The
null-hypothesis that a ring-fencing strategy outperforms a
reactive cancellation strategy was rejected if only less than
7.3% of the elective surgeries can be considered ‘life-
saving’ (@ = 5%). Otherwise, the ring-fencing strategy
prioritising elective surgical care seems superior.

4 Discussion
4.1 Key findings

This study evaluated the impact of resource allocation
strategies on the ability to treat patients. First of all, it can
be concluded that a single COVID-19 wave significantly
impairs the hospital’s ability to treat patients for 4-5 months.
COVID-19 patients have a higher probability of requiring
CC 20% vs <1%), a significantly longer LoS (19 vs 4
days), and a significantly higher probability of dying on CC
(36% vs 2.75%) compared to elective surgical patients.

Secondly, a proactive cancellation strategy enables staff
training for CC and allows hospitals to prepare for the
‘unknown’ influx of COVID-19 patients. However, this
does come at the cost of 11% fewer surgeries compared to
a reactive cancellation strategy, while not resulting in fewer
death or CC rejections.

Under a reactive cancellation strategy where a staff
training period is not required, significantly more surgeries
can be performed. As a result, this strategy enables more
surgery without seeing increased CC rejections or deaths.

Thirdly, a ring-fencing strategy for operating theatres
enables surgical capacity regardless of COVID-19, translat-
ing in 2.5-10% more surgeries compared to a reactive strat-
egy for a base case and worst case scenario, respectively.
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However, CC will be unable to cope with the influx of
COVID-19 patients, especially under a worst case scenario;
resulting in 50% more CC rejections.

Overall, no strategy outperforms on all aspects. To
consolidate the different KPIs, the AHP-measure was
introduced. The measure is dependent on the assumptions
that all surgery is life-saving surgery during a pandemic,
and that not admitting a COVID-19 patient results in
death. According to the AHP-measure, a ring-fencing
strategy achieves an average AHP improvement of 12%
over the other strategies, potentially saving more lives.
The increased number of CC rejections under a ring-
fencing strategy is outweighed by the vast amount of
additional surgeries performed. Such finding importantly
goes against the strategy adapted by hospitals worldwide:
prioritising COVID-19 patients. The dominance of the ring-
fencing strategy in terms of AHP is explained by the fact
that COVID-19 is a resource-intense disease; occupying
resources for a significant amount of time with a relatively
low likelihood of favourable patient outcomes.

Finally, the sensitivity analyses on the AHP-measure
showed that only a small proportion of surgeries (>7.3%)
have to be considered ‘life-saving’ to achieve a significant
difference between reactive cancellation and ring-fencing
strategies in favour of ring-fencing non-COVID-19 surgical
care over COVID-19. Further work is required on the life-
saving nature of elective surgeries before any conclusive
remarks can be made. Furthermore it could be argued that a
truly life-saving situation would be treated under emergency
surgery, which was outside the remit of this study.

4.2 Implications

The key findings lead to several implications for hospitals
on the modelling of resource utilisation, the preparation for
a second wave, and on the allocation of resources during a
pandemic. Firstly, the results confirm the need for stochastic
and integrated modelling of COVID-19 and non-COVID-19
care. Secondly, resource prediction models should provide
predictions on a wider range of resources, including CC
nurses and consultants, to enable capacity management on
the actual bottlenecks.

Besides the implications for modelling, this study also
has implications on the prioritisation of COVID-19 patients.
COVID-19 is a resource-intense disease with a relatively
low likelihood of a favourable outcome. A significant trade-
off exists between COVID-19 and surgical patients. A ring
fencing strategy seems to outperform the other strategies
as long as more than 7.3% of surgeries are life-saving. In
conclusion, this evaluation aids an ethical discussion on the
prioritisation of patients and its effects.

Finally, this evaluation demonstrated the need for
hospitals to engage in preparation by training staff for

CC and improving organisational flexibility. Also, hospitals
can engage in resolving bottlenecks, e.g. by recruitment
efforts. This will enable hospitals to maximise the number
of patients, both COVID-19 and non-COVID-19, they can
treat during the pandemic.

4.3 Limitations

This study made several assumptions limiting the accuracy
of the model. Firstly, the LoS for surgical patients was
not stochastically modelled using probability distributions.
Additionally, a patient’s journey was not modelled on an
individual’s clinical data and surgical procedure (i.e. patient
waiting list database) but based on historical data for every
origin-destination combination.

Secondly, even though this evaluation made a first
attempt in modelling COVID-19 and non-COVID-19
patients, several patient streams were still approximated
using a baseload. Moreover, this study evaluated resources
beyond beds, but assumed sufficient capacity for other
essential resources, such as ventilators and PPE. Resources
such as PPE were extremely scarce during the first wave,
and it should be evaluated if these resources will again form
a bottleneck.

Finally, the AHP-measure enables a single-currency
comparison of strategies but makes fundamental assump-
tions limiting the validity of the aggregate measure. First of
all, even though all surgeries classified as ‘P2’ according to
the Royal College of Surgeons of England clinical prioriti-
sation rubric should be performed within 30 days to prevent
life altering/threatening consequences [33], those patients
do not necessarily die if surgery is postponed. Therefore,
this medical classification does not necessarily accurately
reflect the ‘proportion of life-saving surgery’. Secondly, not
admitting a COVID-19 patient does not necessarily result
in death. Hence, it is important that the AHP-measure is
considered with some degree of reservations, and that the
in-depth KPIs are consulted to evaluate the performance of
a strategy comprehensively.

4.4 Future research

This study is the first in modelling the effect of allocating
resources between pandemic and non-pandemic patients.
In order to overcome the limitations and continue to
explore how patient outcomes can be maximised, several
recommendations for future research are proposed.

First of all, new treatments for COVID-19, like remde-
vesir, have an impact on the patient flow, LoS and patient
outcomes. Therefore, research is recommended to evalu-
ate how these treatments will result in reduced resource
requirements and increased capacity to treat non-COVID-19
patients. It is expected that new treatments for COVID-19
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will reduce the strain on resources and increase the favoura-
bility of prioritising COVID-19 care.

Secondly, this study recognised the interdependency of
hospital services, such as CC and operating theatres. How-
ever, CC and operating theatres are only two areas affected
by COVID-19. General wards are similarly impacted
and potentially require additional staff during a second
wave. Hence, further research is suggested i) to evaluate
which areas are most significantly affected and ii) to include
these areas in the model, to more comprehensively analyse
the impact of resource allocation strategies.

Thirdly, the results of the AHP-measure suggest that
COVID-19 is a resource-intensive disease with a relatively
low likelihood of a positive outcome, advocating for more
life-saving surgery. The AHP-measure requires an ethical
evaluation to determine how deaths, rejections, admissions
and surgeries can be combined while accounting for factors,
such as i) likelihood of positive treatment outcome, ii)
resource intensity of treatment, iii) potential harm of
postponing treatment.

5 Conclusion

As part of Addenbrooke’s Hospital operational response to
the pandemic, this evaluation aimed to answer the question:
What is the impact of scarce resource allocation strategies
on the ability to treat patients during a pandemic? The
main findings show that a proactive cancellation strategy
enables staff training, but reduces a hospital’s ability to
perform surgery by 11% while not significantly reducing
deaths or rejections compared to a reactive cancellation
strategy. Moreover, a ring-fencing strategy outperforms all
other strategies in terms of surgeries performed and total
deaths, but at the cost of 50% more CC rejections.

When evaluating the performance of the strategies using
the AHP-measure, this study suggests that prioritising
elective surgery over COVID-19 if a hospital sees a high
proportion of life-saving surgeries could lead to better
outcomes overall even though it might lead to some patients
infected with COVID-19 being rejected for CC.

Finally, the open-source model proposed is generalisable
for hospitals worldwide and potentially for other pandemics.
Even though each pandemic inherently exhibits clinical
variability, pandemics will always significantly draw
from a vast range of hospital resources, including CC.
While acknowledging that the model was tailored to
Addenbrooke’s hospital, any hospital which reallocated
theatre staff to CC can make use of the model and
its findings. It can aid hospitals to inform a strategic
discussion on resource allocation and prioritisation; a
hospital’s individual characteristics, such as different triage,
treatments, or resource capacity, can be captured by
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adjusting the input parameters. Finally, this model could
benefit tactical purposes by supporting i) decision-making
on opening/closing theatres, ii) active management of
shared resources, and iii) pandemic preparation in terms of
staff training and recruitment.
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