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Abstract

Background: Testosterone (T) controls male Syrian hamster sexual behavior, however, neither of T’s primary metabolites,
dihydrotestosterone (DHT) and estradiol (E2), even in highly supraphysiological doses, fully restores sexual behavior in
castrated hamsters. DHT and T apparently interact with androgen receptors differentially to control male sexual behavior
(MSB), but whether these two hormones act synergistically or antagonistically to control MSB has received scant
experimental attention and is addressed in the present study.

Methodology/Principal Findings: Sexually experienced male Syrian hamsters were gonadectomized and monitored 5
weeks later to confirm elimination of the ejaculatory reflex (week 0), at which time they received subcutaneous DHT-filled or
empty capsules that remained in situ for the duration of the experiment. Daily injections of a physiological dose of 25 mg T
or vehicle commenced two weeks after capsule implantation. MSB was tested 2, 4 and 5 weeks after T treatment began.
DHT capsules were no more effective than control treatment for long-term restoration of ejaculation. Combined DHT + T
treatment, however, restored the ejaculatory reflex more effectively than T alone, as evidenced by more rapid recovery of
ejaculatory behavior, shorter ejaculation latencies, and a greater number of ejaculations in 30 minute tests.

Conclusions/Significance: DHT and T administered together restored sexual behavior to pre-castration levels more rapidly
than did T alone, whereas DHT and vehicle were largely ineffective. The additive actions of DHT and T on MSB are discussed
in relation to different effects of these androgens on androgen receptors in the male hamster brain mating circuit.
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Introduction

Testosterone (T) has long been implicated in the maintenance of

male sex behavior (MSB) [1–3]. In many mammals reduced

androgen availability is associated with marked reductions in

copulatory behavior. In some species androgens exert their effects

directly on androgen receptors (ARs); in others, conversion of T by

brain tissues may be an essential step [4]. The canonical view,

derived from studies of rats, emphasizes conversion of T to

estradiol (E2) by the enzyme aromatase as a key step in nervous

system maintenance of MSB. Treatment with 5a-dihydrotestos-

terone (DHT) or E2 alone is not sufficient to maintain ejaculation

in most castrated rats; combined treatment with both hormones

maintains full copulatory ability, although less effectively than T

treatment [5]. Physiologically relevant E2 plus DHT treatments

that elevate brain androgen and estrogen receptor levels to those

of castrated rats treated with T capsules that restore MSB, fail to

reinstate copulation [6]. Nevertheless, both androgenic and

estrogenic metabolites are thought to contribute to MSB in rats

[7–8].

Because DHT, a non-aromatizable steroid, effectively maintains

MSB in guinea pigs, rhesus monkeys, rabbits (reviewed in [9]), and

some mouse strains [10], the generality of the aromatization

hypothesis has been questioned. It remains unclear which of T’s

metabolites is critical for MSB in species other than rats [11].

In Syrian hamsters supraphysiological concentrations of E2 or

DHT fail to restore MSB [12–13]. In a typical study only a

cocktail of E2 and DHT that generates blood concentrations more

than two orders of magnitude greater than those in intact males

restores copulatory behavior, but even then not to the high levels

displayed by intact males [12–13]; the biological relevance of such

non-physiological treatments is questionable. Administration of

the aromatase inhibitor fadrozole does not compromise any

component of copulatory behavior in intact male Syrian hamsters,

despite inhibiting brain formation of E2 from T [14].

Nuclear binding of T to the AR in brain and peripheral tissues is

abolished when an excess of DHT is given simultaneously with T

[15] and pretreatment with DHT suppresses binding of T [16]. In

Syrian hamsters both DHT and T are ligands for ARs [17] and T

treatment concurrent with injection of labeled DHT completely
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inhibits uptake of DHT [18]. Although it remains inconclusive

whether separate ARs mediate effects of T and DHT [19–20],

several investigators have suggested that these two androgens

activate different target genes or that two kinds of androgen-

response elements mediate differential AR transactivation by T

and DHT [21–22]. In Syrian hamsters T and DHT differentially

affect harderian gland mRNA [23], suggesting that the two

hormones may activate different genes after binding to the AR.

Based on these considerations we reasoned that if DHT and T

occupy the same ARs, then treatment with a supraphysiological

dose of DHT (8 times the endogenous concentration), that by itself

does not support MSB, might inhibit the ability of otherwise

effective T treatment to restore MSB. This presupposes that the

DHT pretreatment saturates or substantially reduces the number

of ARs available to T. Alternatively, if T and DHT act at different

ARs, pretreatment with DHT may facilitate activation of MSB by

low physiological dose T replacement, possibly by increasing total

androgen availability or by increasing the number of brain AR

immunoreactive cells [24].

Materials and Methods

Ethics Statement
All animal procedures were approved by the Animal Care and

Use Committee at the University of California, Berkeley and were

conducted in compliance with the NIH guide for the care and use

of animals. Approval ID for this study is R084-0910C.

Animals
Syrian hamsters (Mesocricetus Auratus; HsdHan: Aura; 10 weeks

old) obtained from Harlan (Indianapolis, IN) were maintained on

a 14L:10D photoperiod (14 h light/day, lights off at 1800 h PST).

Tap water and Lab Diet Prolab 5P00 were continuously available.

Hamsters were singly housed at 2361uC in polypropylene cages

(48625621 cm) furnished with Tek-Fresh Lab Animal Bedding

(Harlan Teklab, Madison, WI).

Experimental Procedure
Screening for male sexual behavior. Adult male hamsters

were 12 weeks old at the time they were screened in real time for

MSB during the late portion of the light phase (,1400–1700 h)

with ovariectomized females rendered sexually receptive with

standard estradiol plus progesterone treatments [25]. A Silastic

capsule (Dow Corning, Midland, MI; 4 mm in length; ID

1.98 mm, OD 3.18 mm) filled with estradiol-17b (Sigma, St.

Louis, MO) and sealed with silicone adhesive, was implanted s.c.

on the day of ovariectomy; behavioral receptivity was induced by

injecting females s.c. with 350 mg progesterone (Sigma) dissolved

in peanut oil (2.5 mg/ml) 4 h prior to the sexual behavior testing

sessions. Females were not utilized more frequently than once

every four days.

The testing arena, kept in the room in which hamsters were

housed, consisted of a clear Plexiglass box (41621621 cm) set

above a slanted mirror to facilitate observation of intromissions

and ejaculations. After 10 min, during which the male was

acclimated to the apparatus, a sexually receptive female was

introduced and MSB recorded. Males that ejaculated on two

consecutive tests separated by at least a week were retained for the

experiment. During the first screening test observations were

limited to 15 min, which was adequate for each male to ejaculate

at least once. On the second screening test hamsters were observed

for 30 min, which permitted the emergence of the full suite of

behaviors and provided baseline data for comparison with

postoperative measures.

We recorded the number of mounts not accompanied by an

intromission that preceded ejaculation, the number of intromis-

sions that preceded ejaculation, latencies to the first mount, first

intromission, and first ejaculation. Males that failed to display any

of the behaviors during postoperative tests were assigned the

maximum latency of 30 min for each behavior. After the

preoperative tests, hamsters were assigned to groups that did not

differ with respect to any of the recorded behaviors.

Surgical procedures. Hamsters were anesthetized with

isoflurane vapors (Baxter Healthcare, Deerfield, IL) and castrated

through a midline incision in the abdominal cavity. Incisions were

closed with sterile sutures and wound clips (Mikron Auto Clip

9 mm, Becton Dickinson, Franklin Lakes, NJ). Hamsters were

injected s.c. with the analgesic 5% buprenorphine (0.1 ml/animal),

postoperatively (Hospira Inc., Lake Forest, IL).

Experimental Design. Sexually experienced males were re-

tested 5 weeks after castration (wk 0) to verify the loss of MSB,

characterized by absence of intromission and ejaculation behaviors.

The day after loss of MSB was verified, hamsters were treated s.c.

with three Silastic capsules (Dow Corning; 10 mm each in length;

ID 1.98 mm, OD 3.18 mm) that were either empty (blank) or

packed with powdered DHT. Capsule size was selected to generate

supraphysiological concentrations of DHT likely to compete

effectively with much lower doses of injected T, thereby providing

a test of the ability of DHT to influence restoration of MSB by T.

Beginning two weeks after capsule implantation, hamsters were

injected daily s.c. with 0.1 ml of a 50/50% ethanol-distilled water

solution that contained either 25 mg T or no hormone. This

concentration was selected based on a previous study that

established 15 mg T as a near threshold dose for restoration of

MSB in hamsters [26]. The four treatment groups, each containing

ten hamsters, received either Blank implants + Vehicle injections

(control), Blank implants + T injections (T), DHT implants +
Vehicle injections (DHT), or DHT implants + T injections (DHT +
T). Sexual behavior was tested in the same manner as in the final

pre-operative testing session, except tests were terminated if a

hamster failed to intromit after 10 min. Tests occurred 4, 6, and

7 wks after implantation of capsules, corresponding to 2, 4, and

5 wks after the start of daily injections. Behavior tests commenced

5–7 h after the most recent injection.

T was administered in an aqueous rather than oil vehicle,

because the former preparation is more effective for restoration of

hamster MSB [26]. 50 mg/day T in oil failed to restore MSB [12],

whereas 15 mg of aqueous T/day restored the ejaculatory reflex in

100% of castrated males [26]. The latter procedure was adopted

in the present study on the assumption that T treatments that

generate blood hormone concentrations orders of magnitude

greater than those present physiologically [12] reduce the

possibility of detecting interactions of T and DHT in the control

of MSB. The physiologically relevant T replacement regimen of

25 mg/day [26] elevates blood T concentrations for several hours

each day and more closely mimics the episodic secretion of T in

intact males [27] than hormone replacement via implanted

capsules or administration in oil vehicles (reviewed in [25–26]).

Blood and tissue analysis. All hamsters were bled one day

after the wk 5 behavior test, 2 h after injection of hormone or

vehicle. Blood was obtained from the retro-orbital sinus from

hamsters lightly anesthetized with isoflurane vapors. Samples were

centrifuged at 4uC for 20 min at 3000 rpm, and the serum

collected and frozen at 280uC until assayed for concentrations of

T, DHT and E2. Two subgroups were formed from the DHT

hamsters depending on whether the individual ejaculated after

replacement treatment (4 hamsters) or failed to ejaculate (6

hamsters generated 4 samples derived by pooling sera from 2 pairs

DHT and Sex Behavior
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of hamsters with insufficient blood volumes for individual assays).

T concentrations from unpooled samples were determined for 4

hamsters from the DHT + T group, 4 hamsters from the T group

and 5 hamsters from the control group. Unpooled samples from 6

hamsters from the DHT + T group, 6 from the T group, and 5

from control group were assayed for E2. The new groups created

for blood hormone determinations did not differ with respect to

sexual behavior within groups; i.e., T-injected hamsters assayed

for T did not differ from T-injected hamsters assayed for E2.

Approximately 48 h after the final behavior test hamsters were

euthanized by placement in a carbon dioxide-filled chamber; the

seminal vesicles, ventral prostate, and penis were removed, and

dry weights recorded (60.01 mg).

Hormone radioimmunoassay. Hormone concentrations

were measured with commercially available radioimmunoassay

kits (Diagnostic Systems Laboratory, Inc, Webster, TX) previously

validated for use with non-extracted Syrian hamster serum, which

included a description of parallelism upon serial dilution, and a

recovery of 94% [28]. The T and DHT assays (DSL 4000 and

9600, respectively), were validated for Syrian hamster serum by

Faruzzi et al. [29].

Samples for T were assayed in duplicate (DSL-4000), whereas

samples for E2 were determined in singleton (DS-43100), owing to

the larger sample volume requirement of that assay. Serum

samples underwent an oxidation/extraction procedure prior to the

DHT assay (DSL-9600). The intra-assay correlations of variation

for T, E2, and DHT were 8.9, 2.0, and 3.1%, respectively, and the

minimum detection limits were 0.08 ng for T, 0.01 ng for E2, and

0.004 ng/ml for DHT, respectively. Samples were run in a single

assay for each hormone. Cross-reactivity with T was 0.02% in the

DHT assay after extraction; in the T assay cross-reactivity with

DHT was 5.8%, as reported by the manufacturer.

Statistical analyses. Differences between pre- and

postoperative sex behaviors were assessed with paired t-tests. Mixed

ANOVAs compared postoperative, hormone-treated groups across

time. Differences between groups at specific time points or for post-

mortem tissue weight analyses were assessed with single factor

ANOVA followed by pairwise comparisons using Tukey’s HSD test.

If an omnibus ANOVA could not be carried out due to too few data

points in some groups, those groups were excluded from analyses;

e.g., at wk 5 no hamsters from the vehicle group and only one from

the DHT group ejaculated, which does not allow for statistical

comparison; thus, these groups were eliminated from the analysis.

Comparisons of proportions of hamsters in each group displaying a

behavior were calculated with the Fisher-Freeman-Halton Exact

Test. The Statview program (Statview 5; SAS Institute, Cary, NC)

Figure 1. DHT and T synergize to accelerate restoration of ejaculatory behavior. Percent of males displaying the ejaculatory reflex (A),
number of ejaculations per 30 min test (B) and ejaculation latencies on the first ejaculatory series (C), during post-castration tests 2–5 wks after the
onset of hormone or vehicle injections. * Significantly different from all other groups. ‘‘a’’ significantly different from the control group (p,0.05).
doi:10.1371/journal.pone.0012749.g001
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was used for all ANOVA and t-tests. The Fisher-Freeman-Halton

Exact test was computed with the Statsdirect program (Statsdirect

2.7.7; Altrincham, UK). Observed differences were considered

significant if p,0.05 and are reported as such.

Results

There were no differences between groups in the numbers of

hamsters displaying mounts, intromissions, or ejaculations during

pre-operative testing. All hamsters failed to intromit or ejaculate 5

weeks after castration (wk 0 test).

Restoration of male sexual behavior after hormone
treatments

Ejaculatory Behavior. All hamsters were treated with DHT

or empty capsules beginning 2 wks prior to the start of the

injection regimen; capsules remained in situ for the duration of the

experiment. None of the control males treated with blank capsules

and subsequently injected with vehicle displayed the ejaculatory

reflex during any of the post-operative tests. After 2 wks of

hormone injection, however, ejaculatory behavior was displayed

by 90% of the DHT + T group, compared to 30% of the T group

(p,0.05) and 20% of the DHT males (Fig. 1A, wk 2, p,0.05).

Combined treatment with both hormones substantially accelerated

reinstatement of ejaculatory behavior. After 5 wks of treatment

(wk 5, Fig. 1A), 90% of males in both the DHT + T and T groups

ejaculated, compared to 10% of the DHT males (p,0.05). With

continued treatment T was as effective as DHT + T in restoring

the ejaculatory reflex in 90% of males. DHT and control males did

not differ significantly at any time point.

The number of ejaculations per test differed significantly across

time (F3,35 = 61.1, p,0.05) and a significant group 6 time

Figure 2. DHT + T treatment reduces the number of intromissions preceding ejaculation. Number of intromissions (A) and intromission
latencies (B), preceding the first ejaculation. * Significantly different from all other groups ‘‘a’’ significantly different from control group). ‘‘b’’
significantly different from DHT + T group.
doi:10.1371/journal.pone.0012749.g002

Figure 3. T and DHT + T treatments do not affect number of mounts but reduce mount latencies. Number of mounts (A) and mount
latencies (B) preceding the first ejaculation. ‘‘a’’ significantly different from control group ‘‘b’’ significantly different from DHT + T group. Mount
numbers did not differ significantly between groups over time.
doi:10.1371/journal.pone.0012749.g003
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interaction was detected (p,0.05). At wk 2, the DHT + T group

ejaculated significantly more often than each of the other 3 groups

(Fig. 1B). The time between wks 2 and 4 accounted for this

interaction (p,0.05). By wks 4 and 5, all groups differed

significantly from each other except for the DHT and control

hamster comparison (Fig. 1B). The number of ejaculations by

males treated with both hormones did not differ from preoperative

values, indicative of full restoration of MSB, whereas males treated

with just T ejaculated significantly less often than during

preoperative testing.

Hormone treatment significantly affected ejaculation latencies

(ELs) across groups (F3,36 = 51.5, p,0.05); ELs were significantly

shorter for DHT + T hamsters than for all other groups at wks 2

and 4 (Fig. 1C); by wk 5, ELs were equal in the DHT + T and T

groups. Only treatment with DHT + T restored ELs to

preoperative values. At wks 4 and 5, ELs of the T group were

significantly shorter than those of the control and DHT hamsters.

Again, there was a significant interaction between the groups and

time (p,0.05), with the changes between wks 2 and 4 accounting

for this effect (p,0.05).

Intromission Behavior. DHT + T hamsters displayed

significantly fewer intromissions prior to ejaculation than T

hamsters at wks 2, 4 and 5 (Fig. 2A). Values for DHT + T

hamsters at wk 5 did not differ significantly from preoperative

values; T hamsters, in contrast, had substantially more intromissions

prior to ejaculation at wk 5 than preoperatively (p,0.05).

Hormone treatment significantly altered intromission latencies

(ILs) across time (F3,35 = 40.2, p,0.05); hamsters that failed to

intromit during all postoperative behavior tests were assigned the

30 min default value. There was no interaction between group

and time (p.0.05). DHT + T and T males maintained

preoperative-like ILs at wks 2, 4, and 5, that were significantly

shorter than those of the control and DHT groups. By wk 5, DHT

was no more effective than vehicle at reducing ILs.

Mounting Behavior. After non-ejaculators were excluded

from the data analysis, the number of mounts that preceded the

first ejaculation did not differ among groups (F2,11 = 1.1, p.0.05;

Fig. 3A). In addition, there was no significant interaction between

the time and group factors (p.0.05). Mount latencies (MLs)

differed significantly as a function of hormone treatment

(F3,35 = 33.2, p,0.05). T and DHT + T groups had significantly

shorter MLs than did the control and DHT groups at wks 2, 4 and

5; DHT and control groups did not differ significantly (p.0.05).

The T and DHT + T groups maintained MLs during all

postoperative tests that did not differ significantly from

preoperative values.

Ventral Prostate, Seminal Vesicle and Penis Weights.

Differential hormone treatment resulted in significantly different

ventral prostate and seminal vesicle weights (F3,35 = 24.0,

F3,35 = 97.9, respectively, p,0.05). Administration of DHT,

either alone or in combination with T, resulted in significantly

increased ventral prostate and seminal vesicle weights compared

to those of other groups (Fig. 4A, 4B; respectively) but the DHT

+ T and DHT groups did not differ. T administration alone did

not increase ventral prostate weight, but did significantly

increase seminal vesicle weight, compared to values of vehicle-

treated controls. Penile weights did not differ significantly based

on a single factor ANOVA analysis (F3,35 = 2.4, p = 0.11;

Fig. 4C).

Blood hormone concentrations. T and DHT + T

injections each significantly elevated T concentrations compared

to the vehicle-injected control group; the T and DHT + T groups

did not differ from each other (Fig. 5A).

Both T and control groups, had significantly lower E2

concentrations than the DHT + T group. DHT males that had

ejaculated on one or more of the tests (n = 4) had significantly

higher DHT concentrations than those that did not ejaculate

(p,0.05; Fig. 5C).

Figure 4. DHT alone or in combination with T increases
prostate and seminal vesicle but not penis weights. Ventral
prostate (A) seminal vesicle (B) and penis weights (C) (mg). Bars
designated with different letters differ significantly from one another
DHT increased prostate and seminal vesicle weights.
doi:10.1371/journal.pone.0012749.g004
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Discussion

Pretreatment with DHT, although itself ineffective for restoring

MSB, combined with T to restore copulatory behavior to values

generated by intact males. Any competition of these steroids for

available ARs did not negatively affect the display of MSB. On the

contrary, after two weeks, the combined treatment was far more

effective than T alone in restoring MSB. This is the first such

demonstration in any mammal, except for an unpublished study

by Arteaga-Silva et al. ([13] p. 419), who noted that ‘‘…simulta-

neous treatment with T and DHT is more effective than T alone

to restore MSB in castrated hamsters’’. The more rapid restoration

of MSB by DHT + T treatment may involve metabolism of DHT

to 3b–diol, a hormone effective in restoring MSB in rats via

actions on ER-b [30]. This metabolite restored sexual behavior in

,half of the rats tested by Morali et al. [31], but was only fully

effective when co-administered with DHT. Our observation that

E2 concentrations were twice as high in the DHT + T than in T-

treated or control hamsters does not preclude the involvement of

estrogens in activation of MSB. Both DHT and its metabolite, 3b-

diol, can upregulate aromatase activity, which may account for

these differences [32]; there is, however, little definitive evidence

for the regulation of the ejaculatory reflex by E2 in Syrian

hamsters. Nor is it known whether or not brain ER-b activation

affects MSB in Syrian hamsters. Circulating E2 concentrations in

the present study were much lower than those necessary to

synergize with DHT to partially restore MSB [12].

The more rapid restoration of MSB by DHT + T treatment

suggests an additive effect of T and DHT on the hamster brain

mating circuit [33] or more effective restoration of penile spines by

DHT than T [13], but behavioral potency of steroids did not

correlate with stimulation of penile growth [13].

The long-term maintenance of localized nuclear ARs by DHT

pretreatment also may contribute to decreased latencies for

restoration of MSB by T in castrated males. Two months after

castration, steady-state brain AR mRNA is decreased; adminis-

tration of DHT restores values in the bed nucleus of the stria

terminalis and medial preoptic area of rats to within the intact

range [34–35]. DHT may accelerate resumption of MSB in

response to T treatment through rapid reinstatement of AR

mRNA, or by inducing higher levels of AR protein [30], thereby

yielding more binding sites for the T ligand. Blood DHT

concentrations generated by the implants were an order of

magnitude higher than those reported for intact hamsters [12] and

well above concentrations generated by 5 mm implants that

‘‘maintain androgen receptor immunoreactivity exclusively within

the neuronal cell nucleus’’ [36], which suggests that our dose of

DHT was sufficient. AR occupancy may be necessary but is not a

sufficient condition for activation of MSB in Syrian hamsters [37].

The complete pattern of MSB was restored in 90% of hamsters

by daily injection of a physiological dose of 25 mg T, but the

number of ejaculations was reduced well below preoperative

values and the number of intromissions preceding ejaculation

increased substantially, suggesting that this was a suboptimal

replacement regimen. The T dose employed in the present study

was much lower than those typically administered in replacement

protocols (500–1000 mg); it generated blood T concentrations

twice the normal physiological value of 2 ng/ml for a short time,

with decreases to below 0.9 ng/ml no later than 7 h after injection

[26]. The amount of T present for most of the interval between

injections is unlikely to compete effectively with DHT for ARs,

given chronic DHT concentrations of ,1.3 to 2.0 ng/ml

produced by the Silastic capsule implants. Approximately 10

times higher concentrations of T are required to produce the AR

transcription effects of DHT [38].

DHT restored MSB in a small number of hamsters, but less

robustly than in hamsters treated with T or DHT + T, as

evidenced by increased latencies to intromit and ejaculate; longer

ejaculation latencies in DHT than T-treated males were previously

reported [39]. When analyses were restricted to hamsters that

ejaculated, latencies were similar in DHT and T-treated hamsters.

This effect was transient, however, as only one of the DHT

hamsters that ejaculated at wk 4 also ejaculated at wk 5. It is

unknown why DHT is much less effective than T for restoring

MSB in Syrian hamsters or whether 5-a reduction of T to DHT is

implicated in the control of MSB in intact males.

T treatment increased seminal vesicle but not ventral prostate

weights. Higher doses of T restore both tissues to preoperative

values [40]. In the presence of the low dose of T administered in the

present study sensitivity of the seminal vesicles to T is greater than

that of the ventral prostate. DHT was effective at increasing both

seminal vesicle and ventral prostate weights to the same extent, with

or without T supplementation, which confirms many earlier studies

that DHT is more potent than T in maintaining peripheral

androgen-responsive tissues. The seminal vesicle and prostate

weights, were, however, lower than those of intact males in a

previous study from our laboratory [25], suggesting that treatment

duration or steroid doses were suboptimal for these tissues.

To the extent that DHT competes with T for AR binding sites,

it does not interfere with sex behavior-promoting actions of T.

Rather, MSB is facilitated by co-administration of the two

hormones, which may attest to their differing interactions with

the AR, to unexplored effects of DHT metabolites, or to the

greater duration or amount of androgen exposure in hamsters

treated with both hormones.
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