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Single-cell view into the role of microbiota
shaping host immunity in the larynx

Ran An,1 Zijian Ni,2 Elliott Xie,3 Federico E. Rey,4 Christina Kendziorski,3 and Susan L. Thibeault1,5,*

SUMMARY

Microbiota play a critical role in the development and training of host innate and adaptive immunity. We
present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference sin-
gle-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell reso-
lution. We highlight the larynx’s cellular heterogeneity with the identification of 16 cell types and 34
distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the
laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated
with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid
cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial
exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide
specific guidance into understanding the mechanism of immune system regulation by microbiota in laryn-
geal health and disease.

INTRODUCTION

The larynx is a vital mucosal organ positioned at the intersection between the digestive and upper respiratory tracts (URT), with the vocal folds

(VFs) serving as a valving mechanism for voicing and airway protection from ingested food and drink during swallowing.1 Vocal fold (VF) dis-

orders affect not only swallowing, breathing, and coughing but also lead to impaired voice production. It is estimated that voice disorders

affect 1 in every 13 adults annually in the US, with infectious laryngitis being the most common diagnosis.2 Total health care costs for these

laryngeal disorders exceeds two hundredmillion dollars per year, causing far-ranging social and economic burden.3 Many laryngeal diseases,

such as acute/chronic laryngitis and benign vocal fold lesions, are associatedwith the inflammation of themucosa, which is intimately linked to

local immunity, based on studies in other part of the body.4 However, a paucity exists in terms of a comprehensive understanding of the im-

mune system in the larynx.

Current evidence suggests that the larynx possesses a distinct immunological architecture, embodied by the laryngeal epithelium as struc-

tural defense, lining its entire surface and professional immune cells, includingmacrophages, dendritic cells (DCs), T and B lymphocytes, nat-

ural killer (NK) cells, and granulocytes, are diffused throughout the epithelium and underlying lamina propria.5 A small portion of immune cells

are present in laryngeal-associated lymphoid tissue (LALT), a highly organized structure localized to the surface of the epiglottis and false VFs

(for a detailed review seeThibeault et al.). Theepithelium, coveredby a thinmucus layer,6 appears tobemore than aphysical barrier to external

stimuli given the expression of Major Histocompatibility Complex (MHC) class I molecules, nonclassical MHC I molecule CD1d with unknown

role in the superficial epithelial layer, as well asMHC II molecules through unknownmechanisms in the absence of cytokine induction.5,7 More-

over, the presence ofmultiple lymphocyte subsets has been reported, includingCD4+ T cells, CD8+ T cells, and a specialized subset of CD4+ T

lymphocytes T regulatory cells in the deeper layers of the epithelium, as well as natural killer T (NKT)– like lymphocytes co-expressing CD3+

CD161+ in the CD1d superficial layer of the epithelium.8–10 Given the role of NKT cells in some bacterial infections, the presence of these

immune cells in the superficial layer of the epithelium has been speculated to be associated with bacterial flora living in the mucosa.9

Indeed, themajor driving force of local immune systemdevelopment is the need tomaintain homeostatic relationshipswith themicrobiota

that occupy the specific site.11 Extensive microbiome research in other mucosal systems (i.e., intestine, lung, skin) has proven the impact of

commensal and mutualistic microbes on host physiology in various aspects from development to metabolism, immunity, and behavior.4,12,13

Laryngealmicrobiota, though low in density, has been characterized over the past decade, in healthy and diseased populations with laryngeal

pathologies spanning from chronic laryngitis, benign vocal fold lesions, and carcinoma, as well as multiple animal models.14,15 Even though

microbial profiles vary with health status, environmental exposure, age, and even genetics, Prevotella, Streptococcus, and Veillonella are the

dominant genera in the larynx under selective pressure imposed by this specific environment.16,17 Multiple lines of evidence suggest an
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association between specific bacteria and VF pathology and rapid laryngeal immune responses to in vitro challenges with a single or mix of

bacteria or viruses.15,18 However, our knowledge of the laryngeal microbiota and its association with host immunity remains limited. To

comprehensively define cell types/subtypes in the larynx and their immune response to commensal microbiota, we performed single-cell

RNA sequencingon larynges collected fromhealthy conventionally raised (ConvR) and germ free (GF)mice. This study demarcates the cellular

landscape of the larynx at a single cell resolution with global transcriptomic profiling of the immune responses to resident commensal

microbiota.

RESULTS

Characterization of microbial profile in the mouse larynx

The commensal microbiota profile in the ConvR mouse larynx was characterized via 16S rRNA gene sequencing. Low microbial biomass

samples are susceptible to contaminating DNA present in the environment, lab supplies, and reagents used for sample collection, DNA

extraction, and library preparation.19 Given the low microbial biomass nature of the larynx, false positive signals were expected in extraction

negative controls ExNeg3&4 (Figures S1A and S1B). However, contaminant species in these extraction negative controls were negligible

given their disproportionally low abundances compared with that of ConvR samples (Figure S1A). Dominant genera in ConvR included Hae-

mophilus, Streptococcus, Fusobacterium, Vellonella, and Prevotella observed across all ConvR samples, with relative abundances of 17.1%,

13.0%, 12.7%, 11.2%, and 7.3%, respectively (Figure S1B). Considering that Streptococcus is underrepresented in positive controls of the oral

microbiome whole cell mix, which is likely due to the potential bias of the current sample processing protocol toward certain groups of mi-

croorganisms, the relative abundance of Streptococcus in the larynx could be underestimated.

Establishing a single cell atlas of the murine larynx

Overview of cell type proportions

Larynges of male mice aged 8–10 weeks were collected fresh, pooled (ConvR or GF) and dissociated into single cells. We then performed

scRNA-seq on a high-throughput, droplet-mediated scRNA-seq platform. After the removal of low-quality cells, a total of 16,822 (ConvR)

and 14,282 (GF) cells were recovered for further analysis. Unsupervised graph-based clustering and cell type annotation based on CellKb,

with manual refinement according to the expression of canonical markers in each cluster resulted in 16 cell types in both mouse groups

(Figures 1A and 1B). The top 5 upregulated genes in each cluster were considered signature genes for each cell type (Figure 1C). Epithelial

cells, including basal (BEC), suprabasal (SBEC), secretory (SEC), ciliated (CEC) epithelial cells, tuft cells (TC, aka brush cells), and cycling basal

cells (CBC) dominated, representing 65.6% (62.0%) in ConvR (GF); fibroblasts, endothelial cells (EC), phagocytes, and lymphocytes represent

13% (14.5%), 8.9% (11.6%), 5.5% (5.6%), and 0.7% (0.7%) of total cells in ConvR (GF) (Figure S2A). Other cell types, including skeletal muscle

cells, smoothmuscle cells, thyroid follicular cells, lymphatic endothelial cells, Schwann cells, and neurons, constituted 6.4% (5.4%) of total cells

in ConvR (GF) (Figures 1A and S2A). Given their low cell proportions, skeletal muscle cells, smooth muscle cells, thyroid follicular cells,

lymphatic endothelial cells, Schwann cells, and neurons are not discussed in the present study. Previous literature suggests that microbes

alter the cell quantity of the gut epithelium.20,21 However, no significant differencewas observed in the cell proportion of eachmajor laryngeal

cell type between ConvR and GF according to a scCODA analysis (FDR = 0.1, Figure 1C). It is worth noting that cell proportion is largely

dependent upon the single-cell extraction protocol used.22 Our data represents cell proportions in laryngeal tissues dissociated specifically

following our established protocol.

Annotation of epithelial cells

We identified six cell types in the larynx that are of epithelial lineage. The largest epithelial cell population in the larynx, BEC (Abi3bp, Ccdc3,

Trp63, and Krt15), accounted for one-third of all cells (Figure S2A). The high heterogeneity of BEC in both mouse groups was expected

(Figures 1A and 1B), in that basal cells in the larynx are regionally distinct and form the basal layer of three major types of epithelia - stratified

squamous epithelium (SSE) that covers the membranous VF and superficial surface of the epiglottis, respiratory epithelium (pseudostratified

ciliated columnar epithelium (PCCE)) found throughout the supraglottic and subglottic regions,1 and glandular epithelium (GE) in the sero-

mucinous submucosal glands (SMGs) found throughout the larynx.23 Two minor types of epithelia were found - transitional epithelium (strat-

ified non-ciliated cuboidal or columnar epithelium) between areas of SSE and PCCE and the two layered stratified cuboidal epithelium lining

the ventral pouch (Figure 2A). Subclustering of BEC in homeostasis yielded 6 distinct subpopulations in bothmouse groups (Figures S2B1 and

S2B2), including intermediate basal cells differentiating to club cells in PCCE (BEC1), basal cells with unknown function (BEC2), intermediate

basal cells differentiating to goblet cells (BEC3), fast proliferating parabasal epithelial cells (BEC4), quiescent basal cells (BEC5), and hillock

club cells (BEC6) expressing Krt13/Krt4, Scgb1a1, as well as immunomodulatory and barrier function related genes (Anxa1, Lgals3, Cldn3)

(Figures S2B3 and S2C).24,25 Further, we identified SBEC characterized by Krt13, Krt17, Krt6a, and Ly6d, with the low expression of Trp63

and increased expression of Notch3 that regulates the balance of basal and parabasal progenitor pools (Figures 1C and S2D).26 SBEC are

likely the suprabasal cells of the stratified squamous epithelium (SSE) unique to the VF and epiglottis. A cluster of cycling cells was detected

around BEC and SBEC, defined by remarkably high expressions of Stmn1, Top2a, Histh2ap, Hmgb2, expressingmanymarkers of the BEC and

SBEC clusters (Figures 1A and 1C). As reported in earlier literature, these are likely cycling basal epithelial cells.27,28

SEC was the second largest epithelial cell population in the larynx regardless of microbial exposure status (Figures 1A, 1B, and S2A),

characterized by multiple secretoglobin family genes (Scgb3a1, Scgb3a2, Scgb1a1) with cytokine-like functions potentially involved in
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anti-inflammation,29–31 a list of antimicrobial genes (Reg3g, Bpifb1, Ltf, Dmbt1, Lyz2, Bpifa1, Pglyrp1, Pigr),32–41 as well asmucus related genes

(Tff2, Muc5b, Agr, Gp2, Muc16, Tff1)42–45 (Table S1). SEC exhibited an average of 3- to 15-fold higher expression of these genes compared to

the other cells in the larynx (Table S1). Likewise, their expression was highest in SEC when compared across epithelial cell types (Figure 2B).

Functional enrichment of the upregulated genes in SEC (Table S2) indicated that these cells defend against external biotic or abiotic stim-

ulants, capture and stabilize environmental antigens in mucus, and/or secret antimicrobial substances. Four distinct SEC subclusters in

both mouse groups were detected and annotated as proliferating cells from basal cells (SEC1), club cells (SEC2), mucous cells (SEC3,

both goblet cells in luminal epithelium and mucus producing cells in submucosal glands), and serous cells (SEC4) (Figures 2C1–2C3). A small

subcluster SEC5 was found only in one of the ConvR samples (Figure 2C4). Functional annotation suggests the cells in each subtype are asso-

ciated with cellular structure organization (SEC1), response to xenobiotic stimulus (SEC2), glycoprotein (mucin) biosynthesis (SEC3), and anti-

bacterial humoral response (SEC4), further confirming their identities (Table S3).

We detected 2 clusters of CEC in the larynx, characterized by AU040972,Ccdc153,Dnah12,Dynlrb2 genes (Figures 1A and 1C). Functions

of AU040972 and Ccdc153 are not clear, while both Dnah12 and Dynlrb2 are related to cilia formation and microtubule motor activity.46,47

Beyond the expression of CEC canonical markers, Foxj1 andCdhr3,48 there were 18 genes exclusively upregulated in this population (average

log2 fold change >2, pct.1 > 0.7, pct.2 < 0.2, adjusted p-value <0.05), which could be larynx specific transcriptomic markers for CEC

(Figures S2E and S2F). Two distinct CEC subtypeswere identified in the larynx –Bpifa1 (CEC1) andAgr3 (CEC2), where the first was associated

Figure 1. Laryngeal cell types in ConvR and GF mice

(A and B) UMAP plots of 15 laryngeal cell types found in ConvR and GFmerged (A) and ConvR and GFmice (B). F, SEC, P, EC, BEC, CEC, SBEC, L, TC, CBC, LEC,

SkMC, SMC, TFC, N, and SC represent fibroblast, secretory epithelial cell, phagocyte, endothelial cell, basal epithelial cell, ciliated epithelial cell, suprabasal

epithelial cell, lymphocyte, tuft cell, cycling basal cell, lymphatic endothelial cell, skeletal muscle cell, smooth muscle cell, thyroid follicular cell, neuron, and

Schwann cell, respectively.

(C) Averaged gene expression heatmap of top 5 differentially expressed (DE) genes in the larynx, ranked by average log2 fold change for each major cell type for

merged dataset. Color scale: red, high expression; blue, low expression. F, SEC, P, EC, BEC, CEC, SBEC, L, TC, and CBC represent fibroblast, secretory epithelial

cell, phagocyte, endothelial cell, basal epithelial cell, ciliated epithelial cell, suprabasal epithelial cell, lymphocyte, tuft cell, and cycling basal cell, respectively.
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with antimicrobial activities and the latter with cilia assembly and movement (Figures S3A and S3B). In addition, we detected tuft cells (TC) in

the larynx, a rare epithelial cell type in the airway playing a key role in type 2 immunity.49 The cluster was characterized by high expression of

Lrmp, Dclk1, Rgs13, and Cd24a in both mouse groups (Figure 1C; Table S2).

Annotation of non-epithelial cells

Fibroblasts and endothelial cells were the two largest non-epithelial cell populations in the larynx, characterized by a group of collagen fibril

associated genes (Dcn, Mpg, Gsn, Col3a1, Col1a2) and endothelial cell differentiation related genes (Fabp4, Flt1, Ptprb, Egfl7, Ly6c1)

(Figures 1A and 1C). Functional enrichment of upregulated genes in these two clusters were associated with extracellular structure organi-

zation and blood vessel morphogenesis (Table S2). Unsupervised subclustering yielded 5 distinct fibroblast subtypes in both mouse groups,

with each subtype fulfilling different roles in development and maintenance of lamina propria (Figures S3C1–S3C3; Table S3). Among the

fibroblast subtypes, F1 and F2 were the two largest subpopulations, accounting for 45.4% (1939 cells) and 29.9% (1275 cells) of the total fi-

broblasts and fulfilling the major role of extracellular matrix organization and assembly (Table S3). Subtype F3 was likely involved in a defense

response to bacteria, based on their gene signatures related to antimicrobial activity (Figure 3C3). Similarly, we found four distinct endothelial

cell types, regardless of microbial colonization status, with EC2 (Dach1, Cldn5, Cd36, Tcf15, Ccdc85a) and EC3 (Prkg1, Plvap, Ehd4, Mctp1,

Insr) being the two major subpopulations playing the role of endothelial cell development, proliferation, and migration (Figures S3D1–S3D3;

Table S3).

Annotation of immune cells

Twomajor types of immune cells were identified in this study. A cluster of 1734 cells were identified as phagocytes, characterized byCd74,H2-

Aa, H2-Eb1, H2-Ab1, and C1qb, involved in innate immune system50 (Figures 1A and 1C). Unsupervised subclustering yielded 7 distinct sub-

clusters in both mouse groups, annotated as monocyte (P1), macrophage 1 (P2), dendritic cell (P3), macrophage 2 (P4), macrophage 3 (P5),

dendritic cell (P6), neutrophil (P7) respectively, as per the mapping of upregulated genes of each subcluster to CellKb-immune database

(Figures 3A1–3A3; Tables S5 and S6). This was further confirmed with a list of canonical immune cell markers (Figure 3B). Lymphocytes,

the second immune cell type detected in the present study, were characterized by Inpp4b, Ccl5, Skap1, Igkc, Arhgap15 (Figures 1A and

1C, Table S5). The four distinct subpopulations found within these cells of both mouse groups were likely innate lymphoid cells (L1),

T cells (L2), B cells (L3), natural killer cells (L4), based on the mapping of the upregulated genes in each subtype to CellKb-immune database

(Figures S4A and S4B; Table S7).

Commensal microbiota enhanced the expression of host defense associated genes within the larynx

To assess the transcriptional impact of commensal microbiota on laryngeal mucosa, we performed differential expression analysis between

ConvR andGF for all laryngeal cell types and subtypes identified in our study. Comparedwith other epithelial cells, SECweremore responsive

to long term commensal microbiota colonization and actively engaged in host-microbe interactions in the larynx. A total of 136 genes were

differentially expressed in SEC between the two mouse groups (Figure 4A), of which 42 were upregulated in ConvR and 94 in GF. GO bio-

logical processes in our gene list ranked by average log2 fold change demonstrated that SEC in ConvR upregulated the expression of genes

associated with organonitrogen compound biosynthetic process, regulation of lymphocyte proliferation, regulation of cytokine production,

induction of bacterial agglutination, cellular response to bacterial lipopeptide and so forth, while the GF had a gene expression profile asso-

ciated with protein glycosylation, signal peptide processing, peptide metabolic processes (Figure S5A; Table S8). Microbiota significantly

increased the expression of host defense genes associated with epithelial barrier integrity (Tcf7l1), epithelial cell differentiation (Notch2),

anti-inflammation (Scgb1a1), antimicrobial activity (Sftpd, Sftpa1), neutrophil mediated immunity (Cxcl5), and other host defense activities,

such as iron homeostasis (Ftl1), xenobiotic metabolism (Cbr2), and serous demilune cell activity (Dcpp1) in ConvR (Figure 4B). We validated

Scgb1a1 expression with immunofluorescence staining (Figures 4C1 and 4C2), where expression was observed mainly in the supraglottic re-

gion, all the way down the larynx through to the trachea, with notably decreased expression on the membranous regions of VF (Figures 4C3

and 4C4). Scgb1a1 expression, in GF mice, was remarkably reduced, observed only in the submucosal glands of subglottic region and its

adjacent epithelial surface (Figures 4C5 and 4C6). We further performed differential expression analysis between ConvR and GF for SEC sub-

types and found that ConvR had 10 genes upregulated in club cells (SEC2) and 3 in mucous cells (SEC3) (Figure 4D), of which CD36 functions

as a signaling receptor responding to pathogen associated molecular pattern (PAMP) molecules and Iigp1 plays a role in resistance to

Figure 2. Epithelial cell heterogeneity in the mouse larynx

(A) Scheme of distribution of epithelial cell types in the coronal section of vocal folds. GE, SMGs, SPG, VF, SG, PCCE, and SSE represent glandular epithelium,

submucosal glands, supraglottis, vocal folds, subglottis, pseudostratified columnar ciliated epithelium, and stratified squamous epithelium, respectively.

(B) Expression of antimicrobial and mucus related genes across four epithelial cell types. Asterisk indicates statistical significance of DE genes across cell types

(average log2 fold change >0.25, adjusted p-value <0.05), unless specified as non-significant (n.s.) between designated cell types, for merged data. SEC, BEC,

CEC, SBEC, TC, and CBC represent secretory epithelial cell, basal epithelial cell, ciliated epithelial cell, suprabasal epithelial cell, tuft cell, and cycling basal cell,

respectively.

(C) 1) UMAPs of SEC subtypes identified in merged data; 2) Gene expression heatmap of top 5 differentially expressed (DE) genes (ranked by average log2 fold

change) in each SEC subtype; 3) & 4) SEC subtype distribution across mouse groups (3) and biological replicates (4). SEC1-SEC5 represent secretory epithelial cell

subtype 1–5. S1-S6 represent ConvR1, ConvR2, GF1, GF2, ConvR3, and GF3 samples, respectively.
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intracellular pathogens.51,52 The proportion of mucous (SEC3) cells was significantly elevated in GF (FDR = 0.1, Figure 4E). At a less stringent

threshold (FDR = 0.3), serous cell (SEC4) proportion was significantly increased in GFmice. PAS staining and ImageJ quantification of mucous

cells/mucus substances exhibited significantly increased mucous cell size and mucus production in submucosal glands of ConvR (p-value

<0.05, Figure 4F), which correlated with findings in the small intestine, where intestinal goblet cells quickly increase in both size and number

in GF mice upon colonization with commensal bacteria.46 Cells in ConvR glands appeared plumper and more rounded, filled with increased

mucus substances than that in GF (Figure 4F).

Phagocytes play a central role in defense against invading microorganisms, controlling whether protective or regulatory immune re-

sponses against pathogens or the commensalmicrobiota occur in host body.53 A total of 95 geneswere differentially expressed in phagocytes

between ConvR and GF mice (Figure 5A). The largest GO biological process enrichment analysis revealed gene cluster was associated with

immune system process, regulation of response to biotic stimulus, response to molecule of bacterial origin, antigen processing and presen-

tation of exogenous peptide antigen via MHC class II, cell migration, and positive regulation of cell adhesion (Figure 5B). No significant GO

biological process was found for genes upregulated in GF. We further performed differential expression analysis for monocytes (P1), com-

bined macrophages (P2, P4, P5), and combined dendritic cells (P3, P6), considering cluster size of each subtype. No DE genes were found

in monocytes or dendritic cells between ConvR and GF (adjusted p-value <0.05). A total of 185 DE genes (average log2 fold change

>0.25, adjusted p-value <0.05) were upregulated in macrophages of ConvR (Figure 5C). These genes were associated with GO biological

processes, including leukocyte migration, receptor-mediated endocytosis, response to interferon-g, transcytosis, leukocyte chemotaxis, en-

dosomal transport, monocyte chemotaxis, ERK1 and ERK2 cascade, and mononuclear cell migration (adjusted p-value <0.05) (Figure 5D;

Table S7), which is likely due to microbial exposure in ConvR mice. A large gene cluster consisting of 122 genes was identified within the

PPI built, with the genes upregulated in ConvR macrophages, where the top 20 hub genes, the most interactive gene nodes, identified in

the cluster using theMaximal CliqueCentrality (MCC) algorithmwereEgfr, Itgam, Igf1,Mmp9, Klf4, Kitl, Il15,Mrc1, Fcgr2b, Lyve1. Kyoto Ency-

clopedia of Genes andGenomes (KEGG) pathway enrichment analysis identified 29 significantly enrichedpathways, where the top 5 pathways

were Rap1 signaling pathway, TNF signaling pathway, signaling pathway regulating pluripotency of stem cells, phagosome, and JAK-STAT

signaling pathway (Figure 5E). By contrast, only 19 DE genes were upregulated in GF mice macrophages, and no GO terms were found for

these genes. Among the 19 genes, however, it is worth noting that Rgs1 has strong immune inhibitory effects,54–56 which may have been up-

regulated in GF mice due to the lack of microbial antigenic stimulation to inhibit unwanted immune responses. Tff2 is a negative regulator of

gastrointestinal inflammation and immune cell cytokine responses, present in the gastrointestinal cells, macrophages, and lymphocytes.57

High expression of Tff2 in GF could be indicative of repressed macrophage responsiveness and blocked inflammatory cell recruitment to

the larynx. At a less stringent threshold (FDR = 0.4), MP2 and MP3 populations were significantly elevated in GF (Figure 5F). Likewise, cell

proportions of lymphocyte subtypes – T cells (L2) and B cells (L3) – were significantly increased in ConvR, while cell proportion of NK cells

(L4) were increased in GF (FDR = 0.4). Given the number of lymphocyte cells recovered we did not perform differential expression analysis

for this cell type. Microbial exposure seemed to have limited impact on BEC, SBEC, CEC, TC, CC, fibroblasts, and EC. Significant difference

in cell proportion was observed only in BEC5, F5, EC1, and EC4 according to scCODA analysis (FDR = 0.4, Figure S5B). Several genes were

differentially expressed between ConvR and GF for these cell types and subtypes (Tables S8 and S9).

Transcriptional map of pattern recognition receptors and adaptors in the larynx

To determine the capacity of each cell type to sense and respond to microbes in the larynx, we investigated the expression profile of a group

of pattern recognition receptors (PRRs), including toll-like receptors (TLRs) 1–13, nucleotide oligomerization domain (NOD)-like receptors

(NLRs) 1&2, and their adaptorsNlrc4&6,Myd88, Ticam1, Ripk2, andAim2.58 Expression of these genes, except Tlr10 andNlrc6,were detected

in both ConvR and GF datasets. Across all major cell types, the PRRs, especially Tlr5, 6, 7, 8, 9, 11, 12, 13, were expressed at low levels in low

proportion (<40%) of cells in each cell type, regardless of the microbial exposure status (Figure 6A1). While not differentially expressed in the

presence of microbiota in ConvR mice, most PRRs and their adapters tended to have greater number of cells expressing these genes and

higher average expressions in laryngeal cells of ConvR than GF, regardless of cell type. A similar observation was previously reported in

epithelial cells of the small intestine in specific pathogen free (SPF) and GF mice.49 These PRRs and adapters were primarily expressed in

phagocytes, lymphocytes, and fibroblasts (Figure 6A1). Phagocytes exhibited higher expression of the PRRs, particularly TLRs, and their

adapters, compared with other cell types, further confirming our previous observation that phagocyte is one of themost responsive cell types

to bacterial stimulation in the larynx. Among phagocytes, macrophages were the major population expressing TLRs, with each macrophage

subset carrying different types of TLRs (Figure 6A2). Across epithelial cell types, SBEC had the highest proportion of cells expressing Tlr3, Tlr4,

Nod1&2, and adapters Myd88, Ripk2, more than likely due to these cells located at the apical side of the lumen constantly exposed to

microbial stimulants. These genes were expressed in less abundance, but in greater proportion of cells in SBEC relative to phagocytes

and all other cell types. Reg3g has previously shown to be induced in Paneth cells by bacteria in aMyd88/Tlr-dependent manner.59,60 Given

Figure 3. Phagocyte heterogeneity in the mouse larynx

(A) 1) & 2) UMAPs of the distribution of phagocyte subtypes in merged dataset (1) and across mouse groups (2); 3) Expression heatmap of phagocyte subtype

markers based on top 5 differentially expressed (DE) genes (ranked by average log2 fold change) in merged dataset. MC, MP1-3, DC1-2, and NP represent

monocyte, macrophage subtype 1–3, dendritic cell subtype 1–2, and neutrophil, respectively. P1-P7 represent phagocyte subtype 1–7.

(B) Violin plots of phagocyte canonical markers across subtypes in merged dataset. MC, DC, MP, and NP represent monocyte, dendritic cell, macrophage, and

neutrophil, respectively.
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Figure 4. Secretory Epithelial Cell (SEC) differential gene expression in ConvR and GF mice larynges

(A) Volcano plot of differentially expressed (DE) genes in SEC of ConvR and GF mouse larynges (average log2 fold change >0.25, adjusted p-value <0.05).

(B) Expression of host defense associated DE genes in SEC of ConvR versus GF larynges (average log2 fold change >0.25, adjusted p-value <0.05).
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the expression ofmultiple antimicrobial genes in SBEC and the localization of these cells in the VFmucosa (Figures 2A and 2B), SBEC are likely

the first line of defense againstmicrobes entering body by sensingmicrobial antigens and secreting TLR-dependent antimicrobial substances

and other inflammatory mediators for local and systemic control of infection. The proportion of cells in SBEC expressing Tlr3, Tlr4, Nod1,

Myd88, and Ripk2 was relatively higher in ConvR than GF (Figure 6A).

Gene regulatory network analysis reveals altered metabolic gene expression in response to microbial colonization in the

larynx

The transcriptional state of a cell is governed by a gene regulatory network (GRN) where transcription factors (TFs) and cofactors work

together to regulate the expression of target genes. To better understand the GRN involved in the development of laryngeal immunity in

response to microbial exposure, we used SCENIC (single cell regulatory network inference and clustering) to infer the activity of regulons –

TFs and their target genes - that could regulate the differentiation and function of the major cell types in the larynx. Overall, we found 89 and

111 regulons for each mouse group that govern transcriptional profiles of these cell populations. The top 5 regulons in the major cell types of

GF mice were notably different from those in ConvR due to the absence of commensal microbiota (Figure 6B). We further identified differ-

ential regulons across mouse groups based on the AUC scores for each major cell type. A varying number (18–48) of differentially expressed

regulons were detected across the major cell types, with more regulons highly active in ConvR than GF, in all cell types (Figure 6C). Interest-

ingly, differential regulons with greater activity in GFmice were dominated by genes from Fos and Jun families, which are previously identified

as nutrient starvation stress response TFs.61 These TFs appeared in multiple cell types of GF mice, including fibroblasts, SEC, EC, BEC, and

SBEC. Further evaluation of the expression level of additional TFs involved in nutrient starvation stress response found Fos, Fosl2, Atf3, Atf4,

Jun, Junb, and Jund exhibited increased expression in the GF acrossmajority of cell types (Figure S5C). Although ConvR andGF were fed the

same diets, it is likely that they were exposed to different nutrients due to the lack of microbially derived metabolites in GF mice, since

commensal microbiota mediate host metabolism, providing nutrients such as vitamin K and short chain fatty acids that cannot be produced

by the host body. As mTOR signaling serves as a central regulator of cell metabolism, growth, proliferation, survival and is repressed by

nutrient starvation stress, we further assessed the expression of mTORC1components (Mtor and Rptor) that mainly regulates cell growth

andmetabolism in mammals. We observed no significant difference in the expression ofMtor or Rptor between ConvR and GF. Interestingly,

mTORC1 target gene ribosomal protein S6 (Rps6) was not significantly expressed between the mouse groups, while its kinase Rps6kb1

trended for greater expression in fibroblasts, phagocytes, SBEC, and lymphocytes of ConvR (Figure 6A). This suggests that the GF larynx re-

presses Rps6kb1 expression and mTORC1 activity, resulting in reduced S6 phosphorylation within the GF larynx due to nutrient starvation

stress. Meanwhile, the expression ofDeptor, a well-known negative regulator of mTOR, demonstrated increased expression in ConvR phago-

cytes and SBEC, indicating the potential negative regulation of Deptor present in ConvR. Further investigation is needed for corroboration.

DISCUSSION

We investigated the cellular landscape of the larynx and impact of microbial exposure on the development of laryngeal immunity, in a murine

model. We established a reference single-cell atlas of the normal larynx and dissect the role of microbiota in laryngeal cell development and

functions at single-cell resolution. Our data suggests commensal microbiota have an extensive impact on the laryngeal immune system,

manifested by the regulation of cell differentiation, elevated expression of host defense genes, PRRs, and metabolic genes. In addition,

Figure 4. Continued

(C) Antibody staining of SCGB1A1 in paraffin-embedded vocal fold coronal sections for ConvR and GFmice. 1) Hematoxylin and Eosin stained vocal fold coronal

sections demonstrating morphology of vocal fold (VF) mucosa; EP, LP, TA, and SMG represent epithelium, lamina propria, thyroarytenoid muscle, and

submucosal glands, respectively; 2) Quantification of SCGB1A1 fluorescence intensity in immunostained images; Asterisk indicates that SCGB1A1 fluorescence

intensity was significantly higher in ConvR based on a two tailed t-test with equal variance (p-value <0.05); the horizontal black line in the center of the box

represents themedian value, the top and bottomwhiskers representmaximum andminimum value, the upper and lower lines of the box represent the upper and

lower quartile values; confidence interval 95%; 3) & 4) Antibody staining of SCGB1A1 in ConvR (3) and GF (4) vocal folds; 5) & 6) Magnification of the regions in

white dotted rectangles in panels 3) and 4). SCGB1A1 protein and DAPI (nucleus) were stained in red and blue, respectively. Scale bar in 1 = 250 mm; scale bars in

panels 3 and 4 = 500 mm; scale bars in panels 5 and 6 = 100 mm; white arrows indicate the location of cells with high SCGB1A1 protein expression; white dotted

rectangles indicate the magnified regions in 5) and 6).

(D) Dotplot of DE genes between ConvR and GF larynges for SEC subtypes. SEC1-SEC4 represent SEC subtypes 1–4. Genes upregulated in each subtype of

ConvR mice were framed in dotted rectangles. Color scale - red, high expression; blue, low expression.

(E) Proportions of SEC subtypes (SEC1-SEC5) in ConvR and GF larynges. Asterisk indicates significant difference in cell proportion between ConvR and GF

according to scCODA analysis at FDR = 0.1 (**) and FDR = 0.3 (*). The horizontal black line in the center of the box represents the median value, the top and

bottom whiskers represent maximum and minimum value, the upper and lower lines of the box represent the upper and lower quartile values; confidence

interval 95%.

(F) Periodic acid – Schiff staining of mucus and mucus producing cells in paraffin-embedded sections of ConvR (left) and GF (right) mouse larynx (magnification =

40x); scale bar = 500 mm. Black dotted rectangles indicate zoomed-in regions with higher magnification; magnification in zoomed-out images = 20x, scale bar =

500 mm. Black arrows denote submucosal glands (SMG).

(G) Quantification of mucous cell number, size, and mucus amount in submucosal glands; asterisk indicates significant difference between mouse groups

according to a two-tailed Student’s t test with equal variance (p-value <0.05). The horizontal black line in the center of the box represents the median value,

the top and bottom whiskers represent maximum and minimum value, the upper and lower lines of the box represent the upper and lower quartile values;

confidence interval 95%.
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Figure 5. Functional analysis of differentially expressed (DE) genes in macrophages of ConvR mice larynges

(A) Volcano plots of DE genes in phagocytes between ConvR and GF mouse groups (average log2 fold change >0.25, adjusted p-value <0.05).

(B) Largest protein-protein interaction (PPI) network found among the DE genes of phagocytes significantly upregulated in ConvR larynges. GO biological

process-based enrichment analysis of the StringDB PPI revealed 6 significantly enriched biological processes shown as split donut of different colors
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our investigation uncovers the presence of hillock club cells, club cells, serous cells, tuft cells, innate lymphoid cells, and multiple subpopu-

lations of macrophages in the larynx, as well as several potential transcriptional markers for multiple cell types, that have not previously been

reported, in the larynx.

The larynx has a unique ecological niche with selective pressure against colonizing bacteria. While the role of commensal microbiota in

regulating host immune system has been well documented in other organs,4 there is a paucity of research in the larynx due to the unavail-

ability of healthy human tissue, challenge of sampling, and the low microbial biomass nature of samples. Laryngeal epithelium, as an initial

site of microbial exposure, was influenced by commensal microbiota according to our study, and secretory cells were most responsive

among all epithelial cell types toward microbial exposure (Figure 6A). The leading immune mechanism that governs asymptomatic epithelial

colonization in the gut is the secretion of antimicrobial peptides (AMPs) by secretory epithelial cells.32 The larynx shares many AMPs with the

gut, including but not limited to Pglyrp1, Pigr, Reg3g, Bpifa1, and so forth.62 (Figure 2). We measured an elevated expression of surfactant

proteins A1 and D (Sftpa1, Sftpd) in SEC of ConvR mice compared to GF mice (Figures 4A and 4B). Both proteins are pattern recognition

molecules of the collection family of C-type lectins, maintaining host homeostasis through their dual roles as anti-infectious and immuno-

modulatory agents.63 Given the considerable difference in microbiota diversity and abundance between the two systems, selection of AMPs

for host defense reinforcement appears to be largely dependent on microbial composition. Laryngeal microbiota also induced expressions

of other host defense genes associated with epithelial barrier integrity, cell differentiation, anti-inflammation (Figure 4B). Expressions of mul-

tiple SCGB family members, dominated by Scgb1a1, a pulmonary surfactant protein with anti-inflammatory function in SEC, were notably

increased in SECs of ConvR larynges (Figure 4C). Our data also suggests club cells as one of the secretory epithelial cell populations, en-

riched for a quantity of genes in ConvR associated with the regulation of DCs (Lgals3, Tmem176b, Tmem176a, Hmgb1), T cells (Lgals3,

Cebpb, Anxa1, Sdc4, Sftpd), keratinocytes (Notch2, Reg3g, Zfp36L1), and fibroblasts (Gstp1, Fth1, S100a6, Ctnnb1) proliferation and differ-

entiation, implying while facilitating immune response, epithelial cells interact with innate and adaptive immune system cells to maintain

laryngeal homeostasis.

Ciliated cells play a pivotal role in airway homeostasis by trapping and expelling microorganisms, mucus, and other debris through mu-

cociliary clearance (MCC). It is noteworthy that a heat shock protein Hsp90aa1 and antiviral protein Ifitm1 were expressed broadly across all

epithelial cell types, with significantly elevated expressions in CEC (Figure S2E). Hsp90aa1 could bind bacterial lipopolysaccharide (LPS) and

mediate LPS-induced inflammatory response and Ifitm1 restricts cellular entry of diverse viral pathogens such as influenza A virus, Ebola, and

Sars-Cov-2, implying that trapping and expellingmucus,microorganisms, and other debris throughmucociliary clearancemay not be the only

way that CECmaintains airway homeostasis{Citation}. The moderate expression of Reg3g, Bpifa1, Lyz2, Pglyrp1, Ltf, andMuc16 in CEC, also

demonstrates the potential involvement of CEC in antimicrobial activity through the secretion of these substances (Figure 2B). Direct evi-

dence showing specific microorganisms or microbiota, as a whole, contributing to the increased expression of these genes is still lacking,

suggesting an urgent demand for further investigation to corroborate.

Microbes regulate cell differentiation in the larynx. Epithelial cell subsets identified in human lungs suggest that subtle variation in expres-

sion profiles may result in distinct functional or phenotypical change.28 Here, we observed increased number of serous cells in GF (FDR = 0.3)

and increased size of mucous cells in ConvR in submucosal glands, suggesting potential impact of commensal microbiota on SEC differen-

tiation and subtype allocation during long-term host-microbe interactions (Figures 4E and 4F). We also observed a secretory epithelial sub-

type SEC5 present only in ConvR mice, and the expression pattern of proliferating cells (SEC1) varied with mouse groups based on the cell

distribution distinctly divided in the UMAP (Figure 2C3), which implies the potential influence of commensal microbiota on laryngeal cell dif-

ferentiation. However, the expression of mucus related genes was not significantly altered by colonization status in mucous cells (Table S9),

implying the possibility of potential post-transcriptional regulation in the larynx that promotes mucus production.

Long-term adaptation to commensal microbiota alters transcriptional and differentiation status of professional immune cells in healthy

states. Our data suggests macrophages are the most responsive immune cells in the larynx to bacterial exposure. Macrophage subsets

MP2 and MP3 were significantly increased in GF mice (FDR = 0.3), which is suggestive of the potential role of commensal microbiota in regu-

lating immune cell differentiation. Macrophages in the laryngeal tissues are likely from the circulating monocyte pool, given the high expres-

sion ofmonocyte signatures genes, exhibiting consistency with the findings in human lungs.64 Classicalmonocytes in the blood are thought to

Figure 5. Continued

enclosing nodes. Each node represents a gene. Black line linking two nodes represents the known or predicted interaction between the two genes. Color of a

node indicate average log2 fold change of the gene.

(C) Volcano plots of DE genes in combinedmacrophage subsets (P2,4,5) between ConvR and GFmice groups (average log2 fold change >0.25, adjusted p-value

<0.05).

(D) Upset plot of top 10 enriched terms for macrophages in ConvRmice based on their top 50 DE genes (average log2 fold change >0.25, adjusted p< 0.05). Gray

bars indicate the number of genes associated with GO terms; black connected dots indicate the associated GO terms.

(E) Top 10 PPI hub genes identified by the Maximal Clique Centrality algorithm using cytoHubba plugin of Cytoscape software, demonstrating the most

interactive 10 genes found within the DE genes upregulated in macrophages of ConvR larynges. KEGG pathway-based enrichment analysis of the StringDB

PPI revealed 5 innate inflammation associated pathways as indicated by split donut of different colors enclosing nodes. Each node represents a gene. Black

line linking two nodes represents the known or predicted interaction between the two genes. Color of a node indicate average log2 fold change of the gene.

(F) Comparison of macrophage subtype proportions between ConvR and GF mice; asterisk indicate significant difference in cell proportion between mouse

groups based on scCODA analysis (FDR = 0.4). The horizontal black line in the center of the box represents the median value, the top and bottom whiskers

represent maximum and minimum value, the upper and lower lines of the box represent the upper and lower quartile values; confidence interval 95%.
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be MHCII-.65 Given the expression of Adgre1lo, Cd14+, Spn/Cd43lo (an optimal marker than Ly6c to divide monocytes in all species to date),

MHCII+, P1 cells were likely to be the one of the five bloodmonocyte subsets reported by Jakubzick et al., 2015.65While these cells only repre-

sent 1% of the total bloodmonocytes, they extravasate into bothmildly inflamed (ConvR) and noninflamed (GF) tissues continuously and form

the largest phagocyte population in the larynx (Figures 3A1, 3A2, and 3B). Expression level ofCx3cr1 has been linked tomonocytematuration,

where classical circulatory monocytes express low levels of Cx3cr1 and non-classical monocytes have high Cx3cr1 expression,66 which further

supports the P1 cluster as extravasated monocytes from the blood. After populating the larynx, the expression of the blood monocytes

markers (Hp+, F10+, Hdc+, Ly6c2+, Sell/Cd62L+) were downregulated to almost zero in the monocyte67 (Figure 3B). Monocytes in both con-

ditions appeared to be patrolling monocytes based on the low expression of Ly6c1/2, which aligns with the findings that the mobilization of

monocyte into tissues (skin, skin-draining lymph nodes, mesenteric lymph nodes) is not affected by the presence or absence of microbial

colonization.65 Adgre/F4/80-expressing macrophages in P2 and P4 subsets were Cd163+, Mrc1/Cd206+ and Cd86+, Cd80+ respectively,
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Figure 6. Expression of pattern recognition receptors (PRRs) and their adapters and regulon activity in ConvR and GF mice larynges

(A) Dotplot of average expression of PRRs and their adapters across major cell types of ConvR and GF mice larynges. Dot size represent the percent of cells

expressed in a cell type; Color scale: red, high expression; blue, low expression. Genes that have higher average expression in ConvR were framed in dotted

rounded rectangles.

(B) Dotplot of top 5 regulon in major laryngeal cell types of ConvR (top) and GF (bottom) ranked by regulon specificity score (RSS).

(C) Volcano plot of significant differentially expressed regulons in major laryngeal cell types of ConvR and GF mice (average log2 fold change >0.25, adjusted

p-value <0.05). F, SEC, P, EC, BEC, CEC, SBEC, and L represent fibroblast, secretory epithelial cell, phagocyte, endothelial cell, basal epithelial cell, ciliated

epithelial cell, suprabasal epithelial cell, and lymphocyte, respectively.

ll
OPEN ACCESS

12 iScience 27, 110156, June 21, 2024

iScience
Article



suggesting that they are more than likely M2-macrophages and M1-macrophages (Figure 3B). Subset P5, is likely another lineage of macro-

phages, a subpopulation recently reported by two other single cell studies68,69 (Figures 3A1, 3A2, and 3B). Both dendritic cell populations

were likely mature dendritic cells given the expression of Itgax/Cd11c, Cd80, Cd86, MHCII, Cd24a, and Flt3. However, each displayed unique

expression of multiple subtypemarkers, includingCd4+, Itgam/Cd11c+, Mrc1/Cd206+ in P3 and Ly75/Cd205+, Itgae/Cd103+, Zbtb46+, Kit+ in

P6 (Figure 3B). Each phagocyte subset was enriched for a class of specialized biological functions associated with the immune response,

despite overlap between subsets, possibly fulfilling different roles, in the larynx (Table S3). Limited discussion was given to P5-P7 subsets

given their small cluster sizes.

Further,macrophages express elevated Tlrs for the detection and removal of pathogens through phagocytosis (Figure 6A2). Enrichment of

non-inflammatory signaling pathways, such as extracellular signal related kinase (ERK) 1 and ERK2, in ConvR mice is a strong indication of the

interaction between immune cells and commensals and their role in maintaining laryngeal homeostasis70 (Figure 5D). In addition, Egfr, Itgam,

Igf1, Mmp9, Klf4, Kitl, Il15, Mrc1, Fcgr2b, Lyve1 genes in macrophages appear to be playing an important role in the interaction with

commensal microbiota in the larynx, modulating Rap1 signaling pathway, TNF signaling pathway, signaling pathway regulating pluripotency

of stem cells, phagosome, and JAK-STAT signaling pathway (Figure 5E). Commensal microbiota in the mouse colon drives the functional

diversification of macrophages, with a proportional decrease of Cd11c+, Cd206int, Cd121b+ and Cd11c�, Cd206hi, Cd121b� subsets in

GF.67 Conversely, macrophage subsets (MP2 and MP3) in the larynx appear to have decreased number of cells in ConvR than GF as per

the scCODA analysis at a less stringent threshold (FDR = 0.4). These evidence suggest a potential larynx-specific host-microbe interaction

with unknownmechanisms that need further investigation. Interestingly,Aim2was primarily expressed in phagocytes and lymphocytes. It reg-

ulates caspase-1-dependent processing of pro-IL-1b and pro-IL-18 in response to double-stranded DNA in both dendritic cells and macro-

phages, playing important role in sensing both bacterial and viral pathogens and in triggering innate immunity.71 Taken together, these find-

ings suggest thatmacrophages and SBEC are the twomajor cell types associatedwith commensalmicrobiota sensing and balancing and that

the expression of PRRs in the larynx is not significantly altered by microbial colonization.

Limitations of the study

In this article, we demonstrate the cell atlas of the larynx and dissect the role of commensal microbiota in cell differentiation and function at

single-cell resolution. However, this study could have benefited from the inclusion of both male and female mice to improve rigor and repro-

ducibility. While sex difference in immune responses change throughout life and are influenced by age, it can occur in both innate and adap-

tive immune responses and are evolutionarily conserved across diverse species. Inclusion of femalemice also increases sample size and there-

fore the power of statistical analysis. Despite these limitations, we conclude that laryngeal microbiota play a pivotal role in maintaining

laryngeal innate and adaptive immunity through regulating cell differentiation, increasing the expression of genes associated with host de-

fense, and altering gene regulatory networks.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Dr. Susan Thibeault

(thibeault@surgery.wisc.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Scgb1a1 Abcam RRID: AB_2650558

goat anti-rabbit AF584 ThermoFisher Scientific RRID: AB_143165

Vectashield with DAPI Vector Laboratories RRID: AB_2336788

Chemicals, peptides, and recombinant proteins

Periodic Acid Schiff (PAS) Stain Kit Newcomer Part # 9162B

Accutase Stem Cell Technologies Catalog # 07920

Accumax Stem Cell Technologies Catalog # 07921

Bacillus lichenformis protease MilliporeSigma P5380

DNase I MilliporeSigma 11284932001

Critical commercial assays

DNeasy Blood & Tissue Kit Qiagen Catalog#69504

Qubit High Sensitivity DNA Kit Thermo Fisher Scientific Catalog#Q32851

Chromium Single Cell 3’ Reagent Kit (v3.1) 10x Genomics PN-1000268

Deposited data

Single cell RNA-seq data for mouse larynges Gene Expression Omnibus [GeneExpressionOmnibus]: [GSE203233]

16s rRNA gene sequencing data for

laryngeal microbiome

GenBank [GenBank]: [PRJNA839147]

Experimental models: Organisms/strains

Wildtype C57BL/6J conventionally raised mice (ConvR) Jackson laboratory Stock No. 000664

Wildtype C57BL/6J Germ-free mice (GF) BRMS Gnotobiotic Core (UW-Madison) N/A

Oligonucleotides

515F: GTGCCAGCMGCCGCGGTAA Integrated DNA Technologies N/A

806R: GGACTACHVGGGTWTCTAAT Integrated DNA Technologies N/A

Software and algorithms

RStudio (R4.1.2) RStudio Team http://www.rstudio.com/

R (R4.1.2) R Core Team https://www.R-project.org/

Cell Ranger (v7.1.0) 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/what-is-cell-ranger

CellKb (v2.0) Patil & Patil, 202072 https://cellkb.combinatics.com/

QIIME2 (v2021.8) Bolyen et al. 201973 https://doi.org/10.1038/

s41587-019-0209-9

Python3 (v3.10.1) van Rossum & Drake, 200174 http://www.python.org

Cytoscape (v3.8.2) Shannon et al. 200375 https://cytoscape.org/

SCENIC (v0.2.0) Aibar, S. et al. 201776 https://scenic.aertslab.org/
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Materials availability

This study did not generate new unique reagents.

Data and code availability

� ScRNA-seq data are accessible in Gene ExpressionOmnibus: GSE203233. 16S rRNA gene sequencing data are accessible in GenBank:

PRJNA839147. Microscopy data in this paper will be shared by the lead contact upon request.
� All original code is available from the lead contact upon request.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal studies were performed in accordance with the approved protocol (M005669) from the Animal Care and Use Committee at the

University of Wisconsin–Madison. All experiments were performed onmalemice of 8-10 weeks old. Considering that little is known regarding

the impact of microbiota on laryngeal immunity, we used male mice only to avoid potential sex effect. Wild-type C57BL/6J mice (Stock no.

000664) were used for all experiments. ConvR mice were obtained from the Jackson Laboratory and housed under specific-pathogen-free

conditions at the Biomedical Research Model Services (BRMS) breeding core for two weeks until use; C57BL/6J GF mice were obtained

from the BRMS Gnotobiotic Core adjacent to the breeding core and housed there until use. Sterility of GF mice was confirmed by checking

the most densely populated microbial niche cecum contents through PCR (16S rRNA gene) and culture-dependent methods. All mice were

fed with autoclaved mouse breeder diet Labdiet 5021 (Purina, St. Louis, MO) and sterilized reverse osmosis water.

METHOD DETAILS

16S rRNA gene sequencing

Larynges were collected from ConvR (n=6) mice, minced into 0.5 mm small pieces on a sterile petri dish under a dissection scope. Bacterial

cells were collected by washing the minced tissue in 500 ml sterile PBS in a 2 ml microcentrifuge using a vortex with flat bed at the maximum

speed for three times. Lavages were combined and centrifuged at 15,000 rpm for 5 min. Cell pellet was digested in enzymatic lysis buffer

consisting of 20 mM Tric-Cl, 2 mM EDTA, 1.2% Triton-x 100, and 20 mg/ml lysozyme, for 1 hour at 37�C. DNA extraction was subsequently

performed usingQiagenDNeasy Blood& Tissue kit (Qiagen, Germantown,MD) following themanufacture instructions. V4 regions of the 16S

rRNA gene were amplified usingMolTaq 16S/18S DNA-free Taq Polymerase (MolzymGmbH& Co. KG, Bremen, Germany) in a 25 ml reaction

containing 10 ng of DNA template and 200 nM of 515F/806R primers fused with Illumina sequencing adapters.77 Non-template control (NTC,

n=3) and a PCR positive control with Helicobacter pylori genomic DNA as template was included for each PCR run. PCR cycling conditions

were as follows: one cycle of enzyme activation at 95�C for 3min followed by 35 cycles of denaturation at 95�C for 30 sec, annealing at 55�C for

30 sec, and extension at 72�C for 30 sec, and a final extension at 72�C for 5 min. Each sample was amplified in triplicate. Resulting PCR prod-

ucts were identified on 2% agarose gel, and the successful reactions were pooled, purified with NucleoSpin Gel and PCR cleanup kit (Takara,

San Jose, CA), and quantified with Qubit dsDNA HS Assay Kit (Invitrogen, Eugene, OR). Samples were equimolar pooled and sequenced on

the Illumina MiSeq 2x250 bp platform.

NTCwere confirmed to have no visible amplicon bands andwere excluded from subsequent analysis. Given that the larynx is lowmicrobial

biomass sample, extraction negative control (ExNeg, n=4) containing only sterile PBS were processed in parallel with laryngeal tissues to con-

trol the potential environmental contamination. Extremely faint bands were observed for extraction negative controls; therefore, the ampli-

cons were gel-purified and sequenced as well. Oral Microbiome Whole Cell Mix (ATCC, Manassas, VA) (Oral, n=4) was included as positive

control, processed, and sequenced in parallel with tissue samples, to examine the effectiveness of sample/data processing methods. The

mock community was a defined synthetic community comprised of equal portion of Schaalia odontolytica (ATCC 17982), Prevotella melani-

nogenica (ATCC 25845), Fusobacterium nucleatum subsp. nucleatum ( ), Streptococcus mitis (ATCC 49456), Veillonella parvula (ATCC 17745),

and Haemophilus parainfluenzae (ATCC 33392), with each representing 16.7% of the total cells.

Sequences were processed using QIIME2 pipeline.73 Demultiplexed 250 bases paired-end sequences were imported using Casava 1.8

format and denoised using DADA2 to obtain amplicon sequence variant (ASV) table.78,79 Singletons (ASV present < 2 times) and ASVs

that are present in less than 10% of the samples were discarded. Given that larynx is low microbial biomass tissue, additional filtering was

performed, including 1) the removal of any ASVwhose total abundance across all samples was above 1%of the total abundance in the ExNeg,

and 2) the removal of any ASV whose total abundance across all samples is below 1% of the total abundance of all ASVs across all samples.

Greengenes reference sequencescs (clustered at 99% similarity) were used to train a naı̈ve Bayes taxonomy classifier to further annotate ASVs

taxonomically.80 ASVs were then collapsed based on genus level. ASV files was imported and visualized in RStudio (v4.1.2).

Dissociation of laryngeal tissues

Mouse larynges were collected fromConvR andGFmice andminced into 0.5mm small pieces on a sterile petri dish under a dissection scope,

then digested in a 1mlmodifieddissociation solution for 40min in a cold room (4�C).We started from the dissociation protocol by Sekiguchi &

Hauser (2019) and determined the optimal dissociation condition by optimizing the enzyme composition & concentration and dissociation

temperature & time.81 Specifically, 1 ml of modified dissociation solution contained 5 mM CaCl2, 90 ml Accutase (Stem Cell Technologies,
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Cambridge, MA), 90 ml Accumax (Stem Cell Technologies, Cambridge, MA), 10 mg/ml Bacillus lichenformis protease (MilliporeSigma, Bur-

lington,MA), and 125 U/mlDNase I (MilliporeSigma, Burlington,MA) dissolved in sterile calcium/magnesium-free PBS.81 Sampleswere gently

triturated every 5 min using a wide-bore pipette tip during dissociation. After dissociation, cell suspension was filtered through 40 mm cell

strainer to remove aggregates. Undigested cartilage was removed before cell straining to prevent clogging cell strainer and further impact

dissociation efficiency. Dissociation was performed for each larynx separately. Single-cell suspensions from three larynges per mouse group

were pooled as one sample (3 biological replicates per mouse group). Pooled suspensions were added to 5 ml Ca/Mg-free PBS supple-

mented with 10% FBS, filtered with a 40 mm cell strainer (MilliporeSigma, Burlington, MA), then centrifuged at 300 g, for 10 min, at 4�C.
Cell pellet was resuspended in 30 ml ACK lysing buffer (Lonza, Bend, OR) briefly to remove erythrocytes, following manufacture’s instruction.

Droplet-based scRNA-seq

ACK treated single cells were resuspended in 500 ml of Ca/Mg-free PBS supplemented with 2% FBS. Libraries were prepared according to

Chromium Single Cell 3’ Reagent Kit v3.1 (10x Genomics, Pleasanton, CA). Briefly, single cell suspensions were transported on ice to the Uni-

versity of Wisconsin-Madison Biotechnology Center, where cell concentration and viability were quantified on the Countess II (Thermo Fisher

Scientific, Waltham, MA) using 0.4% Trypan Blue (Invitrogen, Carlsbad, CA). Cells were then partitioned into Gel Beads in Emulsion in the

GemCode instrument, where cell lysis and barcoded reverse transcription of RNA occurred, followed by amplification, shearing and 50

adaptor and sample index attachment. Library preparation was performed to generate a single pool of cDNA containing both ConvR and

GF samples to minimize batch effect between samples. Libraries were quantified using the Qubit High Sensitivity DNA Kit (Thermo Fisher

Scientific, Waltham, MA), uniquely indexed, pooled, balanced for the number of estimated reads per cell with aMiSeq (Illumina, San Diego,

CA) sequencing run, and subsequently sequenced on a NovaSeq SP flowcell for the first batch of two samples (1 ConvR and 1 GF) and S1

flowcell for the second batch of 4 samples (2 ConvR and 2 GF) (Illumina, San Diego, CA) using a 150 x 150 bp sequencing reaction target-

ing > 60,000 reads/cell, yielding a calculated depth of over 100K mean reads per cell for samples of the first batch and over 70K mean reads

per cell for samples of the second batch. MiSeq balancing run was quality controlled using calculations based on UMI-tools.82 Sequencing of

the first batch of samples was performed first to serve as a pilot experiment for the second batch.

Immunofluorescence (IF) staining

Larynges were fixed in 4% paraformaldehyde at 4�C overnight and remained in 70% ethanol until standard tissue processing procedures for

paraffin sections. Paraffin-embedded sections were cut coronally (n=6) into 5 mm sections and stored at 4�C until use. Paraffin-embedded

were deparaffinized, rehydrated, and stained using a standard IF protocol.83 Antigen retrieval was performed by heating sections in sodium

citrate pH= 6 at 80�C water bath for 2 hours. Primary antibodies anti-Scgb1a1 (Abcam, Cambridge, CA) was diluted at 1:100; goat anti-rabbit

AF584 (ThermoFisher Scientific, Waltham, MA) diluted at 1:500 was used as secondary antibodies for SCGB1A1 staining. Sections were incu-

bated with primary antibodies at 4�C overnight followedwith secondary antibodies for 1.5 hours. Slides weremounted using Vectashield with

DAPI (Vector Laboratories, Burlingame, CA). Images were taken with a Nikon Eclipse Ti2 inverted microscope with a DS-Qi2 high-sensitivity

monochrome camera (Nikon Instruments Inc., Melville, NY) and adjusted for brightness using the NIS Elements software. Fluorescence in-

tensity of SCGB1A1wasmeasured with ImageJ based on 30 images (6 biological replicate, 5 images per replicate) permouse group following

the instruction (https://kpif.umbc.edu/image-processing-resources/imagej-fiji/determining-fluorescence-intensity-and-positive-signal/).

Periodic acid – Schiff (PAS) staining

Larynges of ConvR (n=6) and GF (n=6) were fixed overnight in methacarn solution consisting of 60% (vol/vol) absolute methanol, 30% chlo-

roform, and 10%glacial acetic acid, washed inmethanol (2 x 30min) and 100%ethanol (2 x 20min), cleared in xylene (2 x 15min), and infiltrated

with hot paraffin (60�C) for 2 hours. Paraffin-embedded tissues were cut coronally into 5-mm sections and stored at 4�C until use. PAS staining

was performed following manufacture’s instruction (Newcomer, Middleton, WI). Glycogen was digested with 1% a-amylase solution for

30 min at room temperature prior to PAS staining. Images were taken with a Nikon Eclispe Ti2 inverted microscope (Nikon Instruments

Inc., Melville, New York) with a DS-Ri2 high-speed color camera (Nikon Instruments Inc., Melville, New York) and were adjusted for brightness

with a corresponding analysis software NIS Elements (Nikon Instruments Inc., Melville, New York). A total of 30 PAS-stained images (5 images

per biological replicate, 6 biological replicates) were opened in ImageJ to quantify mucous cell number, mucus cell size, and mucus

substances.84

Preprocessing of scRNA-seq data

For each sample of ConvR and GF, raw reads obtained from the 10x Genomics’ Chromium single-cell RNA-seq (scRNA-seq) platform were

demultiplexed andmapped to themouse reference genome (GRCm38) using Cell Ranger software (v7.1.0) with default parameters following

standard protocols. Cells with less than 500 total UMI counts, over 20% mitochondrial gene ratio, and less than 250 detected genes/features

were considered low-quality and filtered out. Cells with log10GenesPerUMI < 0.8 were removed from downstream analysis, where the metric

was determined by taking the log10 of the total UMI counts and dividing that by the log base 10 of the feature. Genes that were not expressed

in at least 10 cells were also excluded fromdownstreamanalysis. Normalization was then conducted using the Seurat NormalizeData function.

Detection of technical artifact doublets was performed using DoubletFinder (v2.0.3),85 under default settings. Few barcodes were predicted
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as suspicious doublets and they were distributed randomly across all cells without forming their own cluster, therefore they are likely singlets

mislabeled as doublets and were not filtered out.

QUANTIFICATION AND STATISTICAL ANALYSIS

Subsequent analysis of the scRNA-seq dataset was mainly performed using Seurat v4.3.0.1.86

Dimensionality reduction using PCA and UMAP

Variable genes selection, principal component analysis (PCA), and uniform manifold approximation and projection (UMAP) were conducted

using the Seurat (v 4.0.5) pipeline.87,88 Specifically, selection of variable genes was implemented with the function FindVariableFeatures with

method=’vst’. The top 2000 highly variable genes were centered and scaledwith function ScaleData. The first 25 PCs were calculated via func-

tion RunPCA, after which the function RunUMAP was applied to generate UMAP embeddings for 2-dimensional visualization.

Merged analysis of the scRNA-seq data for ConvR and GF

The two scRNA-seq datasets, for ConvR and GF samples, were merged by combining cell matrices using Merged function from Seurat.

Merged data was then processed following the Seurat pipeline, as mentioned above. Batch effects were well-controlled between the six sam-

ples as demonstrated in Figure 1B, where cells in each cell type displayed similar patterns in each group of mice.

Clustering and subclustering

To cluster single cells by their expression profiles, we used an unsupervised clustering approach based upon the Louvain algorithm imple-

mented in Seurat. Briefly, a shared nearest neighbor (SNN) graph was constructed by calculating neighborhood overlap between every

cell and its nearest neighbors. Clusters were then identified by optimizing the modularity. Seurat function FindNeighbors was applied by ad-

justing the dim=1:25, and FindClusterswas applied under default parameters. For subclustering of cell types of interest, namely basal epithe-

lial cells, secretory epithelial cells, ciliated epithelial cells, fibroblasts, andmacrophages, we applied the same clustering process on the subset

of cells, in each cell type. Resolution parameters in FindClusters were manually specified to provide a reasonable number of clusters.

Differential expression and enrichment analysis

Weperformeddifferential expression analysisbetween twogroupsof cells using theFindMarkers function in Seurat to identify cell type specific

markers. A non-parametric Wilcoxon rank-sum test was used with adjusted p-values calculated using the Bonferroni correction to adjust for

multiple tests. Geneswith adjusted p-values < 0.05 and an average log2 fold change (avg_log2FC) > 0.25 or < -0.25 were deemeddifferentially

expressed (DE) between cell (sub)types andused in downstreamanalysis. The top5 upregulated, non-ribosomal, non-mitochondrial DEgenes

ranked by average log2 fold change were selected as putativemarker genes for each cluster. For each sample of ConvR and GF, DE genes for

each cell type were determined by comparing a cell type versus remaining cells in the sample. Similarly, DE genes of each cell subtype were

determined by comparing a cell subtype versus the remaining cells within that cell type. At least 1 top upregulated non-ribosomal DE gene(s)

ranked by average log2 fold change was selected as the putative signature gene(s) for each subcluster. In order to elucidate the differentially

expressed (DE) genes between conditions in a specific cell type, a pseudobulk method was conducted using the integrated dataset. This

approach took into account the inherent correlation structure present within the data. We aggregate the cellular expression profiles within

each sample to mitigate the effects of individual cellular variability. Subsequently, the DESeq2 framework was utilized as the primary tool

for comparing expression levels. Thismethodological choice allowed for a robust and statistically sound identificationofDEgenes. In this com-

parison, DE genes with avg_log2FC > 0.25 or < 0.25 and adjusted p-value < 0.1 were deemed as significant. Mitochondrial genes (genes that

begin with ‘‘mt-’’) and ribosomal genes (genes that begin with ‘‘Rps-’’) were removed, prior to further analysis, from the DE genes given that

these genes are not of our interest in the present study. A list of the DE genes (avg_log2FC > 0.25, adjusted p-values < 0.05, unless otherwise

specified)wereanalyzed for enrichment for commonbiological process (BP),molecular function (MF), andcellular components (CC)using theR

package enrichR (v3.0). Enrichment results were visualized with tables or upset plots using defined functions provided in the R script.89–91

Cell type annotation

SingleR (v1.4.0) was used to annotate clusters into cell types using the pre-annotated built-in mouse bulk RNA-seq data as a ref.92 Specifically,

SingleR trains a classificationmodel based on the reference data and assigns a cell type label based on the highest predicted probability. We

also performed additional manual annotation by identifying cell type-specific marker genes among the top differentially expressed genes in

each cluster using external literature, since SingleR is unable to annotate cell types not existing in the reference data. Specifically, for each

cluster, we mapped the top 30 DE genes ranked by the average log2 fold change against cell-type ontology in the databaseCellKb Basic72,93

(v2.0). Final cell types were determined by refining SingleR annotations using manual annotations.

Protein-protein interaction (PPI) network analysis

The interaction of DE genes at the protein level was analyzed using StringDB (string-db.org). Medium confidence PPI clustered networks with

aminimum score of 0.4 andMarkov Cluster Algorithm inflation parameter as 2 were built. KEGGpathway enrichment analysis was performed,

ll
OPEN ACCESS

20 iScience 27, 110156, June 21, 2024

iScience
Article

http://string-db.org


with FDR< 0.05 andminimumgene count as 3 considered to be statistically significant.Within the PPIs, hubgenes (themost interactive genes)

were identified using the cytoHubba plugin in the open-source software Cytoscape (v3.8.2). MCC algorithm was used to identify the top 10

hub genes.75

Gene regulatory network analysis

To construct gene regulatory networks (GRN), single-cell regulatory network inference (SCENIC, v0.2.0) was used to identify TFs and associ-

ated target genes with Python3 (v3.10.1), referred to as regulons, in each cell type of ConvR and GF groups.74,76 A regulon activity score (RAS)

was calculated for each regulon in each single cell by summing up the area under the recovery curve. In short, SCENIC calculates enrichment

of a regulon as an area under the recovery curve, where the recovery curve plots gene expression of all genes in a cell (x-axis) vs. number of

genes recovered from the regulon (y-axis). The regulon specificity score (RSS) for a cell type was then calculated according to the entropy

of RAS of cells within the cell type compared to other cell types. An RSS ranges from 0 to 1, with a higher value representing greater specificity

of a regulon in the cell type. To reduce computation time and effectively increase the data quality, for cell (sub)types with more than 10 cells,

we randomly average every 10 cells, so that each group produced a pseudo-cell by the average gene expression profile of cells within the

group, and SCENIC was applied to the pseudo-cells. RAS was used to identify differential regulons between conditions use Pseudobulk

method as described before.

Comparison of cell proportions

Differences in cell proportions for each cell (sub)type between ConvR and GF were evaluated using scCODA with the false discovery rate

cutoff set to 0.1 or 0.4.94 Asterisk (*) was used to indicate significant difference between groups.

Comparison of cell features

A non-parametricWilcoxon rank-sum test (p = 0.05) was performed for the comparisons of SCGB1A1 fluorescence intensity, mucous cell/size,

and mucus amount between ConvR and GF mice. Asterisk (*) was used to indicate significant difference between groups.
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