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Abstract: In this work, two novel methodologies for the multiband spectrum sensing in cognitive
radios are implemented. Methods are based on the continuous wavelet transform (CWT) and the
multiresolution analysis (MRA) to detect the edges of available holes in the considered wideband
spectrum. Besides, MRA is also combined with the Higuchi fractal dimension (a non-linear measure)
to establish the decision rule permitting the detection of the absence or presence of one or multiple
primary users in the studied wideband spectrum. Methods were tested on simulated and real signals
showing a good performance. The results present these two methods as effective options for detecting
primary user activity on the multiband spectrum. The first methodology works for 95% of cases,
while the second one presents 98% of effectivity under simulated signals of signal-to-noise ratios
(SNR) higher than 0 dB.

Keywords: cognitive radios; multiband spectrum sensing; multiresolution analysis; continuous
wavelet transform; Higuchi fractal dimension

1. Introduction

The cognitive radio (CR) concept is considered as a radio with the capacity to opportunely take
advantage of the spectral gaps to continue transmitting [1]. CR has been widely considered in our
days as one of the outstanding solutions to spectrum scarcity. CR techniques provide the ability
to use or share the spectrum in a timely manner and operate in the best available channel. In this
way, CR technology will allow to secondary users (SUs), also called unlicensed users, to determine
what parts of the spectrum are available and detect the presence of licensed users or primary users
(PUs). When an SU operates in a non-authorized band, the CR selects the best available channel,
coordinates its access to this channel and, in the right moment, vacates the channel when a PU is
detected [2]. Therefore, the CR paradigm involves the stages of sensing, decision, sharing, and mobility
of the spectrum [3]. The first stage of CR, i.e., spectrum sensing (SS), is fundamental to determine the
presence of PUs and it is the goal of this work.

Spectrum sensing in a CR is a term which implies the obtaining of the characteristics of the
spectrum using multiple dimensions, such as time, space, frequency, and code. Among these
characteristics are modulation type, waveform, bandwidth, carrier frequency, etc. In general,
the different techniques involved in the SS are focused on detecting PUs in only one band [4]. Future
wireless communications services require high throughputs; this can be reached with more bandwidth.
However, in several scenarios, available spectrum spaces are in non-contiguous frequencies. Due to
this, it is necessary to have a wide panorama of PU activity. A solution for that is considering multiband
spectrum sensing, a branch of wideband spectrum sensing [4].
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A first introduction to the concept of multiband spectrum sensing appears in [5]. Here, the authors
put together multiple narrowband detectors to maximize the throughput of secondary users limiting
the interference with primary users. After that, several contributions appeared in the literature,
for example, the one presented in [6]. In this work, the authors considered a genetic optimization in
a collaborative multiband sensing scenario. The solution solved detection problems efficiently and
increased the data rate. Another case appears in [7]; in this paper the authors consider an asynchronous
dynamic spectrum access (DSA) algorithm in a wideband channel divided into several narrowband
channels for finding the optimal sensing period time.

However, a modern point of view of multiband spectrum sensing applied to next-generation
services is presented in [8]. In this contribution, most representative user detection techniques are
classified. For the case of wavelet sensing, the authors mentioned this method provides a good analysis
of the singularities of the spectrum. In the same way, a challenging system model is presented in [9].
The authors considered a hardware limitation for SUs in multiband spectrum sensing. Also, according
to the traffic state, a proposed algorithm selects the best spectrum sensing strategy. An improvement
of this work appears in [10]; here, channel correlation is considered in order to adapt the proposal to
practical scenarios as broadcast television. In [11], a probabilistic access method in multiband spectrum
sensing is presented. The authors classify spectrum occupancy as likely. Their results show how this
classification improves data rates compared with classical spectrum sensing methods.

Spectrum detection in CR should be performed with high precision in order to avoid interfering
with PUs. In the case of the Internet of Things (IoT) where many devices are transmitting, it is important
to detect available spectrum spaces in order to maintain good network performance. For example,
in [12] the authors present a solution to minimize the number of channels that have to be sensed by
IoT nodes but keeping detection probabilities requirements. Results show an important reduction in
energy consumption compared with similar spectrum sensing contributions.

The proposed methodologies in this work, for the multiband spectrum sensing stage, allow the
detection of whether multiple bands (or channels) are occupied or not by PUs, and indicating perfectly
the frequencies in which an SU could be placed, like is shown in Figure 1. For this, a large band
spectrum containing M sub-bands with possible PU transmissions is considered and a combination
of the continuous wavelet transform (CWT) [13], the multiresolution analysis (MRA) [14], and the
Higuchi fractal dimension (HFD) [15] is explored. In the first methodology, the modulus maxima of
the CWT of the reconstructed spectrum from the approximation coefficients issued from the MRA at
a certain level of decomposition is used to detect the frequencies (edges) where the PUs are placed,
generating in this way dynamic windows where the decision rule will be applied. In the second
methodology, only the approximation coefficients of the MRA are used for frequency edge detection.
The decision rule, for both methodologies, is constructed from the application of the HFD over the
same reconstructed signal from the MRA. The HFD permits the detection perfectly of the presence of
a PU or its absence (only noise detection) even in low signal-to-noise ratios, as it is shown in results,
stem from real and simulated signals. The behavior of the HFD is very well known when it is calculated
on a noise-like signal, of which the value tends to 2. When the signal is more regular, like a sinusoid or
a rectangular pulse, the HDF value tends to 1. In this way, it is possible to differentiate the noise from
a transmission signal establishing a correct threshold in the decision rule.

Some works are related to the proposed methodologies, especially using the CWT through its
modulus maxima [16–19], to obtain the edges delimiting the different sub-bands. However, all these
works base their decision rule on the energy of the coefficients presenting poor performances in low
signal-to-noise ratios (a well-known characteristic of energy detectors). Besides, the edge detection
is also affected by the broadband noise in the transmission signal or the apparition of impulse noise
(generating false edge detection). Another more recent work [20] includes the modulus maxima of
the CWT for edge detection but also the MRA for the decision rule. This rule is based in an energy
detector of the coefficients from the MRA tracking also the maxima but in the discrete domain.
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Figure 1. The multiband spectrum sensing concept in cognitive radio (CR) presented in [8].

In [21] is proposed a double-threshold cooperative spectrum detection algorithm based on the
Sevcik fractal dimension (SFD). In this work, the main idea is to detect the presence of primary users
by analyzing the spectrum based on different characteristics of the SFD between signals and noise.
The simulations results show that the algorithm can achieve high detection performance with low SNR.
However, this technique only considers a single band, i.e., no edge detection is necessary. Besides,
the method is only applied on simulated signals.

This work is organized as follows. In Section 2 theoretical bases from CWT, MRA, and HFD are
briefly presented. In Section 3 the proposed methodology is developed. Simulations, the application
on real signals, and results in Section 4 are discussed. Finally, in Section 5, conclusions and future work
are delivered.

2. Theoretical Bases

In this section, the necessary background associated with the techniques used in the proposed
methodology is briefly presented.

2.1. Continuous Wavelet Transform

The continuous wavelet transform of a function (signal) f (x) is defined by [13]:

CWTf (s, τ) =
∫ ∞

−∞
f (x)ψ∗s,τ(x)dx (1)

where * represents complex conjugate and the functions family ψs,τ(x) is generated from the translation
and scaling of an initial wavelet function ψ(x), sometimes called wavelet mother, and defined by:

ψs,τ(x) =
1√

s
ψ

(
x− τ

s

)
(2)

where s and τ are the scaling and translation factors, respectively. Only scale factors s > 0 are
used. Wavelets are dilated when the scale s > 1 and they are contracted when s < 1. In this way,
an alternative to the time-frequency representations is given: the plane time (or translation)-scale.
This representation, translation-scale, is more effective detecting singularities or discontinuities in the
signal f (x). These transitions are located considering the modulus maxima of the CWT, defined by:

max
[∣∣∣CWTf (s, t)

∣∣∣]. (3)

This mathematical tool is frequently used in many different domains, like image processing,
control, biomedical, etc. In the specific case of spectrum sensing in CR, this technique is considered
effective in detecting the transitions (edges) of the multiband spectrum [16–20].
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2.2. Multiresolution Analysis

The multiresolution analysis was introduced by Mallat in 1989 [14]. This idea, involving
embedded vector spaces, permits the decomposition (and reconstruction) of a signal f (x) using
an orthonormal (or biorthogonal) basis. This complex idea has an easy interpretation through a bank
of digital filters scheme, as it is shown in Figure 2. The decomposition equation is given by:

f (x) = approxL(x) +
L
∑

j=1
detailj(x)

= aL(x) +
L
∑

j=1
dj(x)

(4)

where aL(x) are the approximation coefficients at level L and dj(x) are the detail coefficients going from
levels 1 to L. In this way the signal is filtered in octaves (i.e., each band is divided by two iteratively).
The approximation coefficients permit, in the reconstruction process, having a smooth version of the
original signal f (x). Detail coefficients give to the reconstructed signal the fine features. Based on
these properties, the MRA can be used in the SS stage to get the tendency of the multiband spectrum
in the approximation coefficients eliminating, in the reconstruction process, the contribution of the
detail coefficients (containing the added noise to the transmitted signal or simply the noise floor).
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Figure 2. Implementation of the multiresolution analysis (MRA) based on a filter bank.

MRA is implemented using a fast algorithm called à trous. It is important to mention that the
MRA and the CWT are linked through the detail coefficients. The latter corresponds to a discrete
version of the CWT in specific sampling points: the dyadic scale.

2.3. Higuchi Fractal Dimension

In general, a fractal curve has the property that each part of the curve can be considered a
scaled-down image of the whole [22]. The fractal dimension is an index describing the regularity of a
time series (in general, an array of N points sequentially ordered). Higuchi [15] modified the method
proposed in [23] to calculate the fractal dimension and applied it not only to the simulated data but
also to the time series stem from natural phenomena with turbulent behavior, obtaining a stable value
of the fractal dimension.

The Higuchi fractal dimension returns a value in the interval [1,2], where the maximum value
means that the evaluated series does not have a similarity with itself (completely irregular). However,
for the minimum value, the self-similarity in the evaluated series is large (e.g., a periodic signal).
From simulations, the HFD for a signal similar to white noise will be a value that tends to 2.
This important feature is the base of the proposed decision rule in this work to differentiate the
PU transmission from the noise itself. Indeed, ignoring the effect of an additive Gaussian noise on
a PU transmission, the classical wireless transmission has shapes that can be considered as regular:



Sensors 2019, 19, 1322 5 of 20

an NRZ-CDMA pulse has a shape involving a sinus cardinal or an OFDM symbol, in the reception, and
has a form of a pulse with small changes in its bandwidth. In this way, applying the HFD to this kind
of shape in general will have a value near to 1, permitting an SU to be able to clearly differentiate the
noise and a PU transmission. This premise is verified with detailed simulations presented in Section 4.

The method proposed by Higuchi [15] considers a time series of N points (or an ordered N-points
sequence) x(1), x(2), x(3), . . . , x(N). From this series is constructed a new sequence xm

k fined by:

xm
k =

{
x(m), x(m + k), x(m + 2k), . . . , x

(
m +

[
N −m

k

]
k
)}

m = 1, 2, . . . , k (5)

where [] denotes the integer part, and both k and m are integers indicating the initial time and the
interval time, respectively. The slope of the curve Lm(k) in Equation (5), on a logarithmic scale,
corresponds to the HFD.

Lm(k) =

 N − 1[
N−m

k

]
k

[ N−m
k ]

∑
i=1
|x(m + ik)− x(m + (i− 1)k)|

/k (6)

3. Methodologies

In this work, two methodologies to detect PUs in CRs were developed. The first methodology
was based on the CWT to detect the edges in a multiband spectrum, creating in this way dynamic
windows (i.e., windows of different lengths). In the second methodology, the edges detection stage via
the CWT was replaced by directly using the approximation coefficients obtained from the MRA. In the
next paragraphs, both methodologies are explained in detail.

3.1. First Methodology: MRA, CWT Modulus Maxima, and HFD

This methodology is described by the next steps:
Step 1. The received multiband spectrum by an SU, X( f ), is decomposed via the MRA at defined

level L giving the respective approximation and detail coefficients (see Equation (4)).
Step 2. From the obtained approximation coefficients, the spectrum is reconstructed eliminating

in this way the broadband noise and only keeping the tendency (or smooth shape Xapp( f )) of the
multiband spectrum X( f ).

Step 3. The CWT modulus maxima is applied on Xapp( f ) to get the frequency edges and to
conform dynamic windows for further analysis.

Step 4. Each conformed window is then processed to detect noise or a possible PU transmission.
For this, the same approximation coefficients obtained in Step 1 are normalized and interpolated (to
have the same samples as the dynamic windows). If the normalized approximation coefficients (NAC)
are, on average, over a defined threshold of 0.7 then the values of the analyzed windows are probably
a PU transmission. If NAC is lower than 0.7, it is practically sure that the transmission corresponds
to noise.

Step 5. If NAC is lower than 0.7 then the Higuchi fractal dimension is applied directly on the
analyzed section of the multiband spectrum X( f ). In the other case, the HFD is applied on the
reconstructed signal from Step 2 (i.e., Xapp( f )).

Step 6. For each window, if the calculated HFD is lower than 1.85 (decision threshold), a PU
transmission is detected. In another case, no PU is detected (only noise).

The complete scheme of this first methodology is shown in Figure 3.
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Some important details, clarifying the proposed methodology, are discussed in the
next paragraphs.

In Figure 4 is plotted a signal X( f ) which represents a power spectral density in a wide frequency
range. In this work, this signal was decomposed via the MRA using a Haar wavelet at level L = 4.
The resulting smooth signal (denoted by Xapp( f ) in Figure 4) was the reconstructed signal using
only the MRA approximation coefficients (as is indicated in Step 1) showing notable changes in the
presence of transmission by a PU and a clear denoising (Step 2). In this way, keeping only the MRA
approximation coefficients permits, after reconstruction, the obtaining of the tendency of the signal.
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Figure 4. The result of applying MRA to X( f ).

The result of applying the CWT modulus maxima to Xapp( f ) is shown in Figure 5. In this figure
(at the bottom) one scale of the CWT modulus maxima (scale 120) is only shown. Maxima of this
scale are taken, and they correspond to sudden changes in frequencies of the smooth spectrum, as it
is shown in Figure 5b in green circles. These frequency maxima values will be used to build dynamic
windows (Step 3). These windows (five in this case), with the obtained frequency edges delimited by
the green arrows in Figure 5b, feed the biggest block in the proposed algorithm in Figure 3.
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Figure 5. (a) Xapp( f ) the approximation of X( f ). (b) The result of applying the continuous wavelet
transform (CWT) modulus maxima to Xapp( f ) at scale 120 and its corresponding detected edges.

Once the edges are detected, the original approximation coefficients from MRA are normalized
and interpolated in order to have the same number of points aligned to the original signal X( f ) (i.e.,
aligned with the obtained windows) as it is shown in Figure 6. If the average of the normalized
approximation coefficients (NAC) aligned to each dynamic window is greater than 0.7, it means that
in the frequency interval that is considered in the decision rule is directly the original signal X( f ),
else the decision rule will be applied to the spectrum Xapp( f ) in the same interval (Steps 4 and 5).
The value of 0.7 was set analyzing simulated signals. The result of the application of this threshold for
this example, evidencing the existence of noise from the PU transmission, is shown in Figure 7.
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Figure 6. (a) The original and the approximated signal at decomposition level of 3. (b) The normalized
and interpolated approximation coefficients (NAC) which mark the frequency edges and the same time
that gives the dynamic windows and a threshold of 0.7.

As the final step, the resulting signal (spectrum shown in Figure 7) is used to determine a possible
PU transmission. For this, the Higuchi fractal dimension is applied over each segment (window) of
the spectrum (the NAC or the original signal). The decision threshold, to determine if there is a PU
or not, is set to 1.85. If the HFD is greater than 1.85 that means, in this frequency interval, an SU
could be placed or else a PU is transmitting. The threshold of 1.85 for the HFD was also set testing
the methodology with simulated signals. It is important to point out that the choice to take directly
or not the original signal involves the behavior of the HFD. Indeed, it is easier to decide about a PU
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transmission or noise, smoothing the spectrum (i.e., keeping the spectrum signal more regular) and
keeping the non-regularity characteristic of the noise when the HFD is computed.
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3.2. Second Methodology: MRA and HFD

Observing, in Figure 6, the behavior of the normalized and interpolated approximation coefficients
obtained from MRA; a straightforward idea can be implemented: to use the changes presented along
the frequency of these NAC to directly obtain the frequency edges in the multiband spectrum. In this
way, the first methodology, explained before, can be modified yielding a second algorithm. This second
proposal is described by the flow scheme presented in Figure 8.
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Figure 8. The second methodology described by a flow diagram.

Basically, Steps 2 and 3 of the first methodology are eliminated and substituted by considering
the frequencies where the NAC changes based on the threshold of 0.7, i.e., the NAC going down to
up from the 0.7 or vice versa. These changes will be the frequency edges necessary to construct the
dynamic windows. In the case of the example, these detected critical points are marked in Figure 6 by
black circles over the NAC.

Eliminating the CWT modulus maxima to detect the frequency edges gives a considerable
diminution in the computational operations in the algorithm.
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4. Implementations and Results

In this section, both proposed methodologies were implemented, and their performances
evaluated. These methodologies were tested on simulated and real signals. Before presenting
these implementations, another important issue was studied: the application of the Higuchi fractal
dimension in the decision rule. For this, an analysis of its application to classical transmissions
associated with the most representative wireless technologies in our days was developed.

4.1. HFD and Chosen Wavelet and Its Application on Wireless Transmission

The starting point for this work was thinking about applying the HFD to a multiband spectrum
signal which is divided into uniform size windows, as shown in Figure 9. In Figure 9a, the average of
300 frames of real transmitted signals in the [806–902] MHz band, is plotted. In Figure 9b, the result of
applying the HFD over frequency windows of the same size, is shown. Two important remarks can be
pointed out:Sensors 2019, 19, x 10 of 20 
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Figure 9. (a) The average of 300 multiband spectrum frames in the [806–902] MHz band. (b) The
computed HFD (average) over these frames on uniform frequency windows.

In the multiple captured frames, the computed HFD of a signal without the presence of PU is a
value that tends to 2.

The non-precise location of beginning and end of PU transmissions (due to the uniform frequency
windows), introduces an HFD to be wrong, indicating a possible PU transmission as noise.

The second point is corrected, in both proposed methodologies, detecting the frequency edges
and considering non-uniform size windows (dynamic windows). However, to set the threshold in
the decision rule, it is necessary to be able to differentiate between noise (HFD ≈ 2) and a possible
PU transmission. For this, HDF was applied on simulated signals representing classical access in
wireless technologies (i.e., LTE, WIFI, 3G, etc.): OFDMA and CDMA. HFD was computed considering
different SNR.

Multiple realizations of the synthesized OFDM and NRZ-CDMA symbols without noise are
shown in Figure 10 with their respective mean and variance indicated in Table 1. The corresponding
averaged HFD for these symbol realizations considering a wide interval of SNR, is displayed in
Figure 11. From both Figure 10, Figure 11, and Table 1, we can conclude that the behavior of the
computed HFD was around 2 where the symbols are practically noise (classical behavior of the HFD
on white noise), however with high SNR, the values were not so different, being more difficult to
differentiate which class of symbol was being transmitted. Nevertheless, this latter feature is not
really important in spectrum sensing where the goal is to detect or not the presence of a PU. Another
important thing to consider with these simulations is the sensibility of the HFD in presence of high
levels of noise, giving wrong results (with values going to 2). Because of this, the direct application
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of the HFD is not feasible and it is then necessary to implement another processing. For this, in this
work it was proposed to use the approximation coefficients from the MRA to get a smooth denoised
spectrum, giving values of the HFD far from 2 and easily identifiable from the real noise.
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Table 1. Mean and variance of the HFD applied to multiple simulated OFDM and NRZ-CDMA symbols
without noise.

Symbol HFD mean HFD Variance

OFDM 1.476 0.001

NRZ-CDMA 1.0383 0.0001
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Figure 11. HFD of OFDM (a) and of NRZ-CDMA, (b) spectra with different SNR.

The first consideration, to alleviate the above-mentioned problem, is to determine which kind
of wavelet must be used. Figure 12 shows the different approximated signals from the MRA with
different wavelet functions (Daubechies or db) implemented over a real signal. Although the tendency
of the spectrum must be tracked using any wavelet of this family, the changes of a PU transmission are
clearer with the db1 (or Haar) wavelet, which could improve the precision in locating the frequency
edges in a multiband spectrum.
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Figure 12. A real spectrum (in red) and the approximated signals from MRA using a Daubechies
wavelet family.

4.2. Simulated Signals

Both methodologies proposed in this paper were applied to a global simulation of 750,000 frames
for each SNR value, varying in the interval [−10,20] dB and spaced by 2, as it is shown in Figure 13.
In each frame, the number, type (OFDM or NRZ associated with CDMA), and position (frequency
edges) of simulated symbols were generated randomly. Each frame consists of 1000 samples spaced
by 0.1 MHz (i.e., an entire band of 100 MHz). Simulation parameters are summarized in Table 2.
In Figure 13, three analysis blocks are added: studies of noise, symbols, and frequency edges. These
studies serve to set the right threshold on the decision rule based on the HFD and the accuracy of
detection frequency edges, as is detailed in the next paragraphs. Besides, the levels of decomposition
of the MRA are 4 and 3 for first and second methodology, respectively.
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Figure 13. Scheme of the global simulation.

Table 2. Simulation parameters.

Parameters 1st Methodology 2nd Methodology

Software MATLAB 2014b

SNR values −10 to 20 dB spaced by 2

Number of frames per each SNR value 750,000

Number of symbols per frame Random between [0,2]

Bandwidth 100 MHz 102.4 MHz

Samples per frame 1000 1024

MRA decomposition level 4 3

Wavelet Haar
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4.2.1. Results of First Methodology

The result of symbols and noise studies when the first methodology was applied, is plotted in
Figure 14. From here, it can be emphasized that the occurrence of an OFDM or NRZ-CDMA signal
cannot be directly identified (i.e., the HFD mean is practically the same for both types of symbols
at the same SNR). However, there was a clear division of what is a noise signal and what is a PU
transmission. Based on these studies, for the first methodology, a threshold of HFD = 1.85 was chosen,
as shown in Figure 14.

Sensors 2019, 19, x 12 of 20 

studies serve to set the right threshold on the decision rule based on the HFD and the accuracy of 

detection frequency edges, as is detailed in the next paragraphs. Besides, the levels of decomposition 

of the MRA are 4 and 3 for first and second methodology, respectively. 

 

Figure 13. Scheme of the global simulation. 

Table 2. Simulation parameters. 

Parameters 1st Methodology 2nd Methodology 

Software MATLAB 2014b 

SNR values −10 to 20 dB spaced by 2 

Number of frames per each SNR value 750,000 

Number of symbols per frame Random between [0,2] 

Bandwidth 100 MHz 102.4 MHz 

Samples per frame 1000 1024 

MRA decomposition level 4 3 

Wavelet Haar 

4.2.1. Results of First Methodology 

The result of symbols and noise studies when the first methodology was applied, is plotted in 

Figure 14. From here, it can be emphasized that the occurrence of an OFDM or NRZ-CDMA signal 

cannot be directly identified (i.e., the HFD mean is practically the same for both types of symbols at 

the same SNR). However, there was a clear division of what is a noise signal and what is a PU 

transmission. Based on these studies, for the first methodology, a threshold of HFD = 1.85 was chosen, 

as shown in Figure 14. 

 

Figure 14. Mean and standard deviation (STD) for noise and simulated symbols (OFDM and NRZ-

CDMA) applying the first methodology. 

Methodology

Generator of 
750,000 
random 
frames

SNR
[-10, 20]

Percentage of 
success

Study of 
symbols

Study of 
noise

Decision 
threshold

Study of 
edges

Figure 14. Mean and standard deviation (STD) for noise and simulated symbols (OFDM and
NRZ-CDMA) applying the first methodology.

The accuracy for the detection of the frequency edges (where a change of the simulated signal
occurs) was also studied. These edges were the limits of the dynamic windows which for the first
methodology were obtained with the CWT modulus maxima. Results from this study are shown
in Figure 15. In these simulations, the performance of the proposed edges detector was excellent
considering that the mean of the frequency deviation from the true simulated edge of the all detected
values was five samples (around 5% from the true value). For SNR less than −4 dB (practically noise),
edge detection was extremely imprecise, and it is not shown in the figure.
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Figure 15. Study of frequency edge detection applying the first methodology.

The global performance for each methodology was obtained considering the ratio of the total right
transmission detections/true simulated values (PU transmissions) in percentage, i.e., the percentage of
success of the global simulation. The percentage of success in applying the first methodology is shown
in Figure 16.
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Some important remarks can be pointed out from these results:
Performance of this proposed first methodology on an SNR above 0 dB was excellent. Indeed,

the obtained percentage of success was over 95% of right detection, even more.
From values of SNR between 0 and −4 dB, the same performance was kept. If we consider these

SNR values corresponding to a signal embedded in noise, the performances of the proposed technique
were still excellent.

With SNR < −5 dB, the precision of the method was quickly degraded.

4.2.2. Results of the Second Methodology

As the first technique, a study of symbols and noise was done implementing the second
methodology (only using the approximation coefficients from MRA to detect the frequency edges
and to establish the decision rule). Results are shown in Figure 17. The first difference regarding
the first methodology was that the apparition of an OFDM signal or an NRZ-CDMA signal can
be now identified. Indeed, the HFD mean values of these transmissions were clearly separated,
even the variance levels were not really being touched; but this task was not the goal of this work.
Secondly, there was a clearer division in the HFD between what was a noise signal from a PU
transmission, permitting the establishment of a lower threshold for the HFD in the decision rule.
However, this threshold was kept at 1.85, as in the case of the first methodology.
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A study of the accuracy in the frequency edge detection was done again. The results are
displayed in Figure 18. These results show a better performance regarding the results obtained
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for the first methodology, diminishing the frequency deviation from the true simulated values to
2.4 samples (around 2.4% of true frequency deviation). The standard deviation was also diminished by
2. However, this edge detector was less precise (more susceptible to high noise levels) with very low
SNR, in comparison with the detector based on the CWT modulus maxima.
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The second methodology on an SNR above 0 dB outperformed the first methodology. Indeed,
the obtained percentage of success was practically around 100% of the right detection.

From the values of SNR between 0 and −4 dB, the first methodology had a better performance.
With SNR < −5 dB, the precision of both methods was quickly degraded.

4.3. Real Signals

To obtain real signals and characterize the multiband spectrum, a small spectrum occupancy
measurement campaign was carried out. The data were obtained monitoring the frequency interval
of [0.6–2.6] GHz during a complete week. An N9343C spectrum analyzer, obtaining 461 samples by
frame of 100 ms each, was used. Data were collected using a directional HyperLOG antenna with a
gain of 5 dBi.

Results of the spectrum occupancy, indicated in percentage of occupation, are shown in Figure 20.
It highlights the variability of the use of each band with time. From these results, six specific
bands, being good candidates to implement the proposed multiband spectrum sensing techniques,
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were monitored again. The six specific monitored bands are indicated in Table 3. Each specific band
was monitored during a complete day.
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Table 3. Monitored frequency bands.

Frequency Band Type of Communication

[698–806] MHz Mobile and landline.

[806–902] MHz Mobile and aeronautical mobile.

[902–928] MHz Radiolocation, amateur, mobile, and fixed.

[1.7–2] GHz Mobile and fixed.

[2.3–2.5] GHz Radiolocation, amateur, mobile, and fixed.

[2.6–2.8] GHz Aerial vehicles, radiolocation, and radio navigation.

For real signals taken directly from the environment, it was not possible to control the PU
transmission; unknowing its power and the exact frequency edges where it was transmitting. However,
by inspection, most of the time it was to possible recognize one or more PUs in a specific multiband
spectrum. Based on these facts, both methodologies were applied to data obtained in the different
bands mentioned in Table 3. In this work, a challenging case (signal) for each band was chosen and
results are plotted in Figures 21–26. In these figures, a detected PU was indicated by a binary signal
(placed on detected frequency edges): 0 for no PU transmission and 1 for a PU transmission.

Performances in general of both methodologies were remarkable. Sometimes edge frequency
detection was better for the first methodology, as in the case of signals shown in Figure 25, but in
general the second methodology outperformed slightly compared to the first. However, in all cases,
PU transmission was perfectly detected. In the case of only noise, both methodologies worked perfectly,
as shown in Figure 23. The great advantage of the second methodology was a lower computational
complexity in comparison with the first methodology. Indeed, eliminating the CWT modulus maxima
involving many computational operations gives a real opportunity to the second methodology to be
considered in a real-time implementation, taking into account that the MRA uses a fast algorithm in
its implementation.

Finally, both methodologies were applied to a real signal covering the complete frequency interval
[0.6–2.6] GHz as shown in Figure 27. Both methodologies have correct detection in the face of
PU transmission.
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applying both methodologies to the real signal in terms of spectrum occupancy. In this case, the second
methodology gives a better frequency edge detection.
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Figure 22. (a) A real signal obtained from the frequency band [806–902] MHz. (b) The result of
applying both methodologies to the real signal in terms of spectrum occupancy. In this case, the second
methodology gives a better frequency edge detection.Sensors 2019, 19, x 17 of 20 
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Figure 23. (a) A real signal obtained from the frequency band [902–928] MHz. (b) The result of applying
both methodologies to the real signal in terms of spectrum occupancy. In this case, both methodologies
do not correctly detect a PU.
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Figure 24. (a) A real signal obtained from the frequency band [1.7–2] GHz. (b) The result of applying
both methodologies to the real signal in terms of spectrum occupancy. In this case, the second
methodology gives a better frequency edge detection.

Sensors 2019, 19, x 17 of 20 

 

Figure 23. (a) A real signal obtained from the frequency band [902–928] MHz. (b) The result of 

applying both methodologies to the real signal in terms of spectrum occupancy. In this case, both 

methodologies do not correctly detect a PU. 

 

Figure 24. (a) A real signal obtained from the frequency band [1.7–2] GHz. (b) The result of applying 

both methodologies to the real signal in terms of spectrum occupancy. In this case, the second 

methodology gives a better frequency edge detection. 

 

Figure 25. (a) A real signal obtained from the frequency band [2.3–2.5] GHz. (b) The result of applying 

both methodologies to the real signal in terms of spectrum occupancy. In this case, the first 

methodology gives a better frequency edge detection. 

a)

b)

a)

b)

a)

b)

Figure 25. (a) A real signal obtained from the frequency band [2.3–2.5] GHz. (b) The result of applying
both methodologies to the real signal in terms of spectrum occupancy. In this case, the first methodology
gives a better frequency edge detection.Sensors 2019, 19, x 18 of 20 
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Figure 26. (a) A real signal obtained from the frequency band [2.6–2.8] GHz. (b) The result of applying
both methodologies to the real signal in terms of spectrum occupancy. In this case, the second
methodology gives a better frequency edge detection.
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Figure 27. (a) A real signal obtained from the entire wideband of [0.6–2.6] GHz. (b) The result
of applying both methodologies to the real signal in terms of spectrum occupancy. In this case,
both methodologies have the same good performance.

5. Conclusions

In this work, two novel methodologies based on wavelets and the Higuchi fractal dimension
applied to multiband spectrum sensing were proposed. The difference between these two
methodologies resides on the frequency edge detection. The first one used the CWT modulus maxima
of the reconstructed signal from the MRA approximation coefficients, the second one used directly
these coefficients, interpolating and normalizing them. The decision rule for both methodologies
was based on the Higuchi fractal dimension. Some important conclusions can be delivered from the
different results obtained from simulations and real signals:

The HFD of a series that corresponds to noise will have a value near to 2, since there is no
self-similarity because the noise, in general, corresponds to a normal distribution.

Based on the first remark and from simulations, it was possible to discriminate noise from a
PU transmission.

Better results were obtained considering the idea of windows of non-uniform size. Here, detection
of frequency edges was very important. Both proposed methods for this task, the CWT modulus
maxima or directly the approximation coefficient from MRA, give excellent results for edge detection;
the second method having the advantage in a matter of implementation and computational complexity.

It can be concluded from the simulation results that the first methodology for multiband spectrum
sensing worked for at least 95% of the cases with an SNR greater than or equal to 0 dB. This performance
was improved with the second methodology reaching percentages of success around 98%, on average.

For real signals, it must be emphasized that the two proposed methodologies, applied to the
bands mentioned in Table 3, have obtained favorable results in all the analyzed cases.

Finally, the possibility of a real-time implementation, especially of the second methodology,
is feasible. As part of future work, including automatic learning techniques will be considered
in order to avoid decision thresholds and to automate the full detection process. The methods
presented here are thought to be implemented in a scenario for recent wireless communications. Also,
the proposed methodologies will be implemented in a communications platform in order to know the
computational complexity.
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Abbreviations

CWT Continuous wavelet transform
MRA Multiresolution analysis
CR Cognitive radio
SU Secondary users
PU Primary users
SS Spectrum sensing
HFD Higuchi fractal dimension
SFD Sevcik fractal dimension
NAC Normalized interpolated approximation coefficients
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